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1 SCOPE AND INTRODUCTION 

1.1 Purpose 
PacketCable™, a project conducted by Cable Television Laboratories, Inc. (CableLabs®) 
and its member companies, is aimed at identifying, qualifying, and supporting packet-
based voice and video products over cable systems. These products represent new classes 
of services utilizing cable-based packet communication networks. New service classes in 
the near term include voice communications and videoconferencing over cable networks 
and the Internet.  

PacketCable is a set of protocols and associated element functional requirements 
developed to provide the capability to deliver Quality-of-Service (QoS) enhanced secure 
communications services using packetized data transmission technology to a consumer’s 
home over the cable television Hybrid Fiber/Coax (HFC) data network. PacketCable 
utilizes a network superstructure that overlays the two-way data-ready cable television 
network. While the initial service offerings in the PacketCable product line are 
anticipated to be Packet Voice and Packet Video, the long-term project vision 
encompasses a large family of packet-based services. 

The purpose of any security technology is to protect items of value, whether a revenue 
stream, or a purchasable information asset of some type. Threats to this revenue stream 
exist when a user of the network perceives the value, expends effort and money, and 
invents a technique to get around the necessary payments. Some network users will go to 
extreme lengths to steal when they perceive extreme value. The addition of security 
technology to protect value has an associated cost; the more expended, the more secure 
one can be. The proper engineering task is to employ a reasonable costing security 
technology to force any user with the intent to steal or disrupt network services to spend 
an unreasonable amount of money to circumvent it. Security effectiveness is thus basic 
economics. 

In addition, a PacketCable network used to offer voice communications must be at least 
as secure as the Public Switched Telephone Network (PSTN) networks are today. Much 
of the PSTN security depends on the fact that each telephone is connected to a dedicated 
line. In order to provide the same level of privacy and resistance to denial-of-service 
attacks when a PacketCable IP network is used for voice communications, appropriate 
cryptography-based security mechanisms have been specified. This secures both voice 
and signaling data transmitted over a shared HFC network and over a shared IP 
backbone. 

1.2 Scope 
The scope of this document is to define the PacketCable Security architecture, protocols, 
algorithms, associated functional requirements and any technological requirements that 
can provide for the security of the system for the PacketCable network. Authentication, 
access control, signaling and media content integrity, confidentiality, and non-repudiation 
security services must be provided as defined herein for each of the network element 
interfaces.  

golow
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PacketCable security spans the entire PacketCable architecture. The PacketCable 
Architecture Technical Report [1] and PacketCable 1.2 Architecture and Technical 
Report [2] define the overall PacketCable architecture, as well as the system elements, 
interfaces, and functional requirements for the entire PacketCable network. These and all 
PacketCable specifications can be found at www.packetcable.com. 

From time to time this document refers to the voice communications capabilities of a 
PacketCable network in terms of “IP Telephony.” The legal/regulatory classification of 
IP-based voice communications provided over cable networks and otherwise, and the 
legal/regulatory obligations, if any, borne by providers of such voice communications, 
are not yet fully defined by appropriate legal and regulatory authorities. Nothing in this 
specification is addressed to, or intended to affect, those issues. 

In particular, while this document uses standard terms such as “call,” “call signaling,” 
telephony,” etc., it should be recalled that while a PacketCable network performs 
activities analogous to these PSTN functions, the manner by which it does so differs 
considerably from the manner in which they are performed in the PSTN by 
telecommunications carriers, and that these differences may be significant for 
legal/regulatory purposes. Moreover, while reference is made here to “IP Telephony,” it 
should be recognized that this term embraces a number of different technologies and 
network architectures, each with different potential associated legal/regulatory 
obligations. No particular legal/regulatory consequences are assumed or implied by the 
use of this term. This specification makes use of existing standards wherever possible. 
Whenever there is an existing standard used in the definition of any requirement in this 
specification, the related existing standard will be referenced. When there are options 
defined with respect to the existing standards, this specification will explicitly define the 
options within the existing standard that are supported. 

1.2.1 Goals 
This specification describes the security relationships between the elements on the 
PacketCable network. The general goals of the PacketCable network security 
specification and any implementations that encompass the requirements defined herein 
should be: 

• Secure network communications  The PacketCable network security must define a 
security architecture, methods, algorithms and protocols that meet the stated security 
service requirement. All media packets and all sensitive signaling communication 
across the network must be safe from eavesdropping. Unauthorized message 
modification, insertion, deletion and replays anywhere in the network must be easily 
detectable and must not affect proper network operation. 

• Reasonable cost  The PacketCable network security must define security methods, 
algorithms and protocols that meet the stated security service requirements such that a 
reasonable implementation can be manifested with reasonable cost and 
implementation complexity. 
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• Network element interoperability  All of the security services for any of the 
PacketCable network elements must inter-operate with the security services for all of 
the other PacketCable network elements. Multiple vendors may implement each of 
the PacketCable network elements as well as multiple vendors for a single 
PacketCable network element. 

• Extensibility  The PacketCable security architecture, methods, algorithms and 
protocols must provide a framework into which new security methods and algorithms 
may be incorporated as necessary. 

1.2.2 Assumptions 
The following assumptions are made relative to the current scope of the PacketCable 
Security Specification: 

•  Embedded Multimedia Terminal Adapters (E-MTAs) and Standalone Multimedia 
Terminal Adapters (S-MTAs) are within the scope of this specification. 

• NCS is the only call signaling method, on the access network, addressed in this 
specification.  

• This version of the PacketCable Security Specification specifies security for a single 
administrative domain and the communications between domains. 

• Security for chained RADIUS servers is not currently in the scope. 

• The PacketCable Security Specification does not have a requirement for exportability 
outside the United States; exportability of encryption algorithms is not addressed in 
this specification. 

• This specification also does not include requirements for associated security 
operational issues (e.g., site security), back-office or inter/intra back-office security, 
service authorization policies or secure database handling. Record Keeping Servers 
(RKS), Network Management Systems, File Transfer Protocol (FTP) servers and 
Dynamic Host Configuration Protocol (DHCP) servers are all considered to be unique 
to any service provider’s implementation and are beyond the scope of this 
specification. 

1.2.3 Requirements 
The following requirement is made relative to the current scope of the PacketCable 
Security Specification: 

• All MTAs must use DOCSIS™ 1.1-compliant cable modems and must implement 
BPI+. 

1.3 Specification Language 
Throughout this document, the words that are used to define the significance of particular 
requirements are capitalized. These words are: 

“MUST” This word or the adjective “REQUIRED” means that the item is an 
absolute requirement of this specification. 
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“MUST NOT” This phrase means that the item is an absolute prohibition of this 
specification. 

“SHOULD” This word or the adjective “RECOMMENDED” means that there 
may exist valid reasons in particular circumstances to ignore this 
item, but the full implications should be understood and the case 
carefully weighed before choosing a different course. 

“SHOULD NOT” This phrase means that there may exist valid reasons in particular 
circumstances when the listed behavior is acceptable or event 
useful, but the full implications should be understood and the case 
carefully weighed before implementing any behavior described 
with this label. 

“MAY” This word or the adjective “OPTIONAL” means that this item is 
truly optional. One vendor may choose to include the item because 
a particular marketplace requires it or because it enhances the 
product, for example; another vendor may omit the same item. 

The legal/regulatory classification of IP-based voice communications provided over cable 
networks and otherwise, and the legal/regulatory obligations, if any, borne by providers 
of such voice communications, are not yet fully defined by appropriate legal and 
regulatory authorities. Nothing in this specification is addressed to, or intended to affect, 
those issues. In particular, while this document uses standard terms such as “call,” “call 
signaling,” “telephony,” etc., it will be evident from this document that while a Packet-
Cable network performs activities analogous to these PSTN functions, the manner by 
which it does so differs considerably from the manner in which they are performed in the 
PSTN by telecommunications carriers. These differences may be significant for 
legal/regulatory purposes. 
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1.4 Document Overview 
This specification covers security for the entire PacketCable architecture. This 
specification describes the PacketCable architecture, identifies security risks and specifies 
mechanisms to secure the architecture. The document is structured as follows: 

• Architectural Overview of PacketCable. The initial section describes the PacketCable 
architecture as a point of reference for the remainder of the document. Refer to the 
PacketCable 1.0 Architecture [1] and PacketCable 1.2 Technical Reports [2] and each 
individual specification for full details. 

• Security Threats are described in the context of the reference architecture. 

• The overall security architecture and security assumptions are described. 

• Security Mechanisms. This section specifies how public domain security mechanisms 
are to be implemented in PacketCable including IPsec, Internet Key Exchange (IKE), 
Kerberos with PKINIT, media stream security, BPI+ and RADIUS. 

• Security Profile. This section profiles the security for each major area of the 
PacketCable architecture. The profile includes a description of the security 
requirements as well as the specifications for securing at-risk interfaces. Refer to the 
individual specifications for details about each PacketCable interface.  

• PacketCable X.509 Certificate Profile and Management. X.509 Certificates are 
specified for a number of devices and functions within the PacketCable architecture. 
This section describes the format of the Certificates as well as the trust hierarchy for 
Certificate management within PacketCable. 

• Cryptographic Algorithms. This section specifies the details of cryptographic 
algorithms specified in the PacketCable security architecture. 

• Physical Security. This section documents assumptions about the physical security of 
the MTA keys. 

• Secure Software Upgrade. This section specifies the secure loading and upgrading of 
software to the MTAs. 
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3 TERMS AND DEFINITIONS 
The PacketCable suite of documents use the following terms:  

Access Control Limiting the flow of information from the resources of a system 
only to authorized persons, programs, processes or other system 
resources on a network. 

Active A service flow is said to be “active” when it is permitted to 
forward data packets. A service flow must first be admitted 
before it is active.  

Admitted A service flow is said to be “admitted” when the CMTS has 
reserved resources (e.g., bandwidth) for it on the DOCSIS 
network.  

A-link A-Links are SS7 links that interconnect STPs and either SSPs or 
SCPs. ‘A’ stands for “Access.” 

Asymmetric Key An encryption key or a decryption key used in public key 
cryptography, where encryption and decryption keys are always 
distinct. 

Audio Server An Audio Server plays informational announcements in 
PacketCable network. Media announcements are needed for 
communications that do not complete and to provide enhanced 
information services to the user. The component parts of Audio 
Server services are Media Players and Media Player Controllers.  

Authentication The process of verifying the claimed identity of an entity to 
another entity.  

Authenticity The ability to ensure that the given information is without 
modification or forgery and was in fact produced by the entity 
that claims to have given the information. 

Authorization The act of giving access to a service or device if one has the 
permission to have the access. 

Cipher An algorithm that transforms data between plaintext and 
ciphertext. 

Ciphersuite A set, which must contain both an encryption algorithm and a 
message authentication algorithm (e.g., a MAC or an HMAC). 
In general, it may also contain a key management algorithm, 
which does not apply in the context of PacketCable. 

Ciphertext The (encrypted) message output from a cryptographic algorithm 
that is in a format that is unintelligible. 

Cleartext The original (unencrypted) state of a message or data. Also 
called plaintext. 

Confidentiality A way to ensure that information is not disclosed to any one 
other then the intended parties. Information is encrypted to 
provide confidentiality. Also known as privacy. 

Cryptanalysis The process of recovering the plaintext of a message or the 
encryption key without access to the key. 

Cryptographic 
algorithm 

An algorithm used to transfer text between plaintext and 
ciphertext. 
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Decipherment A procedure applied to ciphertext to translate it into plaintext. 
Decryption A procedure applied to ciphertext to translate it into plaintext. 
Decryption key The key in the cryptographic algorithm to translate the ciphertext 

to plaintext. 
Digital certificate A binding between an entity’s public key and one or more 

attributes relating to its identity, also known as a public key 
certificate. 

Digital signature  A data value generated by a public key algorithm based on the 
contents of a block of data and a private key, yielding an 
individualized cryptographic checksum. 

Downstream The direction from the head-end toward the subscriber location. 
Encipherment  A method used to translate information in plaintext into 

ciphertext. 
Encryption A method used to translate information in plaintext into 

ciphertext. 
Encryption Key The key used in a cryptographic algorithm to translate the 

plaintext to ciphertext. 
Endpoint A Terminal, Gateway or MCU. 
Errored Second Any 1-sec interval containing at least one bit error. 
Event Message Message capturing a single portion of a connection. 
F-link F-Links are SS7 links that directly connect two SS7 end points, 

such as two SSPs. ‘F’ stands for “Fully Associated.” 
Flow [DOCSIS 
Flow] 

(a.k.a. DOCSIS-QoS “service flow”) A unidirectional sequence 
of packets associated with a SID and a QoS. Multiple 
multimedia streams may be carried in a single DOCSIS Flow. 

Flow [IP Flow] A unidirectional sequence of packets identified by ISO Layer 3 
and Layer 4 header information. This information includes 
source/destination IP addresses, source/destination port numbers, 
protocol ID. Multiple multimedia streams may be carried in a 
single IP Flow. 

Gateway Devices bridging between the PacketCable IP Voice 
Communication world and the PSTN. Examples are the Media 
Gateway which provides the bearer circuit interfaces to the 
PSTN and transcodes the media stream, and the Signaling 
Gateway which sends and receives circuit switched network 
signaling to the edge of the PacketCable network. 

H.323 An ITU-T recommendation for transmitting and controlling 
audio and video information. The H.323 recommendation 
requires the use of the ITU-T H.225 and ITU-T H.245 protocol 
for communication control between a “gateway” audio/video 
endpoint and a “gatekeeper” function. 

Header Protocol control information located at the beginning of a 
protocol data unit. 

Integrity A way to ensure that information is not modified except by those 
who are authorized to do so. 
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IntraLATA Within a Local and Access Transport Area. 
Jitter Variability in the delay of a stream of incoming packets making 

up a flow such as a voice communication. 
Kerberos A secret-key network authentication protocol that uses a choice 

of cryptographic algorithms for encryption and a centralized key 
database for authentication. 

Key A mathematical value input into the selected cryptographic 
algorithm. 

Key Exchange The swapping of public keys between entities to be used to 
encrypt communication between the entities. 

Key Management The process of distributing shared symmetric keys needed to run 
a security protocol. 

Key Pair An associated public and private key where the correspondence 
between the two are mathematically related, but it is 
computationally infeasible to derive the private key from the 
public key.  

Keying Material A set of cryptographic keys and their associated parameters, 
normally associated with a particular run of a security protocol. 

Keyspace The range of all possible values of the key for a particular 
cryptographic algorithm. 

Latency The time, expressed in quantity of symbols, taken for a signal 
element to pass through a device. 

Link Encryption Cryptography applied to data as it travels on data links between 
the network devices. 

Network Layer Layer 3 in the Open System Interconnection (OSI) architecture 
that provides network information that is independent from the 
lower layers.  

Network 
Management 

The functions related to the management of data across the 
network. 

Network 
Management 
OSS 

The functions related to the management of data link layer and 
physical layer resources and their stations across the data 
network supported by the hybrid fiber/coax system. 

Nonce A random value used only once that is sent in a communications 
protocol exchange to prevent replay attacks. 

Non-Repudiation The ability to prevent a sender from denying later that he or she 
sent a message or performed an action. 

Off-Net Call A communication connecting a PacketCable subscriber out to a 
user on the PSTN. 

One-way Hash A hash function that has an insignificant number of collisions 
upon output. 

On-Net Call A communication placed by one customer to another customer 
entirely on the PacketCable Network. 

Plaintext  The original (unencrypted) state of a message or data. Also 
called cleartext. 
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Pre-shared Key A shared secret key passed to both parties in a communication 
flow, using an unspecified manual or out-of-band mechanism. 

Privacy A way to ensure that information is not disclosed to any one 
other then the intended parties. Information is usually encrypted 
to provide confidentiality. Also known as confidentiality. 

Private Key The key used in public key cryptography that belongs to an 
individual entity and must be kept secret. 

Proxy A facility that indirectly provides some service or acts as a 
representative in delivering information thereby eliminating the 
need for a host to support the service. 

Public Key The key used in public key cryptography that belongs to an 
individual entity and is distributed publicly. Other entities use 
this key to encrypt data to be sent to the owner of the key. 

Public Key 
Certificate 

A binding between an entity’s public key and one or more 
attributes relating to its identity, also known as a digital 
certificate. 

Public Key 
Cryptography 

A procedure that uses a pair of keys, a public key and a private 
key for encryption and decryption, also known as an asymmetric 
algorithm. A user’s public key is publicly available for others to 
use to send a message to the owner of the key. A user’s private 
key is kept secret and is the only key that can decrypt messages 
sent encrypted by the user’s public key. 

Root Private Key The private signing key of the highest-level Certification 
Authority. It is normally used to sign public key certificates for 
lower-level Certification Authorities or other entities. 

Root Public Key The public key of the highest level Certification Authority, 
normally used to verify digital signatures generated with the 
corresponding root private key. 

Secret Key The cryptographic key used in a symmetric key algorithm, 
which results in the secrecy of the encrypted data depending 
solely upon keeping the key a secret, also known as a symmetric 
key. 

Session Key A cryptographic key intended to encrypt data for a limited 
period of time, typically between a pair of entities. 

Signed and 
Sealed 

An “envelope” of information which has been signed with a 
digital signature and sealed using encryption. 

Subflow A unidirectional flow of IP packets characterized by a single 
source and destination IP address and source and destination 
UDP/TCP port. 

Symmetric Key The cryptographic key used in a symmetric key algorithm, 
which results in the secrecy of the encrypted data depending 
solely upon keeping the key a secret, also known as a secret key. 

Systems 
Management 

Functions in the application layer related to the management of 
various open systems Interconnection (OSI) resources and their 
status across all layers of the OSI architecture. 
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Transit Delays The time difference between the instant at which the first bit of a 
PDU crosses one designated boundary, and the instant at which 
the last bit of the same PDU crosses a second designated 
boundary. 

Trunk An analog or digital connection from a circuit switch that carries 
user media content and may carry voice signaling (MF, R2, etc.). 

Tunnel Mode An IPsec (ESP or AH) mode that is applied to an IP tunnel, 
where an outer IP packet header (of an intermediate destination) 
is added on top of the original, inner IP header. In this case, the 
ESP or AH transform treats the inner IP header as if it were part 
of the packet payload. When the packet reaches the intermediate 
destination, the tunnel terminates and both the outer IP packet 
header and the IPsec ESP or AH transform are taken out. 

Upstream The direction from the subscriber location toward the head-end. 
X.509 certificate A public key certificate specification developed as part of the 

ITU-T X.500 standards directory. 
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4 ABBREVIATIONS AND ACRONYMS 
The PacketCable suite of documents use the following abbreviations and acronyms.  

AAA Authentication, Authorization and Accounting 
AES Advanced Encryption Standard. A block cipher, used to encrypt the 

media traffic in PacketCable. 
AF Assured Forwarding. This is a DiffServ Per Hop Behavior. 
AH Authentication header. An IPsec security protocol that provides message 

integrity for complete IP packets, including the IP header. 
AMA Automated Message Accounting. A standard form of call detail records 

(CDRs) developed and administered by Bellcore (now Telcordia 
Technologies). 

ASD Application-Specific Data. A field in some Kerberos key management 
messages that carries information specific to the security protocol for 
which the keys are being negotiated. 

AT Access Tandem 
ATM Asynchronous Transfer Mode. A protocol for the transmission of a 

variety of digital signals using uniform 53-byte cells. 
BAF Bellcore AMA Format, also known as AMA. 
BCID Billing Correlation ID 
BPI+ Baseline Privacy Plus Interface Specification. The security portion of 

the DOCSIS 1.1 standard that runs on the MAC layer. 
CA Certification Authority. A trusted organization that accepts certificate 

applications from entities, authenticates applications, issues certificates 
and maintains status information about certificates. 

CA Call Agent. The part of the CMS that maintains the communication 
state, and controls the line side of the communication. 

CBC Cipher Block Chaining Bode. An option in block ciphers that combine 
(XOR) the previous block of ciphertext with the current block of 
plaintext before encrypting that block of the message. 

CBR Constant Bit Rate 
CDR Call Detail Record. A single CDR is generated at the end of each 

billable activity. A single billable activity may also generate multiple 
CDRs. 

CIC Circuit Identification Code. In ANSI SS7, a two-octet number that 
uniquely identifies a DSO circuit within the scope of a single SS7 Point 
Code. 

CID Circuit ID (Pronounced “kid”). This uniquely identifies an ISUP DS0 
circuit on a Media Gateway. It is a combination of the circuit’s SS7 
gateway point code and Circuit Identification Code (CIC). The SS7 
DPC is associated with the Signaling Gateway that has domain over the 
circuit in question. 

CIF Common Intermediate Format 
CIR Committed Information Rate 
CM DOCSIS Cable Modem 
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CMS Cryptographic Message Syntax 
CMS Call Management Server. Controls the audio connections. Also called a 

Call Agent in MGCP/SGCP terminology. This is one example of an 
Application Server. 

CMTS Cable Modem Termination System. The device at a cable head-end 
which implements the DOCSIS RFI MAC protocol and connects to 
CMs over an HFC network. 

Codec COder-DECoder 
COPS Common Open Policy Service Protocol. Currently an internet draft, 

which describes a client/server model for supporting policy control over 
QoS Signaling Protocols and provisioned QoS resource management. 

CoS Class of Service. The type 4 tuple of a DOCSIS configuration file. 
CSR Customer Service Representative 
DA Directory Assistance 
DE Default. This is a DiffServ Per Hop Behavior. 
DES Data Encryption Standard 
DHCP Dynamic Host Configuration Protocol 
DHCP-D DHCP Default. Network Provider DHCP Server 
DNS Domain Name Service 
DOCSIS™ Data Over Cable Service Interface Specifications 
DPC Destination Point Code. In ANSI SS7, a 3 octet number which uniquely 

identifies an SS7 Signaling Point, either an SSP, STP, or SCP. 
DQoS Dynamic Quality of Service. Assigned on the fly for each 

communication depending on the QoS requested. 
DSCP DiffServ Code Point. A field in every IP packet that identifies the 

DiffServ Per Hop Behavior. In IP version 4, the TOS byte is redefined 
to be the DSCP. In IP version 6, the Traffic Class octet is used as the 
DSCP. See Appendix C. 

DTMF Dual-tone Multi Frequency (tones) 
EF Expedited Forwarding. A DiffServ Per Hop Behavior. 
E-MTA Embedded MTA. A single node that contains both an MTA and a cable 

modem. 
EO End Office 
ESP IPsec Encapsulating Security Payload. Protocol that provides both IP 

packet encryption and optional message integrity, not covering the IP 
packet header. 

ETSI European Telecommunications Standards Institute 
FEID Financial Entity ID  
FGD Feature Group D signaling 
F-link F-Links are SS7 links that directly connect two SS7 end points, such as 

two SSPs. ‘F’ stands for “Fully Associated”. 
FQDN Fully Qualified Domain Name. Refer to IETF RFC 821 for details. 
GTT Global Title Translation 
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HFC Hybrid Fiber/Coaxial cable. An HFC system is a broadband bi-
directional shared media transmission system using fiber trunks between 
the head-end and the fiber nodes, and coaxial distribution from the fiber 
nodes to the customer locations. 

HMAC Hashed Message Authentication Code. A message authentication 
algorithm, based on either SHA-1 or MD5 hash and defined in IETF 
RFC 2104.  

HTTP Hypertext Transfer Protocol. Refer to IETF RFC 1945 and RFC 2068. 
IANA Internet Assigned Numbered Authority. See www.ietf.org for details. 
IC Inter-exchange Carrier 
IETF Internet Engineering Task Force. A body responsible, among other 

things, for developing standards used on the Internet. 
IKE Internet Key Exchange. A key management mechanism used to 

negotiate and derive keys for SAs in IPsec. 
IKE–  A notation defined to refer to the use of IKE with pre-shared keys for 

authentication. 
IKE+  A notation defined to refer to the use of IKE with X509 certificates for 

authentication. 
IP Internet Protocol. An Internet network-layer protocol. 
IPsec Internet Protocol Security. A collection of Internet standards for 

protecting IP packets with encryption and authentication. 
ISDN Integrated Services Digital Network 
ISTP Internet Signaling Transport Protocol 
ISUP ISDN User Part. A protocol within the SS7 suite of protocols that is 

used for call signaling within an SS7 network. 
ITU International Telecommunication Union 
ITU-T International Telecommunications Union–Telecommunications 

Standardization Sector 
IVR Interactive Voice Response System 
KDC Key Distribution Center 
LATA Local Access and Transport Area 
LD Long Distance 
LIDB Line Information Database. Contains information on customers required 

for real-time access such as calling card personal identification numbers 
(PINs) for real-time validation. 

LLC Logical Link Control. The Ethernet Packet header and optional 802.1P 
tag which may encapsulate an IP packet. A sublayer of the Data Link 
Layer. 

LNP Local Number Portability. Allows a customer to retain the same number 
when switching from one local service provider to another. 

LSSGR LATA Switching Systems Generic Requirements 
MAC Message Authentication Code. A fixed-length data item that is sent 

together with a message to ensure integrity, also known as a MIC. 
MAC Media Access Control. It is a sublayer of the Data Link Layer. It 

normally runs directly over the physical layer. 
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MC Multipoint Controller 
MCU Multipoint Conferencing Unit 
MD5 Message Digest 5. A one-way hash algorithm that maps variable length 

plaintext into fixed-length (16 byte) ciphertext. 
MDCP Media Device Control Protocol. A media gateway control specification 

submitted to IETF by Lucent. Now called SCTP. 
MDU Multi-Dwelling Unit. Multiple units within the same physical building. 

The term is usually associated with high-rise buildings 
MEGACO Media Gateway Control IETF working group. See www.ietf.org for 

details. 
MG Media Gateway. Provides the bearer circuit interfaces to the PSTN and 

transcodes the media stream. 
MGC Media Gateway Controller. The overall controller function of the PSTN 

gateway. Receives, controls and mediates call-signaling information 
between the PacketCable and PSTN. 

MGCP Media Gateway Control Protocol. Protocol follow-on to SGCP. Refer to 
IETF 2705. 

MIB Management Information Base 
MIC Message Integrity Code. A fixed-length data item that is sent together 

with a message to ensure integrity, also known as a Message 
Authentication Code (MAC). 

MMC Multi-Point Mixing Controller. A conferencing device for mixing media 
streams of multiple connections. 

MSB Most Significant Bit 
MSO Multi-System Operator. A cable company that operates many head-end 

locations in several cities. 
MSU Message Signal Unit 
MTA Multimedia Terminal Adapter. Contains the interface to a physical voice 

device, a network interface, CODECs, and all signaling and 
encapsulation functions required for VoIP transport, class features 
signaling, and QoS signaling. 

MTP The Message Transfer Part. A set of two protocols (MTP 2, 3) within 
the SS7 suite of protocols that are used to implement physical, data link 
and network-level transport facilities within an SS7 network. 

MWD Maximum Waiting Delay 
NANP North American Numbering Plan 
NANPNAT North American Numbering Plan Network Address Translation 
NAT 
Network 
Layer 

Network Address Translation. Layer 3 in the Open System 
Interconnection (OSI) architecture. This layer provides services to 
establish a path between open systems. 

NCS Network Call Signaling 
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NPA-NXX Numbering Plan Area (more commonly known as area code) NXX 
(sometimes called exchange) represents the next three numbers of a 
traditional phone number. The N can be any number from 2-9 and the 
Xs can be any number. The combination of a phone number’s NPA-
NXX will usually indicate the physical location of the call device. The 
exceptions include toll-free numbers and ported number (see LNP) 

NTP Network Time Protocol. An internet standard used for synchronizing 
clocks of elements distributed on an IP network 

NTSC National Television Standards Committee. Defines the analog color 
television, broadcast standard used today in North America. 

OID Object Identification 
OSP Operator Service Provider 
OSS Operations Systems Support. The back-office software used for 

configuration, performance, fault, accounting, and security 
management. 

OSS-D OSS Default. Network Provider Provisioning Server 
PAL Phase Alternate Line. The European color television format that evolved 

from the American NTSC standard. 
PCM Pulse Code Modulation. A commonly employed algorithm to digitize an 

analog signal (such as a human voice) into a digital bit stream using 
simple analog to digital conversion techniques. 

PDU Protocol Data Unit 
PHS Payload Header Suppression. A DOCSIS technique for compressing the 

Ethernet, IP and UDP headers of RTP packets. 
PKCROSS Public Key Cryptography for Cross-Ream Authentication. Utilizes 

PKINIT for establishing the inter-realm keys and associated inter-realm 
policies to be applied in issuing cross-realm service tickets between 
realms and domains in support of Intradomain and Interdomain CMS-
to-CMS signaling (CMSS). 

PKCS Public Key Cryptography Standards. Published by RSA Data Security 
Inc. These Standards describe how to use public key cryptography in a 
reliable, secure and interoperable way.  

PKI  Public Key Infrastructure. A process for issuing public key certificates, 
which includes standards, Certification Authorities, communication 
between authorities and protocols for managing certification processes.  

PKINIT Public Key Cryptography for Initial Authentication. The extension to 
the Kerberos protocol that provides a method for using public key 
cryptography during initial authentication 

PSC Payload Service Class Table, a MIB table that maps RTP payload Type 
to a Service Class Name. 

PSFR Provisioned Service Flow Reference. An SFR that appears in the 
DOCSIS configuration file. 

PSTN Public Switched Telephone Network 
QCIF Quarter Common Intermediate Format 
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QoS Quality of Service. Guarantees network bandwidth and availability for 
applications. 

RADIUS Remote Authentication Dial-In User Service. An internet protocol 
(IETF RFC 2138 and RFC 2139) originally designed for allowing users 
dial-in access to the internet through remote servers. Its flexible design 
has allowed it to be extended well beyond its original intended use. 

RAS Registration, Admissions and Status. RAS Channel is an unreliable 
channel used to convey the RAS messages and bandwidth changes 
between two H.323 entities. 

RC4 Rivest Cipher 4. A variable length stream cipher. Optionally used to 
encrypt the media traffic in PacketCable. 

RFC Request for Comments. Technical policy documents approved by the 
IETF which are available on the World Wide Web at 
http://www.ietf.cnri.reston.va.us/rfc.html. 

RFI The DOCSIS Radio Frequency Interface specification.  
RJ-11 Registered Jack-11. A standard 4-pin modular connector commonly 

used in the United States for connecting a phone unit into a wall jack. 
RKS Record Keeping Server. The device which collects and correlates the 

various Event Messages. 
RSA A public-key, or asymmetric, cryptographic algorithm that is used to 

provide the services of authentication and encryption. RSA stands for 
the three inventors of the algorithm; Rivest, Shamir, Adleman. 

RSA Key 
Pair 

A public/private key pair created for use with the RSA cryptographic 
algorithm. 

RSVP Resource Reservation Protocol 
RTCP Real-Time Control Protocol 
RTO Retransmission Timeout 
RTP Real-time Transport Protocol. A protocol for encapsulating encoded 

voice and video streams. Refer to IETF RFC 1889. 
SA Security Association. A one-way relationship between sender and 

receiver offering security services on the communication flow. 
SAID Security Association Identifier. Uniquely identifies SAs in the DOCSIS 

Baseline Privacy Plus Interface (BPI+) security protocol. 
SCCP Signaling Connection Control Part. A protocol within the SS7 suite of 

protocols that provides two functions in addition to those provided 
within MTP. The first is the ability to address applications within a 
signaling point. The second function is Global Title Translation. 

SCP Service Control Point. A Signaling Point within the SS7 network, 
identifiable by a Destination Point Code that provides database services 
to the network. 

SCTP Stream Control Transmission Protocol 
SDP Session Description Protocol 
SDU Service Data Unit. Information that is delivered as a unit between peer 

service access points. 
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SF Service Flow. A unidirectional flow of packets on the RF interface of a 
DOCSIS system.  

SFID Service Flow ID. A 32-bit integer assigned by the CMTS to each 
DOCSIS Service Flow defined within a DOCSIS RF MAC domain. 
Any 32-bit SFID must not conflict with a zero-extended 14-bit SID. 
SFIDs are considered to be in either the upstream direction (USFID) or 
downstream direction (DSFID). USFIDs and DSFIDs are allocated from 
the same SFID number space. 

SFR Service Flow Reference. A 16-bit message element used within the 
DOCSIS TLV parameters of Configuration Files and Dynamic Service 
messages to temporarily identify a defined Service Flow. The CMTS 
assigns a permanent SFID to each SFR of a message. 

SG Signaling Gateway. An SG is a signaling agent that receives/sends SCN 
native signaling at the edge of the IP network. In particular the SS7 SG 
function translates variants ISUP and TCAP in an SS7-Internet Gateway 
to a common version of ISUP and TCAP. 

SGCP Simple Gateway Control Protocol. Earlier draft of MGCP. 
SHA – 1 Secure Hash Algorithm 1. A one-way hash algorithm. 
SID Service ID. A 14-bit number assigned by a CMTS to identify an 

upstream virtual circuit. Each SID separately requests and is granted the 
right to use upstream bandwidth. 

SIP Session Initiation Protocol. An application-layer control (signaling) 
protocol for creating, modifying, and terminating sessions with one or 
more participants. 

SIP+ Session Initiation Protocol Plus. An extension to SIP. 
S-MTA Standalone MTA. A single node that contains an MTA and a non-

DOCSIS MAC (e.g., ethernet). 
SNMP Simple Network Management Protocol 
SOHO Small Office/Home Office 
SS7 Signaling System number 7. An architecture and set of protocols for 

performing out-of-band call signaling with a telephone network. 
SSP Service Switching Point. SSPs are points within the SS7 network that 

terminate SS7 signaling links and also originate, terminate, or tandem 
switch calls. 

STP Signal Transfer Point. A node within an SS7 network that routes 
signaling messages based on their destination address. This is 
essentially a packet switch for SS7. It may also perform additional 
routing services such as Global Title Translation. 

TCAP Transaction Capabilities Application Protocol. A protocol within the 
SS7 stack that is used for performing remote database transactions with 
a Signaling Control Point. 

TCP Transmission Control Protocol 
TD Timeout for Disconnect 
TFTP Trivial File Transfer Protocol 
TFTP-D Default – Trivial File Transfer Protocol 



PKT-SP-SEC-I07-021127 PacketCableTM 1.x Specifications 

22 CableLabs  11/27/02 

TGS Ticket Granting Server. A sub-system of the KDC used to grant 
Kerberos tickets. 

TGW Telephony Gateway 
TIPHON Telecommunications and Internet Protocol Harmonization Over 

Network 
TLV Type-Length-Value. A tuple within a DOCSIS configuration file. 
TN Telephone Number 
ToD Time of Day Server 
TOS Type of Service. An 8-bit field of every IP version 4 packet. In a 

DiffServ domain, the TOS byte is treated as the DiffServ Code Point, or 
DSCP. 

TSG Trunk Subgroup 
UDP User Datagram Protocol. A connectionless protocol built upon Internet 

Protocol (IP). 
VAD Voice Activity Detection 
VBR Variable Bit Rate 
VoIP Voice over IP 
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5 ARCHITECTURAL OVERVIEW OF PACKETCABLE 
SECURITY  

5.1 PacketCable Reference Architecture  
Security requirements have been defined for every signaling and media link within the 
PacketCable IP network. In order to understand the security requirements and 
specifications for PacketCable, one must first understand the overall architecture. This 
section presents a brief overview of the PacketCable 1.2 architecture. For a more detailed 
specification, refer to the PacketCable Architecture Technical Report [1] and the 
PacketCable 1.2 Architecture Technical Report [2]. 
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Figure 1. PacketCable Single Zone Architecture 

5.1.1 HFC Network 
In the above diagram, the Access Network between the MTAs and the CMTS is an HFC 
network, which employs DOCSIS 1.1 physical layer and MAC layer protocols [11]. 
DOCSIS BPI+ [12] and QoS protocols are enabled over this link. 

There is signaling between the MTA and the CMTS for the purpose of Dynamic QoS [4]. 
This includes both custom UDP messages defined specifically for PacketCable DQoS, as 
well as standard RSVP messages, which run directly over the IP layer in the protocol 
stack. PacketCable also provides guaranteed QoS for each voice communication between 
domains with Interdomain QoS (IQoS) [5]. 

Since BPI+ key management and privacy runs between the Cable Modem and the CMTS, 
it does not help in authenticating the identity of the MTA. Therefore, all protocols that 
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run between the MTA and the CMTS have additional security requirements that cannot 
be met by BPI+. Also, since the MTA communicates with other devices on the 
PacketCable network beyond the CMTS, these communications must be protected as 
well. 

5.1.2 Call Management Server 
In the context of voice communications applications, a central component of the system 
is the Call Management Server (CMS). It is involved in both call signaling and the 
establishment of Dynamic Quality of Service (DQoS). The CMS also performs queries at 
the PSTN Gateway for LNP (Local Number Portability) and other services necessary for 
voice communications, including interfacing with the PSTN. 

As described in the PacketCable Architecture Framework [1], the CMS is divided into the 
following functional components: 

• Call Agent (CA) - The Call Agent maintains network intelligence and call state and 
controls the media gateway. Most of the time Call Agent is synonymous for Call 
Management Server. 

• Gate Controller (GC) - The Gate Controller is a logical QoS management component 
that is typically part of the CMS. The GC coordinates all quality of service 
authorization and control on behalf of the application service - e.g., voice 
communications. 

• Media Player Controller (MPC) – The MPC initiates and manages all announcement 
services provided by the Media Player. The MPC accepts requests from the CMS and 
arranges for the MP to provide the announcement in the appropriate stream so that the 
user hears the announcement. 

• Media Gateway Controller (MGC) – The Media Gateway Controller maintains the 
gateway’s portion of call state for communications traversing the Gateway.  

A particular CMS can contain any subset of the above listed functional components. 

5.1.3 Functional Categories 
The PacketCable Architecture Framework identifies the following functional categories 
within the architecture: 

• MTA device provisioning  

• Quality of Service (HFC access network and managed IP backbone) 

• Billing interface security 

• Security (specified herein) 

• Network call signaling (NCS) 

• PSTN interconnectivity 

• CODEC functionality and media stream mapping  
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• Audio Server services 

• Electronic surveillance (DF interfaces) 

In most cases, each functional category corresponds to a particular PacketCable 
specification document. 

5.1.3.1 Device and Service Provisioning 
During MTA provisioning, the MTA gets its configuration with the help of the DHCP 
and TFTP servers, as well as the OSS, see [9].  

Provisioning interfaces need to be secured and have to configure the MTA with the 
appropriate security parameters (e.g., customer X.509 certificate signed by the Service 
Provider). This document specifies the steps in MTA provisioning, but provides detailed 
specifications only for the security parameters. Refer to [6] for a full specification on 
MTA provisioning and customer enrollment. 

5.1.3.2 Dynamic Quality of Service 
PacketCable provides guaranteed Quality of Service (QoS) for each voice communication 
within a single zone with Dynamic QoS (DQoS) [4].  

DQoS is controlled by the Gate Controller function within the CMS and can guarantee 
Quality of Service within a single administrative domain. The Gate Controller utilizes the 
COPS protocol to download QoS policy into the CMTS. After that, the QoS reservation 
is established via layer 2 signaling or DOCSIS 1.l QoS between the MTA and the CMTS 
on both sides of the connection. QoS reservations are also forwarded to the IP Backbone 
between the CMTSes, but the specifications of the Backbone reservations are currently 
out of the scope of PacketCable. Therefore, the corresponding security specifications are 
also out of scope. 

5.1.3.3 Interdomain Quality of Service 
PacketCable provides guaranteed QoS for each voice communication between domains 
with Interdomain QoS (IQoS) [5]. DiffServ allows IP traffic to be marked with different 
DiffServ Code Points (DSCP) to obtain different queuing treatment on routers. Different 
queuing treatments in each router are called per-hop behavior (PHB), which is a 
mechanism for enforcing QoS for different flows in the IP Backbone. 

5.1.3.4 Billing System Interfaces 
The CMS, CMTS and the PSTN Gateway are all required to send out billing event 
messages to the Record Keeping Server (RKS). This interface is currently specified to be 
RADIUS. Billing information should be checked for integrity and authenticity as well as 
kept private. This document defines security requirements and specifications for the 
communication with RKS. 

5.1.3.5 Call Signaling 
The call signaling architecture defined within PacketCable is Network Based Call 
Signaling (NCS). The CMS is used to control call setup, termination and most other call 
signaling functions. In the NCS architecture [3], the Call Agent function within the CMS 
is used in call signaling and utilizes the MGCP protocol.  
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5.1.3.6 PSTN Interconnectivity 
The PSTN interface to the voice communications capabilities of the PacketCable network 
is through the Signaling and Media Gateways (SG and MG). Both of these gateways are 
controlled with the MGC (Media Gateway Controller). The MGC may be standalone or 
combined with a CMS. For further detail on PSTN Gateways, refer to [7] and [31]. 

All communications between the MGC and the SG and MG may be over the same-shared 
IP network and is subject to similar threats (e.g., privacy, masquerade, denial-of-service) 
that are encountered in other links in the same network. This document defines the 
security requirements and specifications for the PSTN Gateway links. 

When communications from an MTA to a PSTN phone are made, bearer channel traffic 
is passed directly between an MTA and an MG. The protocols used in this case are RTP 
and RTCP, as in the MTA-to-MTA case. Both security requirements and specifications 
are very similar to the MTA-to-MTA bearer requirements and are fully defined in this 
document. After a voice communication enters the PSTN, the security requirements as 
well as specifications are based on existing PSTN standards and are out of the scope of 
this document. 

5.1.3.7 CODEC Functionality and Media Stream Mapping 
The media stream between two MTAs or between an MTA and a PSTN Gateway utilizes 
the RTP protocol. Although BPI+ provides privacy over the HFC network, the potential 
threats within the rest of the voice communications network require that the RTP packets 
be encrypted end-to-end.1  

In addition to RTP, there is an accompanying RTCP protocol, primarily used for 
reporting of RTCP statistics. In addition, RTCP packets may carry CNAME – a unique 
identifier of the sender of RTP packets. RTCP also defines a BYE message2 that can be 
used to terminate an RTP session. These two additional RTCP functions raise privacy and 
denial-of-service threats. Due to these threats, RTCP security requirements are the same 
as the requirements for all other end-to-end (SIP+) signaling and are addressed in the 
same manner. 

In addition to MTAs and PSTN Gateways, Media Servers may also participate in the 
media stream flows. Media Servers are network-based components that operate on media 
flows to support various voice communications service options. Media servers perform 
audio bridging, play terminating announcements, provide interactive voice response 
services, and so on. Both media stream and signaling interfaces to a Media Server are the 
same as the interfaces to an MTA. For more information on Codec functionality, see [10]. 

                                                 
1 In general, it is possible for an MTA-to-MTA or MTA-to-PSTN connection to cross the networks of several 
different Service Providers. In the process, this path may cross a PSTN network. This is an exception to the rule, 
where all RTP packets are encrypted end-to-end. The media traffic inside a PSTN network does not utilize RTP 
and has its own security requirements. Thus, in this case the encryption would not be end-to-end and would 
terminate at the PSTN Gateway on both sides of the intermediate PSTN network. 
2 The RTCP BYE message should not be confused with the SIP+ BYE message that is also used to indicate the 
end of a voice communication within the network. 
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5.1.3.8 Audio Server Services 
Audio Server interfaces provide a suite of signaling protocols for providing 
announcement and audio services in a PacketCable network. 

5.1.3.8.1 Media Player Controller (MPC) 
The Media Player Controller (MPC) initiates and manages all announcement services 
provided by the Media Player. The MPC accepts requests from the CMS and arranges for 
the MP to provide the announcement in the appropriate stream so that the user hears the 
announcement. The MPC also serves as the termination for certain calls routed to it for 
IVR services. When the MP collects information from the end-user, the MPC is 
responsible for interpreting this information and managing the IVR session accordingly. 
The MPC manages call state. 

5.1.3.8.2 Media Player (MP) 
The Media Player (MP) is a media resource server. It is responsible for receiving and 
interpreting commands from the MPC and for delivering the appropriate 
announcement(s) to the MTA. The MP provides the media stream with the announcement 
contents. The MP also is responsible for accepting and reporting user inputs (e.g., DTMF 
tones). The MP functions under the control of the MPC. 

5.1.3.9 Electronic Surveillance 
The event interface between the CMS and the DF provides descriptions of calls, 
necessary to perform wiretapping. This information includes the media stream encryption 
key and the corresponding encryption algorithm. This event interface uses RADIUS and 
is similar to the CMS-RKS interface. 

The COPS interface between the CMS and the CMTS is used to signal the CMTS to 
start/stop duplicating media packets to the DF for a particular call. This is the same COPS 
interface that is used for (DQoS) Gate Authorization messages. 

5.2 Threats 
Figure 2 below contains the interfaces that were analyzed for security.  

There are additional interfaces identified in PacketCable but for which protocols are not 
specified. In those cases, the corresponding security protocols are also not specified, and 
those interfaces are not listed in the Figure 2 below. 

As well, the interfaces for which security is not required in PacketCable are not listed. 
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NB: The interfaces marked “RADIUS*” carry event messages, which use the RADIUS 
format as defined by [16]. 

Figure 2. PacketCable Secured Interfaces 

Following is a summary of general threats and the corresponding attacks that are relevant 
in the context of IP voice communications. This list of threats is not based on the 
knowledge of the specific protocols or security mechanisms employed in the network. A 
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more specific summary of threats that are based on the functionality of each network 
element is listed in section 5.2.6. 

Some of the outlined threats cannot be addressed purely by cryptographic means – 
physical security and/or fraud management should also be used. These threats may be 
important, but cannot be fully addressed within the scope of PacketCable. How vendors 
and MSOs implement fraud management and physical security will differ and in this case 
a standard is not required for interoperability. 

5.2.1 Theft of Network Services 
In the context of voice communications, the main services that may be stolen are: 

• Long distance service 

• Local (subscription) voice communications service 

• Video conferencing 

• Network-based three-way calling 

• Quality of Service 

5.2.1.1 MTA Clones 
One or more MTAs can masquerade as another MTA by duplicating its permanent 
identity and keys. The secret cryptographic keys may be obtained by either breaking the 
physical security of the MTA or by employing cryptanalysis. 

When an MTA is broken into the perpetrator can steal voice communications service and 
charge it all to the original owner. The feasibility of such an attack depends on where an 
MTA is located. This attack must be seriously considered in the cases when an MTA is 
located in an office or apartment building, or on a street corner. 

An owner might break into his or her own MTA in at least one instance – after a false 
account with the MSO providing the voice communications service had been setup. The 
customer name, address, Social Security Number may all be invalid or belong to 
someone else. The provided Credit Card Number may be stolen. In that case, the owner 
of the MTA would not mind giving out the MTA cryptographic identity to others – he or 
she would not have to pay for service anyway. 

In addition to cloning of the permanent cryptographic keys, temporary (usually 
symmetric) keys may also be cloned. Such an attack is more complex, since the 
temporary keys expire more often and have to be frequently redistributed. The only 
reason why someone would attempt this attack is if the permanent cryptographic keys are 
protected much better than the temporary ones, or if the temporary keys are particularly 
easy to steal or discover with cryptanalysis. 

5.2.1.2 Other Clones 
It is conceivable that the cryptographic identity of another network element, such as a 
CMTS or a CMS, may be cloned. Such an attack is most likely to be mounted by an 
insider such as a corrupt or disgruntled employee. 
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5.2.1.3 Subscription Fraud 
A customer sets up an account under false information. 

5.2.1.4 Non-Payment for Voice Communications Services 
A customer stops paying his or her bill, but continues to use the MTA for voice 
communications service. This can happen if the network does not have an automated 
method to revoke the customer’s access to the network. 

5.2.1.5 Protocol Attacks against an MTA 
A weakness in the protocol can be manipulated to allow an MTA to authenticate to a 
network server with a false identity or hijack an existing voice communication. This 
includes replay and man-in-the-middle attacks. 

5.2.1.6 Protocol Attacks against Other Network Elements 
A perpetrator might employ similar protocol attacks to masquerade as a different 
Network Element, such as a CMTS or a CMS. Such an attack may be used in 
collaboration with cooperating MTAs to steal service. 

5.2.1.7 Theft of Services Provided by the MTA 
Services such as the support for multiple MTA ports, 3-way calling and call waiting may 
be implemented entirely in the MTA, without any required interaction with the network. 

5.2.1.7.1 Attacks 
MTA code to support these services may be downloaded illegally by an MTA clone, in 
which case the clone has to interact with the network to get the download. In that case, 
this threat is no different from the network service theft described in the previous section. 

Alternatively, downloading an illegal code image using some illegal out-of-band means 
can also enable these services. Such service theft is much harder to prevent (a secure 
software environment within the MTA may be required). On the other hand, in order for 
an adversary to go through this trouble, the price for these MTA-based services has to 
make the theft worthwhile. 

An implication of this threat is that valuable services cannot be implemented entirely 
inside the MTA without a secure software environment in addition to tamperproof 
protection for the cryptographic keys. (While a secure software environment within an 
MTA adds significant complexity, it is an achievable task.) 

5.2.1.8 MTA Moved to Another Network 
A leased MTA may be reconfigured and registered with another network, contrary to the 
intent and property rights of the leasing company. 

5.2.2 Bearer Channel Information Threats 
This class of threats is concerned with the breaking of privacy of voice communications 
over the IP bearer channel. Threats against non-VoIP communications are not considered 
here and assumed to require additional security at the application layer. 
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5.2.2.1 Attacks 
Clones of MTAs and other Network Elements, as well as protocol manipulation attacks, 
also apply in the case of Bearer Channel Information threats. These attacks are already 
described under the Service Theft threats.  

MTA cloning attacks mounted by the actual owner of the MTA are less likely in this 
case, but not inconceivable. An owner of an MTA may distribute clones to unsuspecting 
victims, so that he or she can later spy on them.  

5.2.2.1.1 Off-line Cryptanalysis 
Bearer channel information may be recorded and then analyzed over a period of time, 
until the encryption keys are discovered through cryptanalysis. The discovered 
information may be of value even after a relatively long time has passed. 

5.2.3 Signaling Channel Information Threats 
Signaling information, such as the caller identity and the services to which each customer 
subscribes may be collected for marketing purposes. The caller identity may also be used 
illegally to locate a customer that wishes to keep his or her location private. 

5.2.3.1 Attacks 
Clones of MTAs and other Network Elements, as well as protocol manipulation attacks, 
also apply in the case of the Signaling Channel Information threats. These attacks were 
already described under the Service Theft threats. 

MTA cloning attacks mounted by the actual owner of the MTA is theoretically possible 
in this case. An owner of an MTA may distribute clones to the unsuspecting victims, so 
that he or she can monitor their signaling messages (e.g., for information with marketing 
value). The potential benefits of such an attack seem unjustified, however. 

5.2.3.1.1 Caller ID 
A number of a party initiating a voice communication is revealed, even though a number 
is not generally available (i.e., is “unlisted”) and the owner of that number enabled ID 
blocking. 

5.2.3.1.2 Information with Marketing Value  
Dialed numbers and the type of service customers use may be gathered for marketing 
purposes by other corporations. 

5.2.4 Service Disruption Threats 
This class of threats is aimed at disrupting the normal operation of voice 
communications. The motives for denial-of-service attacks may be malicious intent 
against a particular individual or against the service provider. Or, perhaps a competitor 
wishes to degrade the performance of another service provider and use the resulting 
problems in an advertising campaign. 
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5.2.4.1 Attacks 

5.2.4.1.1 Remote Interference 
A perpetrator is able to manipulate the protocol to close down ongoing voice 
communications. This might be achieved by masquerading as an MTA involved in such 
an ongoing communication. The same effect may be achieved if the perpetrator 
impersonates another Network Element, such as a Gate Controller or an Edge Router 
during either call setup or voice packet routing. 

Depending on the signaling protocol security, it might be possible for the perpetrator to 
mount this attack from the MTA, in the privacy of his or her own home. 

Clones of MTAs and other Network Elements, as well as protocol manipulation attacks, 
also apply in the case of the Service Disruption threats. These attacks are described under 
Service Theft threats. 

MTA cloning attacks mounted by the actual owner of the MTA can theoretically be used 
in service disruption against unsuspecting clone owners. However, since there are so 
many other ways to cause service disruption, such an attack cannot be taken seriously in 
this context. 

5.2.5 Repudiation 
In a network where masquerading (using the above-mentioned cloning and protocol 
manipulation techniques) is common or easily achievable, a customer may repudiate a 
particular communication (and, thus deny responsibility for paying for it) on that basis. 

In addition, unless public key-based digital signatures are employed on each message, the 
source of each message cannot be absolutely proven. If a signature over a message that 
originated at an MTA is based on a symmetric key that is shared between that MTA and a 
network server (e.g., the CMS), it is unclear if the owner of the MTA can claim that the 
Service Provider somehow falsified the message. 

However, even if each message were to carry a public key-based digital signature and if 
each MTA were to employ stringent physical security, the customer can still claim in 
court that someone else initiated that communication without his or her knowledge, just 
as a customer of a telecommunications carrier on the PSTN can claim, e.g., that particular 
long distance calls made from the customer’s telephone were not authorized by the 
customer. Such telecommunications carriers commonly address this situation by 
establishing contractual and/or tariffed relationships with customers in which customers 
assume liability for unauthorized use of the customer’s service. These same contractual 
principles are typically implemented in service contracts between information services 
providers such as ISPs and their subscribers. For these reasons, the benefits of non-
repudiation seem dubious at best and do not appear to justify the performance penalty of 
carrying a public key-based digital signature on every message. 

5.2.6 Threat Summary 
This section provides a summary of the above of threats and attacks and a brief 
assessment of their relative importance. 
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5.2.6.1 Primary Threats 
Theft of Service. Attacks are: 

• Subscription Fraud. This attack is prevalent in today’s telephony 
systems (i.e., the PSTN) and requires little economic investment. It can 
only be addressed with a Fraud Management system. 

• Non-payment for services. Within the PSTN, telecommunications 
carriers usually do not prosecute the offenders, but simply shut down 
their accounts. Because prosecution is expensive and not always 
successful, it is a poor counter to this attack. Methods such as debit-
based billing and device authorization (pay as you play), increasingly 
common in the wireless sector of the PSTN, might be a possible 
solution for this attack in the PacketCable context. This threat can also 
be minimized with effective Fraud Management systems. 

• MTA clones. This threat requires more technical knowledge than the 
previous two threats. A technically-knowledgeable adversary or 
underground organization might offer cloning services for profit. This 
threat is most effective when combined with subscription fraud, where 
an MTA registered under a fraudulent account is cloned. This threat 
can be addressed with both Fraud Management and physical security 
inside the MTA, or a combination of both. 

• Impersonate a network server. With proper cryptographic 
mechanisms, authorization and procedural security in place, this attack 
is unlikely, but has the potential for great damage. 

• Protocol manipulation. Can occur only when security protocols are 
flawed or when not enough cryptographic strength is in place. 

Bearer Channel Information Disclosure. Attacks are: 

• Simple Snooping. This would happen if voice packets were sent in the 
clear over some segment of the network. Even if that segment appears 
to be protected, an insider may still compromise it. This is the only 
major attack on privacy. The bearer channel privacy attacks listed 
below are possible but are all of secondary importance. 

• MTA clones. Again, this threat requires more technical knowledge but 
can be offered as a service by an underground organization. A most 
likely variation of this attack is when a publicly accessible MTA (e.g., 
in an office or apartment building) is cloned. 

• Protocol manipulation. A flawed protocol may somehow be 
exploited to discover bearer channel encryption keys. 

• Off-line cryptanalysis. Even when media packets are protected with 
encryption, they can be stored and analyzed for long periods of time, until 
the decryption key is finally discovered. Such an attack is not likely to be 
prevalent, since it is justified only for particularly valuable customer-
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provided information (PacketCable security is not required to protect data). 
This attack is more difficult to perform on voice packets (as opposed to 
data). Still, customers are very sensitive to this threat and it can serve as the 
basis for a negative publicity campaign by competitors.  

Signaling Information Disclosure. This threat is listed as primary only due to 
potential for bad publicity and customer sensitivity to keeping their numbers and 
location private. All of the attacks listed below are similar to those for bearer channel 
privacy and are not described here: 

• Simple snooping 

• MTA clones 

• Protocol manipulation 

• Off-line cryptanalysis 

• Service disruption 

5.2.6.2 Secondary Threats. 
• Theft of MTA-based services. Based on the voice communications services 

that are planned for the near future, this threat does not appear to have 
potential for significant economic damage. This could possibly change with 
the introduction of new value-added services in the future. 

• Illegally registering a leased MTA with a different Service Provider. 
Leased MTAs can normally be tracked. Most likely, this threat is combined 
with the actual theft of a leased MTA. Thus, this threat does not appear to 
have potential for widespread damage. 

5.3 Security Architecture 

5.3.1 Overview of Security Interfaces 
The diagram below summarizes all of the PacketCable security interfaces, including key 
management. 
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Figure 3. PacketCable Security Interfaces with Key-Management 

In the above diagram, each interface label is of the form: 

 <label>: <protocol> { <security protocol> / <key management protocol> } 
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If the key management protocol is missing, it is not needed for that interface. 
PacketCable interfaces that do not require security are not shown on this diagram. 

The following abbreviations are used in the above diagram: 

 
IKE/Kerb IKE (with pre-shared keys or X.509 certificates) or Kerberos 

IKE+ IKE with X.509 certificates 

CMS-based KM Keys randomly generated and exchanged inside signaling 
messages 

RADIUS* Event messages, which use the RADIUS format as defined 
by [16]. 

 
The following table briefly describes each of the interfaces shown in the above diagram:  

Table 1. PacketCable Security Interfaces Table 

Interface Components Description 

pkt-s0 MTA – PS/OSS Immediately after the DHCP sequence, the MTA performs Kerberos-
based key management with the Provisioning Server to establish 
SNMPv3 keys. All SNMP messages are authenticated with privacy being 
optional. 

pkt-s1 MTA – TFTP MTA Configuration file download. When the Provisioning Server sends 
an SNMP Set command to the MTA, it includes both the configuration 
name and the hash of the file. Later, when the MTA downloads the file, it 
authenticates the configuration file using the hash value. The 
configuration file may be optionally encrypted. 

pkt-s2 CM – CMTS DOCSIS 1.1: Secured with BPI+ using BPI Key Management. BPI+ 
privacy layer on the HFC link.  

pkt-s3 MTA – MTA 
MTA – MG 

RTP: End-to-end media packets between two MTAs, or between MTA 
and MG. RTP packets are encrypted directly with the chosen cipher. 
Message integrity is optionally provided by an MMH MAC. Keys are 
randomly generated, and exchanged by the two endpoints inside the 
signaling messages via the CMS or other application server. 

pkt-s4 MTA – MTA 
MTA – MG 

RTCP: RTCP control protocol for RTP. Message integrity and 
encryption by selected cipher. The RTCP keys are derived using the 
same secret negotiated during the RTP key management. No additional 
key management messages are needed or utilized.  

pkt-s5 MTA – CMS NCS: Message integrity and privacy via IPsec. Key management is with 
Kerberos with PKINIT (public key initial authentication) extension. 

pkt–s6 RKS – CMS RADIUS: RADIUS billing events sent by the CMS to the RKS. RADIUS 
authentication keys are hardcoded to 0. IPsec is used for message 
integrity, as well as privacy. Key management is Ike or Kerberos. 

pkt-s7 RKS – CMTS RADIUS: RADIUS events sent by the CMTS to the RKS. RADIUS 
authentication keys are hardcoded to 0. IPsec is used for message 
integrity, as well as privacy. Key management is Ike or Kerberos. 

pkt-s8 CMS – CMTS COPS: COPS protocol between the GC and the CMTS, used to download 
QoS authorization to the CMTS. IPsec is used for message integrity, as 
well as privacy. Key management is IKE or Kerberos.  
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Interface Components Description 

pkt-s9 CMS – SG TCAP/IP: CMS queries the PSTN Gateway for LNP (Local Number 
Portability) and other voice communications services. IPsec is used for 
message integrity, as well as privacy. Key-Management is IKE or 
Kerberos. 

pkt-s10 MGC – MG TGCP: PacketCable interface to the PSTN Media Gateway. IPsec is used 
for both message integrity and privacy. Key management is IKE or 
Kerberos. 

pkt-s11 MGC – SG ISTP: PacketCable interface to the PSTN Signaling Gateway. IPsec is 
used for both message integrity and privacy. Key management is IKE or 
Kerberos. 

pkt-s12 MTA – MSO 
KDC 

PKINIT: An AS-REQ message is sent to the KDC with public-key 
cryptography used for authentication. The KDC verifies the certificate 
and issues either a service ticket or a ticket granting ticket (TGT), 
depending on the contents of the AS Request. The AS Reply returned by 
the KDC contains a certificate chain and a digital signature that are used 
by the MTA to authenticate this message. In the case that the KDC 
returns a TGT, the MTA then sends a TGS Request to the KDC to which 
the KDC replies with a TGS Reply containing a service ticket. The TGS 
Request/Reply messages are authenticated using a symmetric session key 
inside the TGT. 

pkt-s13 MTA – 
Telephony KDC 

PKINIT: See pkt-s12 above. 

pkt-s14 Telephony KDC 
– Remote 
Telephony KDC 

PKCROSS utilizes PKINIT for establishing the inter-realm keys and 
associated inter-realm policies to be applied in issuing cross-realm 
service tickets between realms and domains in support of Intradomain 
and Interdomain CMS-to-CMS signaling (CMSS). 

pkt-s15 N/A N/A 
pkt-s16 CMS – CMS 

CMS – EBP 
EBP – EBP 

SIP: IPsec is used for both message integrity and privacy. Key 
management is Kerberos. 

pkt-s17 CMS – 
Telephony KDC 
EBP – Remote 
Telephony KDC 

Kerberos: PKINIT requests (AS Request – AS Reply) for a TGT between 
Kerberos realms, both Intradomain and Interdomain. The TGT request 
generates a cross-realm TGT request using the TGS Request – TGS 
Reply and the PKCROSS mechanisms. The cross-realm TGS Reply is 
used to generate the AS Request – AS Reply needed to establish Security 
Associations between two domains.  

pkt-s18 CMS – ER IntServ + RSVP: Secured using RSVP Integrity Objects. 
pkt-s19 ER – ER Aggregated RSVP: Secure using RSVP Integrity Objects. 
pkt-s20 MPC – MP TGCP: IPsec is used for both message integrity and privacy. Key 

management is IKE or Kerberos. 
pkt-s21 DF – CMS RADIUS: IPsec is used for both message integrity and privacy. Key 

management is IKE or Kerberos. 
pkt-s22 DF – CMTS RADIUS: IPsec is used for both message integrity and privacy. Key 

management is IKE or Kerberos. 
pkt-s23 DF – MGC RADIUS: IPsec is used for both message integrity and privacy. Key 

management is IKE or Kerberos. 
pkt-s24 DF – DF RADIUS: IPsec is used for both message integrity and privacy. Key 

management is IKE+. 
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Interface Components Description 

pkt-s25 RKS – MGC RADIUS: RADIUS events sent by the MGC to the RKS. RADIUS 
authentication keys are hardcoded to 0. IPsec is used for message 
integrity, as well as privacy. Key management is IKE or Kerberos. 

pkt-s26 OSS/Prov Serv – 
MSO KDC 
OSS/Prov Serv – 
Telephony KDC 

The KDC uses Kerberos to map the MTA’s MAC address to its FQDN 
for the purpose of authenticating the MTA before issuing it a ticket. 

pkt-s27 CMS-PS/OSS HTTP: IPsec is used for both message integrity and privacy.  Key 
management is IKE or Kerberos. 

5.3.2 Security Assumptions 

5.3.2.1 BPI+ CMTS Downstream Messages Are Trusted 
As mentioned previously, it is assumed that CMTS downstream messages cannot be 
easily modified in transit and a CMTS can be impersonated only at great expense.  

Most messages secured in this specification either move over the shared IP network in 
addition to the DOCSIS path, or do not go over DOCSIS at all.  

In one case – the case of DOCSIS QoS messages exchanged between the CMTS and the 
CM – this assumption does not apply. Although DOCSIS QoS messages (both upstream 
and downstream) include an integrity check, the corresponding (BPI+) key management 
does not authenticate the identity of the CMTS. The CM is unable to cryptographically 
know that the network element it has connected to is the true CMTS for that network. 
However, even if a CMTS could be impersonated, it would allow only limited denial-of-
service attacks. This vulnerability is not considered to be worth the effort and the expense 
of impersonating a CMTS. 

5.3.2.2 Non-Repudiation Not Supported 
Non-repudiation, in this specification, means that an originator of a message cannot deny 
that he or she sent that message. In this voice communications architecture, non-
repudiation is not supported for most messages, with the exception of the top key 
management layer. This decision was based on the performance penalty incurred with 
each public key operation. The most important use for non-repudiation would have been 
during communications setup – to prove that a particular party had initiated that 
particular communication. However, due to very strict requirements on the setup time, it 
is not possible to perform public key operations for each communication.  

5.3.2.3 Root Private Key Compromise Protection  
The cryptographic mechanisms defined in this document are based on a Public Key 
Infrastructure (PKI). As is the case with most other architectures that are based on a PKI, 
there is no automated recovery path from a compromise of a Root Private Key. However, 
with proper safeguards, the probability of this happening is very low, to the point that the 
risk of a root private key compromise occurring is outweighed by the benefits of this 
architecture. 
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The corresponding Root Public Key is stored as a read-only parameter in many 
components of this architecture. Once the Root Private Key has been compromised, each 
manufacturer’s certificate would have to be manually reconfigured. 

Due to this limitation of a PKI, the Root Private Key must be very carefully guarded with 
procedural and physical security. And, it must be sufficiently long so that its value cannot 
be discovered with cryptographic attacks within the expected lifetime of the system. 

5.3.2.4 Limited Prevention of Denial-of-Service Attacks  
This document does not attempt to address all or even most denial-of-service attacks. The 
cryptographic mechanisms defined in this specification prevent some denial-of-service 
attacks that are particularly easy to mount and are hard to detect. For example, they will 
prevent a compromised MTA from masquerading as other MTAs in the same upstream 
HFC segment and interrupting ongoing communications with illicit HANGUP messages. 

This specification will also prevent more serious denial-of-service attacks, such as an 
MTA masquerading as a CMS in a different network domain that causes all 
communications setup requests to fail. 

On the other hand, denial-of-service attacks where a router is taken out of service or is 
bombarded with bad IP packets are not addressed. In general, denial-of-service attacks 
that are based on damaging one of the network components can only be solved with 
procedural and physical security, which is out of the scope of this specification.  

Denial-of-service attacks where network traffic is overburdened with bad packets cannot 
be prevented in a large network (although procedural and physical security helps), but 
can usually be detected. Detection of such an attack and of its cause is out of scope of this 
specification. 

For example, denial-of-service attacks where a router is taken out of order or is 
bombarded with bogus IP packets cannot be prevented. 

5.3.3 Susceptibility of Network Elements to Attack 
This section describes the amount and the type of trust that can be assumed for each 
element of the voice communications network. It also describes the specific threats that 
are possible if each network component is compromised. These threats are based on the 
functionality specified for each component. The general categories of threats are 
described in section 5.2. 

Both the trust and the specific threats are described with the assumption that no 
cryptographic or physical security has been employed in the system, with the exception 
of the BPI+ security that is assumed on the HFC DOCSIS links. The goal of this security 
specification is to address threats that are relevant to this voice communications system. 

5.3.3.1 Managed IP Network 
It is assumed that the same IP network may be shared between multiple, possibly 
competing service providers. It is also assumed that the service provider may provide 
multiple services on the same IP network, e.g., Internet connectivity. No assumptions can 
be made about the physical security of each link in this IP network. An intruder can pop 
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up at any location with the ability to monitor traffic, perform message modification and 
to reroute messages.  

5.3.3.2 MTA 
The MTA is considered to be an untrusted network element. It is operating inside 
customer premises, considered to be a hostile environment. It is assumed that a hostile 
adversary has the ability to open up the MTA and make software and even hardware 
modifications to fit his or her needs. This would be done in the privacy of the customer’s 
home. 

The MTA communicates with the CMTS over the shared DOCSIS path and has access to 
downstream and upstream messages from other MTAs within the same HFC segment. 

An MTA is responsible for: 

• Initiating and receiving communications to/from another MTA or the PSTN 

• Negotiating QoS  

A compromise of an MTA can result in: 

• MTA clones that are capable of: 

• Accessing basic service and any enhanced features in the name of another 
user’s account 

• Violating privacy of the owner of the compromised MTA that doesn’t know 
that the keys were stolen 

• Identity fraud 

• An MTA running a bad code image that disrupts communications made by other 
MTAs or degrades network performance 

5.3.3.3 CMTS 
The CMTS communicates both over the DOCSIS path and over the shared IP network. 
When the CMTS sends downstream messages over the DOCSIS path, it is assumed that a 
perpetrator cannot modify them or impersonate the CMTS. BPI+ over that path provides 
privacy. 

However, when the CMTS is communicating over the shared IP network (e.g., with the 
CMS or another CMTS), no such assumptions can be made. 

While the CMTS, as well as voice communications network servers are more trusted than 
the MTAs, they cannot be trusted completely. There is always a possibility of an insider 
attack. 

Insider attacks at the CMTS should be addressed by cryptographic authentication and 
authorization of the CMTS operators, as well as by physical and procedural security, 
which are all out of the scope of the PacketCable specifications. 

A CMTS is responsible for: 

• Reporting billing-related statistics to the RKS 
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• QoS allocation for MTAs over the DOCSIS path 

• Implementation of BPI+ (MAC layer security) and corresponding key management 

A compromise of a CMTS may result in: 

• Service theft by reporting invalid information to the RKS 

• Unauthorized levels of QoS 

• Loss of privacy, since the CMTS holds BPI+ keys. This may not happen if additional 
encryption is provided above the MAC layer 

• Degraded performance of some or all MTAs in that HFC segment 

• Some or all of the MTAs in one HFC segment completely taken out of service 

5.3.3.4 Voice Communications Network Servers are Untrusted Network Elements 
Application servers used for voice communications (e.g., CMS, RKS, Provisioning, OSS, 
DHCP and TFTP Servers) reside on the network and can potentially be impersonated or 
subjected to insider attacks. The main difference would be in the damage that can be 
incurred in the case a particular server is impersonated or compromised.  

Threats that are associated with each network element are discussed in the following 
subsections. To summarize those threats, a compromise or impersonation of each of these 
servers can result in a wide-scale service theft, loss of privacy, and in highly damaging 
denial-of-service attacks. 

In addition to authentication of all messages to and from these servers (specified in this 
document), care should be taken to minimize the likelihood of insider attacks. They 
should be addressed by cryptographic authentication and authorization of the operators, 
as well as by stringent physical and procedural security, which are all out of scope of the 
PacketCable specifications. 

5.3.3.4.1 CMS 
The Call Management Server is responsible for: 

• Authorizing individual voice communications by subscribers  

• QoS allocation 

• Initializing the billing information in the CMTS  

• Distributing per communication keys for MTA-MTA signaling, bearer channel, and 
DQoS messages on the MTA-CMTS and CMTS-CMTS links 

• Interface to PTSN gateway  

A compromised CMS can result in: 

• Free voice communications service to all of the MTAs that are located in the same 
network domain (up to 100,000). This may be accomplished by: 

• Allowing unauthorized MTAs to create communications 

• Uploading invalid or wrong billing information to the CMTS 
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• Combination of both of the above 

• Loss of privacy, since the CMS distributes bearer channel keys 

• Unauthorized allocation of QoS 

• Unauthorized disclosure of customer identity, location (e.g., IP address), 
communication patterns, and a list of services to which the customer subscribes 

5.3.3.4.2 RKS 
The RKS is responsible for collecting billing events and reporting them to the billing 
system. A compromised RKS may result in: 

• Free or reduced-rate service due to improper reporting of statistics 

• Billing to a wrong account 

• Billing customers for communications that were never made, i.e., fabricating 
communications 

• Unauthorized disclosure of customer identity, personal information, service usage 
patterns, and a list of services to which the customer subscribes 

5.3.3.4.3 OSS, DHCP & TFTP Servers 
The OSS system is responsible for: 

• MTA and service provisioning 

• MTA code downloads and upgrades 

• Handling service change requests and dynamic reconfiguration of MTAs  

A compromise of the OSS, DHCP or TFTP server can result in: 

• MTAs running illegal code, which may: 

• Intentionally introduce bugs or render the MTA completely inoperable 

• Degrade voice communications performance on the PacketCable or HFC 
network 

• Configure the MTA with features to which the customer is not entitled 

• MTAs configured with an identity and keys of another customer 

• MTAs configured with service options for which the customer did not pay 

• MTAs provisioned with a bad set of parameters that would make them perform badly 
or not perform at all 

5.3.3.5 PSTN Gateways 

5.3.3.5.1 Media Gateway 
The MG is responsible for: 

• Passing media packets between the PacketCable network and the PSTN 
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• Reporting statistics to the RKS 

A compromise of the MG may result in: 

• Service theft by reporting invalid information to the RKS 

• Loss of privacy on communications to/from the PSTN 

5.3.3.5.2 Signaling Gateway 
The SG is responsible for translating call signaling between the PacketCable network and 
the PSTN.  

A compromise of the SG may result in: 

• Incorrect MTA identity reported to the PSTN 

• Unauthorized services enabled within the PSTN 

• Loss of PSTN connectivity 

• Unauthorized disclosure of customer identity, location (e.g., IP address), usage 
patterns and a list of services to which the customer subscribes 
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6 SECURITY MECHANISMS 
Unless explicitly stated otherwise, the following requirements apply to messages 
described by this document: 

1. ASN.1 encoded messages and objects MUST conform to the Distinguished 
Encoding Rules [41].  

2. FQDNs used as components of principal names and principal identifiers MUST 
be rendered in lower case.  

3. FQDNs MUST NOT include the root domain (i.e., they MUST NOT include a 
trailing dot).  

6.1 IPsec 

6.1.1 Overview 
IPsec provides network-layer security that runs immediately above the IP layer in the 
protocol stack. It provides security for the TCP or UDP layer and above. It consists of 
two protocols, IPsec ESP and IPsec AH, as specified in [22].  

IPsec ESP provides confidentiality and message integrity, IP header not included. IPsec 
AH provides only message integrity, but that includes most of the IP header (with the 
exception of some IP header parameters that can change with each hop). PacketCable 
utilizes only the IPsec ESP protocol [23], since authentication of the IP header does not 
significantly improve security within the PacketCable architecture. 

Each protocol supports two modes of use: transport mode and tunnel mode. PacketCable 
only utilizes IPsec ESP transport mode. For more detail on IPsec and these two modes, 
refer to [22]. Note that in [22], all implementations of ESP are required to support the 
concept of Security Associations (SAs).  [22] also provides a general model for 
processing IP traffic relative to SAs.  Although particular IPsec implementations need not 
follow the details of this general model, the external behavior of any IPsec 
implementation must match the external behavior of the general model.  This ensures that 
components do not accept traffic from unknown addresses and do not send or accept 
traffic without security (when security is required).  PacketCable components that 
implement IPsec are expected to provide behavior that matches the general model 
described in [22]. 

6.1.2 PacketCable Profile for IPsec ESP (Transport Mode) 

6.1.2.1 IPsec ESP Transform Identifiers 
IPsec Transform Identifier (1 byte) is used by IKE to negotiate an encryption algorithm 
that is used by IPsec. A list of available IPsec Transform Identifiers is specified in [24]. 
Within PacketCable, the same Transform Identifiers are used by all IPsec key 
management protocols: IKE, Kerberos and application layer (embedded in IP signaling 
messages). 

The following table describes the IPsec Transform Identifiers (all of which use the CBC 
mode specified in [25]) supported by PacketCable. 
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Table 2. IPsec ESP Transform Identifiers 

Transform ID Value (Hex) Key Size (in 
bits) 

MUST 
Support 

Description 

ESP_3DES 0x03 192 yes 3-DES in CBC mode. 
ESP_RC5 0x04 128 no RC5 in CBC mode 
ESP_IDEA 0x05 128 no IDEA in CBC mode 
ESP_CAST 0x06 128 no CAST in CBC mode 
ESP_BLOWFISH 0x07 128 no BLOWFISH in CBC mode 
ESP_NULL 0x0B 0 yes Encryption turned off 
ESP_AES 0x0C 128 no AES-128 in CBC mode with 128-bit 

block size 
 
The ESP_3DES and ESP_NULL Transform IDs MUST be supported. ESP_AES is 
included as an optional encryption algorithm. For all of the above transforms, the CBC 
Initialization Vector (IV) is carried in the clear inside each ESP packet payload [25]. 
AES-128 [40] MUST be used in CBC mode with a 128-bit block size and a randomly 
generated Initialization Vector (IV). AES-128 requires 10 rounds of cryptographic 
operations [40]. 

IKE allows negotiation of the encryption key size. Other IPsec Key Management 
protocols used by PacketCable do not allow key size negotiation, and so for consistency a 
single key size is listed for each Transform ID. If in the future it is desired to increase the 
key size for one of the above algorithms, IKE will use the built-in key-size negotiation, 
while other key management protocols will utilize a new Transform ID for the larger key 
size.  

6.1.2.2 IPsec ESP Authentication Algorithms 
The IPsec Authentication Algorithm (1-byte) is used by IKE to negotiate a packet-
authentication algorithm that is used by IPsec. A list of available IPsec Authentication 
Algorithms is specified in [24]. Within PacketCable, the same Authentication Algorithms 
are used by all IPsec key management protocols: IKE, Kerberos and application layer 
(embedded in IP signaling messages). 

PacketCable supports the following IPsec Authentication Algorithms: 

Table 3. IPsec Authentication Algorithms 

Authentication 
Algorithm 

Value 
(Hex) 

Key Size (in 
bits) 

MUST Support  Description 

HMAC-MD5-96 0x01 128 yes (also required by [24]) First 12 bytes of 
the HMAC-MD5 
as described in [42] 

HMAC-SHA-1-96 0x02 160 yes  First 12 bytes of 
the HMAC-SHA1 
as described in [26] 

 
The HMAC-MD5-96 and HMAC-SHA-1-96 authentication algorithms MUST be 
supported.   
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6.1.2.3 Replay Protection 
In general, IPsec provides an optional replay-protection service (anti-replay service). An 
IPsec sequence number outside of the current anti-replay window is flagged as a replay 
and the packet is rejected. When the anti-replay service is turned on, an IPsec sequence 
number cannot overflow and roll over to 0. Before that happens, a new Security 
Association must be created as specified in [23]. 

Within PacketCable Security Specification, the IPsec anti-replay service MUST be turned 
on at all times. This is regardless of which key-management mechanism is used with the 
particular IPsec interface. 

6.1.2.4 Key Management Requirements 
Within PacketCable, IPsec is used on a number of different interfaces with different 
security and performance requirements. Because of this, several different key 
management protocols have been chosen for different PacketCable interfaces. On some 
interfaces it is IKE (see section 6.2), on other interfaces it is Kerberos/PKINIT (see 
section 6.4). 

When IKE is not used for key management, an alternative key management protocol 
needs an interface to the IPsec layer in order to create/update/delete IPsec Security 
Associations (SAs). IPsec Security Associations MUST be automatically established or 
re-established as required. This implies that the IPsec layer also needs a way to signal a 
key management application when a new Security Association needs to be set up (e.g., 
the old SA is about to expire or there is no SA on a particular interface).  

In addition, some network elements are required to run multiple key management 
protocols. In particular, the Application Server (such as a CMS) and the MTA must 
support multiple key management protocols. The MTA MUST support Kerberos/PKINIT 
on the MTA-CMS signaling interface. IKE MUST be supported on the CMS-CMTS and 
CMS-RKS interfaces.  

The PF_KEY interface (see [33]) SHOULD be used for IPsec key management within 
PacketCable and would satisfy the above listed requirements. For example, PF_KEY 
permits multiple key management applications to register for rekeying events. When the 
IPsec layer detects a missing Security Association, it signals the event to all registered 
key-management applications. Based on the Identity Extension associated with that 
Security Association, each key-management application decides if it should handle the 
event. 

6.2 Internet Key Exchange (IKE) 

6.2.1 Overview 
PacketCable utilizes IKE as one of the key management protocols for IPsec [27]. It is 
utilized on interfaces where: 

• There is not a very large number of connections 
• The endpoints on each connection know about each other’s identity in 

advance 
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Within PacketCable, IKE key management is completely asynchronous to call signaling 
messages and does not contribute to any delays during communications setup. The only 
exception would be some unexpected error, where Security Association is unexpectedly 
lost by one of the endpoints. 

IKE is a peer-to-peer key management protocol. It consists of 2 phases. In the first phase, 
a shared secret is negotiated via a Diffie-Hellman key exchange. It is then used to 
authenticate the second IKE phase. The second phase negotiates another secret, used to 
derive keys for the IPsec ESP protocol. 

6.2.2 PacketCable Profile for IKE 

6.2.2.1 First IKE Phase 
There are several modes defined for authentication during the first IKE phase. 

6.2.2.1.1 IKE Authentication with Signatures 
In this mode, both peers MUST be authenticated with X.509 certificates and digital 
signatures. PacketCable utilizes this IKE authentication mode on some IPsec interfaces. 
Whenever this mode is utilized, both sides MUST exchange X.509 certificates (although 
this is optional in [27]).  

6.2.2.1.2 IKE Authentication with Public-Key Encryption 
PacketCable MUST NOT utilize this IKE authentication with public key encryption. In 
order to perform this mode of IKE authentication, the initiator must already have the 
responder's public key, which is not supported by PacketCable.  

6.2.2.1.3 IKE Authentication with Pre-Shared Keys 
A key derived by some out-of-band (e.g., manual) mechanism is used to authenticate the 
exchange. PacketCable utilizes this IKE authentication mode on some IPsec interfaces. 
PacketCable does not specify the out-of-band method for deriving pre-shared keys.  

When using pre-shared keys, the strength of the system is dependent upon the strength of 
the shared secret. The goal is to keep the shared secret from being the weak link in the 
chain of security. This implies that the shared secret needs to contain as much entropy 
(randomness) as the cipher being used. In other words, the shared secret should have at 
least 128-160 bits of entropy. This means if the shared secret is just a string of random 8-
bit bytes, then of the key can be 16-20 bytes. If the shared secret is derived from a 
passphrase that is a string of random alpha-numerics (a-zA-Z0-9/+), then it should be at 
least 22-27 characters. This is because there are only 64 characters (6 bits) instead of 256 
characters (8 bits) per 8-bit byte, which implies an expansion of 4/3 the length for the 
same amount of entropy. Both random 8-bit bytes and random 6-bit bytes assume truly 
random numbers. If there is any structure in the password/passphrase, like deriving from 
English, then even longer passphrases are necessary. A passphrase composed of English 
would need on the order of 60-100 characters, depending on mixing of case. Using 
English passphrases (or any language, for that matter) creates the problem that, if an 
attacker knows the language of the passphrase then they have less space to search. It is 
less random. This implies fewer bits of entropy per character, so a longer passphrase is 
required to maintain the same level of entropy. 
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6.2.2.2 Second IKE Phase 
In the second IKE phase, an IPsec ESP SA is established, including the IPsec ESP keys 
and ciphersuites. It is possible to establish multiple Security Associations with a single 
second-phase IKE exchange. 

First, a shared second phase secret is established, and then all the IPsec keying material is 
derived from it using the one-way function specified in [27]. 

The second-phase secret is built from encrypted nonces that are exchanged by the two 
parties. Another Diffie-Hellman exchange may be used in addition to the encrypted 
nonces. Within PacketCable, IKE MUST NOT perform a Diffie-Hellman exchange in the 
second IKE phase in order to avoid the associated performance penalties.  

The second IKE phase is authenticated using a shared secret that was established in the 
first phase. Supported authentication algorithms are the same as those specified for IPsec 
in section 6.1.2.2. 

6.2.2.3 Encryption Algorithms for IKE Exchanges 
Both phase 1 and phase 2 IKE exchanges include some symmetrically-encrypted 
messages. The encryption algorithms supported as part of the PacketCable Profile for 
IKE MUST be the same algorithms identified in the PacketCable profile for IPsec ESP in 
Table 2 of section 6.1.2.1.  

6.2.2.4 Diffie-Hellman Groups 
IKE defines specific sets of Diffie-Hellman parameters (i.e., prime and generator) that 
may be used for the phase 1 IKE exchanges. These are called groups in [27]. The use of 
Diffie-Hellman groups within PacketCable IKE is identical to that specified in [27]: the 
first group MUST be supported and the remaining groups SHOULD be supported. Note 
that this is different from the requirements pertaining to the PacketCable use of groups in 
PKINIT described in section 6.4.2.1.1. Appendix H provides details of the first and 
second Oakley groups. 

6.3 SNMPv3 
All SNMP-based network management within PacketCable MUST run over SNMPv3 
with security specified by [32]. SNMPv3 authentication MUST be turned on at all times 
and SNMPv3 privacy MAY also be utilized.  

In order to establish SNMPv3 keys, all PacketCable SNMP interfaces SHOULD utilize 
Kerberized SNMPv3 key management (as specified in section 6.5.4). In addition, 
SNMPv3 key management techniques specified in [32] MAY also be used.  

6.3.1 SNMPv3 Transform Identifiers 
The SNMPv3 Transform Identifier (1 byte) is used by Kerberized key management to 
negotiate an encryption algorithm for use by SNMPv3. 

For PacketCable, the following SNMPv3 Transform Identifiers are supported: 
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Table 4. SNMPv3 Transform Identifiers 

Transform ID Value  
(Hex) 

Key Size 
(in bits) 

MUST be 
Supported  

Description 

SNMPv3_DES 0x21 128 yes DES in CBC mode. The first 64 bits are 
used as the DES Key and the remaining 
64 are used as the pre-IV as described in 
[32].  

SNMPv3_NULL 0x20 0 yes Encryption turned off 
 
The SNMPv3_DES and the SNMPv3_NULL Transform IDs MUST be supported. The 
DES encryption transform for SNMPv3 is specified in [32]. Note that DES encryption 
does not provide strong privacy but is currently the only encryption algorithm specified 
by the SNMPv3 standard. 

6.3.2 SNMPv3 Authentication Algorithms 
SNMPv3 Authentication Algorithm (1 byte) is used by Kerberized key management to 
negotiate an SNMPv3 message authentication algorithm. 

For PacketCable, the following SNMPv3 Authentication Algorithms are supported (both 
of which are specified in [32]): 

Table 5. SNMPv3 Authentication Algorithms 

Authentication Algorithm Value 
(Hex) 

Key Size 
(in bits) 

MUST be supported  Description 

SNMPv3_HMAC-MD5 0x21 128 yes (also required by [32]) MD5 HMAC 
SNMPv3_HMAC-SHA-1 0x22 160 no (SHOULD be supported) SHA-1 HMAC 

 
The SNMPv3_HMAC-MD5 Authentication Algorithm MUST be supported. The 
SNMPv3_HMAC-SHA-1 Authentication Algorithm SHOULD be supported.  

6.4 Kerberos / PKINIT 

6.4.1 Overview 
PacketCable utilizes the concept of Kerberized IPsec for signaling between an 
Application Server, such as the CMS, and the MTA. This refers to the ability to create 
IPsec Security Associations using keys derived from the subkeys exchanged using the 
Kerberos AP Request/AP Reply messages. On this interface, Kerberos (Appendix B) is 
utilized with the PKINIT public key extension (also see Appendix C). 

Kerberized IPsec consists of three distinct phases: 

1. A client SHOULD obtain a TGT (Ticket Granting Ticket) from the KDC (Key 
Distribution Center). Once the client obtains the TGT, it MUST use the TGT in 
the subsequent phase to authenticate to the KDC and obtain a ticket for the 
specific Application Server, e.g., a CMS.   

In Kerberos, tickets are symmetric authentication tokens encrypted with a 
particular server’s key. (For a TGT, the server is the KDC.) Tickets are used to 
authenticate a client to a server. A PKI equivalent of a ticket would be an X.509 
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certificate. In addition to authentication, a ticket is used to establish a session key 
between a client and a server, where the session key is contained in the ticket. 

The logical function within the KDC that is responsible for issuing TGTs is 
referred to as an Authentication Server or AS. 

2. A client obtains a ticket from the KDC for a specific Application Server. In this 
phase, a client can authenticate with a TGT obtained in the previous phase. A 
client can also authenticate to the KDC directly using a digital certificate or a 
password-derived key, bypassing phase 1.  

The logical function within the KDC that is responsible for issuing Application 
Server tickets based on a TGT is referred to as the Ticket Granting Server – TGS. 
When the TGT is bypassed, it is the Authentication Server that issues the 
Application Server tickets.  

3. A client utilizes the ticket obtained in the previous phase to establish a pair of 
Security Parameters (one to send and one to receive) with the server. This is the 
only key management phase that is not already specified in an IETF standard. The 
previous two phases are part of standard Kerberos, while this phase defines new 
messages that tie together Kerberos key management and IPsec. 
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The following diagram illustrates the three phases of Kerberos-based key management 
for IPsec: 

(request a TGT)
AS Request

(return application server ticket) with:
    TGS Reply
or
    AS Reply
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Figure 4. Kerberos-Based Key Management for IPsec 

During the AS Request / AS Reply exchange (that can occur in either phase 1 or phase 2), 
the client and the KDC perform mutual authentication. In standard Kerberos, a client key 
that is shared with the KDC is used for this authentication (see section 6.4.4). The same 
AS Request / AS Reply exchange may also be authenticated with digital signatures and 
certificates when the PKINIT public key extension is used (see section 6.4.2). Both the 
TGT and the Application Server tickets used within PacketCable have a relatively long 
lifetime (days or weeks). This is acceptable as 3-DES, a reasonably strong symmetric 
algorithm, is required by PacketCable. 

PacketCable utilizes the concept of a TGT (Ticket Granting Ticket), used to authenticate 
subsequent requests for Application Server tickets. The use of a TGT has two main 
advantages: 

• It limits the exposure of the relatively long-term client key (that is in some cases 
reused as the service key). This consideration does not apply to clients that use 
PKINIT. 

• It reduces the number of public key operations that are required for PKINIT clients. 
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The Application Server ticket contains a symmetric session key, which MUST be used in 
phase 3 to establish a set of keys for the IPsec ESP protocol. The keys used by IPsec 
MUST expire after a configurable time-out period (e.g., 10 minutes). Normally, the same 
Application Server ticket SHOULD be used to automatically establish a new IPsec SA. 
However, there are instances where it is desirable to drop IPsec sessions after a Security 
Association time out and establish them on-demand later. This allows for improved 
system scalability, since an application server (e.g., CMS) does not need to maintain a SA 
for every client (e.g., MTA) that it controls. It is also possible that a group of application 
servers (e.g., CMS cluster) may control the same subset of clients (e.g., MTAs) for load 
balancing. In this case, the MTA is not required to maintain a SA with each CMS in that 
group. This section provides specifications for how to automatically establish a new 
IPsec SA right before an expiration of the old one and how to establish IPsec SAs on-
demand, when a signaling message needs to be sent. 

PacketCable also utilizes the Kerberos protocol to establish SNMPv3 keys between the 
MTAs and the Provisioning Server. Kerberized SNMPv3 key management is very similar 
to the Kerberized IPsec key management and consists of the same phases that were 
explained above for Kerberized IPsec. Each MTA again utilizes the PKINIT extension to 
Kerberos to authenticate itself to the KDC with X.509 certificates. 

Once an MTA obtains its service ticket for the Provisioning Server, it utilizes the same 
protocol that is used for Kerberized IPsec to authenticate itself to the Provisioning Server 
and to generate SNMPv3 keys. The key management protocol is specified to allow 
application-specific data that has different profiles for SNMPv3 and IPsec. The only 
exception is the Rekey exchange that is specified for IPsec in order to optimize the MTA 
hand-off between the members of a CMS cluster. The Rekey exchange is not utilized for 
SNMPv3 key management. 

A recipient of any Kerberos message that doesn't fully comply with the PacketCable 
requirements MUST reject the message.   

6.4.2 PKINIT Exchange 
The diagram below illustrates how a client may use PKINIT to either obtain a TGT 
(phase 1) or a Kerberos ticket for an Application Server (phase 2).  

The PKINIT Request is carried as a Kerberos pre-authenticator field inside an AS 
Request and the PKINIT Reply is a pre-authenticator inside the AS Reply. The syntax of 
the Kerberos AS Request / Reply messages and how pre-authenticators plug in is 
specified in Appendix B. 

In this section, the PKINIT client is referred to as an MTA, as it is currently the only 
PacketCable element that authenticates itself to the KDC with the PKINIT protocol. If in 
the future other PacketCable elements will also utilize the PKINIT protocol, the same 
specifications will apply. PacketCable use of the AS Request / AS Reply exchange 
without PKINIT is covered in section 6.4.3. 
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MTA KDC
Service Key{ }

Ticket,
Session Key{ }

PKINIT Req:
MTA & KDC or Application Server name, time, nonce,
Diffie-Hellman parameters, signature,
MTA certificate

PKINIT Reply:
TGT or service ticket,
KDC certificate,
Diffie-Hellman parameters + nonce + signature,
Session key + key validity period encrypted with

DH key

 
Figure 5. PKINIT Exchange 

The above diagram lists several important parameters in the PKINIT Request and Reply 
messages. These parameters are: 

PKINIT Request 

• MTA (Kerberos principal) name – found in the KDC-REQ-BODY Kerberos 
structure (see Appendix B). For the format used in PacketCable, see section 
6.4.7. 

• KDC or Application Server (Kerberos principal) name – found in the KDC-
REQ-BODY Kerberos structure (see Appendix B). For the format used in 
PacketCable, see section 6.4.6. 

• Time – found in the PKAuthenticator structure, specified by PKINIT 
(Appendix C). 

• Nonce - found in the PKAuthenticator structure, specified by PKINIT 
(Appendix C). There is also a second nonce in the KDC-REQ-BODY 
Kerberos structure. 

• Diffie-Hellman parameters, signature and MTA certificate – these are all 
specified by PKINIT (Appendix C) and their use in PacketCable is specified 
in section 6.4.2.1.1. Appendix H provides details of the first and second 
Oakley groups. 
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PKINIT Reply 

• TGT or Application Server Ticket – found in the KDC-REP Kerberos 
structure (see Appendix B). 

• KDC Certificate, Diffie-Hellman parameters, signature – these are all 
specified by PKINIT (see Appendix C) and their use in PacketCable is 
specified in section 6.4.2.1.2. Appendix H provides details of the first and 
second Oakley groups. 

• Nonce – found in the KdcDHKeyInfo structure, specified by PKINIT 
(Appendix C). This nonce must be the same as the one found in the 
PKAuthenticator structure of the PKINIT Request. There is another nonce in 
EncKDCRepPart Kerberos structure (see Appendix B). This nonce must be 
the same as the one found in the KDC-REQ-BODY of the PKINIT Request. 

• Session key, key validity period – found in the EncKDCRepPart Kerberos 
structure (see Appendix B). 

In this diagram, the PKINIT exchange is performed at long intervals, in order to obtain an 
(intermediate) symmetric session key. This session key is shared between the MTA and 
the server via the server’s ticket, where the application server may be the KDC (in which 
case the ticket is the TGT). 

6.4.2.1 PKINIT Profile for PacketCable 
A particular MTA implementation MUST utilize the PKINIT exchange to either obtain 
Application Server tickets directly, or obtain a TGT first and then use the TGT to obtain 
Application Server tickets. An MTA implementation MAY also support both uses of 
PKINIT, where the decision to get a TGT first or not is local to the MTA and is 
dependent on a particular MTA implementation. On the other hand, the KDC MUST be 
capable of processing PKINIT requests for both a TGT and for Application Server 
tickets.  

The PKINIT exchange occurs independent of the signaling protocol, based on the current 
Ticket Expiration Time (TicketEXP) and on the PKINIT Grace Period (PKINITGP). The 
MTA MUST initiate the PKINIT exchange at the time: TicketEXP - PKINITGP. On the 
interfaces where PKINITGP is not defined, the MTA SHOULD perform PKINIT 
exchanges on-demand.  

In the case where PKINIT is used to obtain an Application Server ticket directly, the use 
of the grace period accounts for a possible clock skew between the MTA and the CMS or 
other application server. If the MTA is late with the PKINIT exchange, it still has until 
TicketEXP before the Application Server starts rejecting the ticket. Similarly, if PKINIT is 
used to obtain a TGT the grace period accounts for a possible clock skew between the 
MTA and the KDC. 

The PKINIT exchange stops after the MTA obtains a new ticket, and therefore does not 
affect existing security parameters between the MTA and the CMS or other application 
server. Synchronizing the PKINIT exchange with the AP Request/Reply exchange is not 
required as long as the AS Request/Reply exchange results in a valid, non-expired 
Kerberos ticket. 
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The PKINIT Request/Reply messages contain public key certificates, which make them 
longer than a normal size of a UDP packet. In this case, large UDP packets MUST be 
sent using IP fragmentation.  

Once an MTA receives an AS Reply (with the PKINIT Reply in it), it SHOULD save 
both the obtained ticket and the session key information (found in the enc-part member of 
the reply) in non-volatile memory (which is usually the case with existing Kerberos 
implementations). Thus, the MTA will be able to re-use the same Kerberos ticket after a 
reboot, avoiding the need to perform PKINIT again, with the associated overhead of 
public key operations. 

Since an MTA is not required to save the ticket, the MTAs that don’t follow the above 
recommendation should not adversely affect the performance of call signaling. Therefore, 
a KDC server SHOULD be implemented on a separate host, independent of the 
Application Server. This would mean, that frequent PKINIT operations from some MTAs 
will not affect the performance of any of the application servers or the performance of 
those MTAs that do not require frequent PKINIT exchanges. 

Kerberos Tickets MUST NOT be issued for a period of time that is longer than 7 days. 
The MTA clock MUST NOT drift more than 2.5 minutes within that period (7 days). The 
PKINIT Grace Period PKINITGP MUST be at least 15 minutes.  

6.4.2.1.1 PKINIT Request 
The PKINIT Request message (PA-PK-AS-REQ) in Appendix C is defined as: 

PA-PK-AS-REQ ::= SEQUENCE {
signedAuthPack [0] ContentInfo,
trustedCertifiers [1] SEQUENCE OF TrustedCas OPTIONAL,
kdcCert [2] IssuerAndSerialNumber OPTIONAL,
encryptionCert [3] IssuerAndSerialNumber OPTIONAL

}

 
The following fields MUST be present in PA-PK-AS-REQ for PacketCable (and all other 
fields MUST NOT be present):  

• signedAuthPack – a signed authenticator field, needed to authenticate the client. It is 
defined in Cryptographic Message Syntax, identified by the SignedData OID:{iso(1) 
member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs7(7) 2}. SignedData is defined 
as: 

 
SignedData ::= SEQUENCE {
version CMSVersion,
digestAlgorithms DigestAlgorithmIdentifiers,
encapContentInfo EncapsulatedContentInfo,
certificates [0] IMPLICIT CertificateSet OPTIONAL,
crls [1] IMPLICIT CertificateRevocationLists

OPTIONAL,
signerInfos SignerInfos

}
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• digestAlgorithms - for now MUST contain an algorithm identifier for SHA-1. 
Other digest algorithms may optionally be supported in the future.   

• encapContentInfo – is of type EncapsulatedContentInfo that is defined by 
Cryptographic Message Syntax as: 

EncapsulatedContentInfo ::= SEQUENCE {
eContentType ContentType,
eContent [0] EXPLICIT OCTET STRING OPTIONAL

}

 
Here eContentType indicates the type of data and for PKINIT must be set to: 
{iso(1) org(3) dod(6) internet(1) security(5) kerberosv5(2) pkinit(3) 
pkauthdata(1)} 
 
eContent is a data structure of type AuthPack encoded inside an OCTET 
STRING: 

 
AuthPack ::= SEQUENCE {
pkAuthenticator [0] PKAuthenticator,
clientPublicValue [1] SubjectPublicKeyInfo OPTIONAL

}

 
The optional clientPublicValue parameter inside the AuthPack MUST always 
be present for PacketCable. (This parameter specifies the client's Diffie-
Hellman public value.) 

PKAuthenticator ::= SEQUENCE {
cusec [0] INTEGER,

-- for replay prevention as in RFC1510
ctime [1] KerberosTime,

-- for replay prevention as in RFC1510
nonce [2] INTEGER,

-- zero only if client will accept
-- cached DH parameters from KDC;
-- must be non-zero otherwise

pachecksum [3] Checksum
-- Checksum over KDC-REQ-BODY
-- Defined by Kerberos spec

}

 
The pachecksum field MUST use the Kerberos checksum type rsa-md5, a 
plain MD5 checksum over the KDC-REQ-BODY.  

The nonce field MUST be non-zero, indicating that the client does not support 
the caching of Diffie-Hellman values and their expiration.  

• certificates - required by PacketCable. This field MUST contain an MTA 
Device Certificate and an MTA Manufacturer Certificate. This field MUST 
NOT contain any other certificates. All PacketCable certificates are X.509 
certificates for RSA Public keys as specified in section 8.  

• crls – MUST NOT be filled in by the MTA.  
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• signerInfos – MUST be a set with exactly one member that holds the MTA 
signature. This signature is a part of a SignerInfo data structure defined within 
the Cryptographic Message Syntax. All optional fields in this data structure 
MUST NOT be used in PacketCable. The digestAlgorithm MUST be set to 
SHA-1: 

{iso(1) identified-organization(3) oiw(14) secsig(3) algorithm(2) 26}  

and the signatureAlgorithm MUST be set to rsaEncryption: 

{iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1}  

PKINIT allows an Ephemeral-Ephemeral Diffie-Hellman exchange as part of the PKINIT 
Request/Reply sequence. (Ephemeral-Ephemeral means that both parties during each 
exchange randomly generate the Diffie-Hellman private exponents.) The Kerberos 
session key is returned to the MTA in the PKINIT Reply, encrypted with a secret that is 
derived from the Diffie-Hellman exchange. Within PacketCable, the Ephemeral-
Ephemeral Diffie-Hellman MUST be supported.  

The IKE specification in [27] defines Diffie-Hellman parameters as Oakley groups. 
Within the PacketCable PKINIT profile the 2nd Oakley group MUST be supported and 
the 1st Oakley group MAY also be supported. Appendix H provides details of the first 
and second Oakley groups. 

When generating Diffie-Hellman private keys, a device MUST generate a key of length 
at least 144 bits when the first Oakley group is used and MUST generate a key of length 
at least 164 bits when the second Oakley group is used.  

For further details of PKINIT, please refer to Appendix C. 

Additionally, PKINIT supports a Static-Ephemeral Diffie-Hellman exchange, where the 
client is required to possess a Diffie-Hellman certificate in addition to an RSA certificate. 
This mode MUST NOT be used within PacketCable.  

PKINIT also allows a single client RSA key to be used both for digital signatures and for 
encryption - wrapping the Kerberos session key in the PKINIT Reply. This mode MUST 
NOT be used within PacketCable.  

PKINIT has an additional option for a client to use two separate RSA keys – one for 
digital signatures and one for encryption. This mode MUST NOT be used within 
PacketCable.  

Upon receipt of a PA-PK-AS-REQ, the KDC MUST: 

1. check the validity of the certificate chain (MTA Device Certificate, MTA 
Manufacturer Certificate, MTA Root Certificate) 

2. check the validity of the signature in the (single) SignerInfo field 

3. check the validity of the checksum in the PKAuthenticator  

6.4.2.1.2 PKINIT Reply 
The PKINIT Reply message (PA-PK-AS-REP) in Appendix C is defined as follows: 
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PA-PK-AS-REP ::= CHOICE {
dhSignedData [0] ContentInfo,
encKeyPack [1] ContentInfo

}

PacketCable MUST use only the dhSignedData choice, which is needed for a Diffie-
Hellman exchange.  

The value of the Kerberos session key is not present in PA-PK-AS-REP. It is found in the 
encrypted portion of the AS Reply message that is specified in Appendix B. The AS 
Reply MUST be encrypted with 3-DES CBC, where the corresponding Kerberos etype 
value MUST be des3-cbc-md5. Other encryption types may be supported in the future. 

The client MUST use PA-PK-AS-REP to determine the encryption key used on the AS 
Reply. This PKINIT Reply contains the KDC’s Diffie-Hellman public value that is used 
to generate a shared secret (part of the key agreement). This shared secret is used to 
encrypt/decrypt the private part of the AS Reply.  

• dhSignedData - dhSignedData is identified by the SignedData oid: {iso(1) member-
body(2) us(840) rsadsi(113549) pkcs(1) pkcs7(7) 2}. Within SignedData (specified in 
section 6.4.2.1.1): 

• digestAlgorithms - for now MUST contain an algorithm identifier for SHA-1. 
Other digest algorithms may optionally be supported in the future.  

• encapContentInfo – is of type pkdhkeydata, where eContentType contains the 
following OID value: {iso(1) org(3) dod(6) internet(1) security(5) 
kerberosv5(2) pkinit(3) pkdhkeydata(2)} 

eContent is of type KdcDHKeyInfo (encoded inside an OCTET STRING): 
 

KdcDHKeyInfo ::= SEQUENCE {
-- used only when utilizing Diffie-Hellman

subjectPublicKey [0] BIT STRING,
-- Equals public exponent (g^a mod p)
-- INTEGER encoded as payload of
-- BIT STRING

nonce [1] INTEGER,
-- Binds response to the request
-- Exception: Set to zero when KDC
-- is using a cached DH value

dhKeyExpiration [2] KerberosTime OPTIONAL
-- Expiration time for KDC's cached
-- DH value

}

• The nonce MUST be the same nonce that was passed in by the client in 
the PKINIT Request.  

• The subjectPublicKey MUST be the Diffie-Hellman public value 
generated by the KDC. The Diffie-Hellman-derived key is used to directly 
encrypt part of the AS Reply. The requirements on the length of the 
Diffie-Hellman private exponent are as defined in section 6.4.2.1.1. 
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• The dhKeyExpiration MUST not be present as caching of Diffie-Hellman 
values is not permitted.  

• certificates – required by PacketCable. This field MUST contain a KDC 
certificate. If a Local System CA issued the KDC certificate, then the 
corresponding Local System Certificate MUST also be present. The Service 
Provider Certificate MUST also be present in this field. If the MTA is 
configured with a specific service provider name, it MUST verify that the 
Service Provider name is identical to the value of the OrganizationName 
attribute in the subjectName of the Service Provider certificate. If the Local 
System Certificate is present, then the MTA MUST verify that the Service 
Provider name is identical to the value of the OrganizationName attribute in 
the subjectName of the Local System Certificate. In addition to standard 
certificate verification rules specified in RFC 2459, an MTA MUST verify 
that the KDC certificate includes a subjectAltName extension in the format 
specified in section 8.2.3.4.1. The MTA MUST verify that the extension 
contains a valid KDC principal name and that the KDC realm in this extension 
is identical to the server realm name in the encrypted portion of the AS Reply 
message (EncKDCRepPart).   

• crls – this optional field MAY be filled in by the KDC.  

• signerInfos – MUST be a set with exactly one member that holds the KDC 
signature. This signature is a part of a SignerInfo data structure defined within 
the Cryptographic Message Syntax.  All optional fields in this data structure 
MUST NOT be used in PacketCable.  The digestAlgorithm MUST be set to 
SHA-1: 

{iso(1) identified-organization(3) oiw(14) secsig(3) algorithm(2) 26}  

the signatureAlgorithm MUST be set to rsaEncryption: 

{iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1}  

Upon receipt of a PA-PK-AS-REP, the client MUST: 
1. check the value of the nonce in the eContent field 
2. check the validity of the KDC certificate 
3. check the validity of the signature in the SignerInfo field  

6.4.2.1.2.1 PKINIT Error Messages 
In the case that a PKINIT Request is rejected, instead of a PKINIT Reply the KDC 
MUST return a Kerberos error message of type KRB_ERROR, as defined in Appendix 
C. Any error code that is defined in Appendix C for PKINIT MAY be returned.  

• The KRB_ERROR MUST use typed-data of REQ-NONCE to bind the error 
message to the nonce from the KDC-REQ-BODY portion of the AS-REQ 
message. This error message MUST NOT include the optional e-cksum member 
that would contain a keyed checksum of the error reply. The use of this field is 
not possible during the PKINIT exchange, since the client and the KDC do not 
share a symmetric key.  
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6.4.2.1.2.1.1 Clock Skew Error 
When the KDC clock and the client clock are off by more than the limit for a clock skew, 
an error code KRB_AP_ERR_SKEW MUST be returned. The value for the maximum 
clock skew allowed by the KDC MUST NOT exceed 5 minutes.  The optional client’s 
time in the KRB_ERROR MUST be filled out, and the client MUST compute the 
difference (in seconds) between the two clocks based upon the client and server time 
contained in the KRB_ERROR message. The client SHOULD store this clock difference 
in non-volatile memory and MUST use it to adjust Kerberos timestamps in subsequent 
KDC request messages (AS Request and TGS Request) by adding the clock skew to its 
local clock value each time. The client MUST maintain a separate clock skew value for 
each realm. The clock skew values are intended for uses only within the Kerberos 
protocol and SHOULD NOT otherwise affect the value of the local clock (since a clock 
skew is likely to vary from realm to realm).  

In the case that a KDC request fails due to a clock skew error, a client MUST 
immediately retry after adjusting the Kerberos timestamp inside the KDC Request 
message.  

In addition, the MTA MUST validate the time offset returned in the clock skew error, to 
make sure that it does not exceed a maximum allowable amount. This maximum time 
offset MUST NOT exceed 1 hour. This MTA check against a maximum time offset 
protects against an attack in which a rogue KDC attempts to fool an MTA into accepting 
an expired KDC certificate.  

6.4.2.1.3 Pre-Authenticator for Provisioning Server Location 
An AS Request sent by the MTA MUST include this PROV-SRV-LOCATION pre-
authenticator that the KDC can use to locate the Provisioning Server.  

The pre-authenticator type MUST be –1 (according to Appendix B, the negative type is 
used for application-specific pre-authenticators). Its ASN.1 encoding is specified as: 

PROV-SRV-LOCATION ::= GeneralString
-- Provisioning Server’s FQDN

6.4.2.2 Profile for the Kerberos AS Request / AS Reply Messages 
As mentioned earlier, the PKINIT Request and Reply are pre-authenticator fields 
embedded into the AS Request / AS Reply messages. The PacketCable-specific PROV-
SRV-LOCATION pre-authenticator MUST be used in combination with PKINIT. All 
other pre-authenticators MUST NOT be used in combination with PKINIT.  

The optional fields from, enc-authorization-data, additional-tickets and rtime in the KDC-
REQ-BODY MUST NOT be present in the AS Request. All other optional fields in the 
AS Request MAY be present for PacketCable. The client MUST NOT set any of the 
KDCOptions in the AS-REQUEST, except that the DISABLE-TRANSITED-CHECK 
option MAY be set.  

The MTA MUST include its IP address in the optional addresses field of the KDC-REQ-
BODY. The KDC MUST verify that the addresses field in the KDC-REQ-BODY 
contains exactly one IP address and that it is identical to the IP address in the IP header of 
the AS Request. After the KDC validates the addresses field, it MUST include it in the 
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caddr fields of the issued ticket and the AS Reply. The KDC MUST reject an AS Request 
that does not include the MTA’s IP address.  In this case the KDC MUST return a 
KDC_ERR_POLICY error code.  

If an MTA stores its tickets in non-volatile memory for use after reboots, it MUST also 
store the corresponding IP address. Upon initialization, the MTA MUST NOT use a 
previously stored ticket if the stored IP address does not match the MTA’s currently 
assigned IP address.   

If a KDC receives an AS-REQ message in which any of the KDCOptions are set, except 
for the DISABLE-TRANSITED-CHECK option, the KDC MUST return an error with 
the error code KDC_ERR_POLICY.  

 In the AS Reply, key-expiration, starttime and renew-till optional fields MUST NOT be 
present. The session key contained in the AS-REPLY (which MUST be identical to the 
session key in the ticket) MUST be etype des3-cbc-md5.  

The encrypted part of the AS Reply MUST be encrypted with the encryption type set to 
des3-cbc-md5. The following data MUST be concatenated and processed in the following 
sequence before being encrypted with 3-DES CBC, IV=0:  

• 8-byte random byte sequence, called a confounder  

• An MD5 checksum, which is the MD5 hash of the concatenation of the three 
quantities (the confounder + sixteen NULL octets + the text to be encrypted [not 
including any padding])  

• AS Reply part that is to be encrypted  

• Random padding up to a multiple of 8  

Upon receipt of an AS-REPLY, the client MUST check the validity of the checksum in 
the encrypted portion of the AS-REPLY.  

6.4.2.3 Profile for Kerberos Tickets 
In Kerberos Tickets, authorization-data, starttime and renew-till optional fields MUST 
NOT be present. The optional caddr field MUST be present when requested in an AS-
REQUEST or when present in a TGT of a TGS Request (see Appendix B). The only 
ticket flags that are supported within PacketCable are the INITIAL, PRE-AUTHENT and 
TRANSITED-POLICY-CHECKED flags. If the KDC receives any request that would 
otherwise cause it to set any other flag, it MUST return an error with the error code 
KDC_ERR_POLICY. The KDC MUST NOT generate tickets with any other flags set. 
The session key contained in the ticket (which MUST be identical to the session key in 
the AS-REPLY) MUST be etype des3-cbc-md5. Since the transited encoding information 
normally required by PKINIT (see Appendix B, 3.3.3.2) is not used in PacketCable, a 
KDC MAY choose to leave as a null string the ‘contents’ field of the TransitedEncoding 
portion of a ticket issued in response to a PKINIT request.  

The encrypted part of the Kerberos ticket MUST be encrypted with the encryption type 
set to des3-cbc-md5, using the same procedure as described in the above section 6.4.2.2.  
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Upon receipt of a ticket for a service, the server MUST: 

1. check the validity of the checksum in the encrypted portion of the ticket 
2. check that the ticket has not expired  

Currently, all the service keys are pre-shared using an out-of-band mechanism between 
the KDC and the device providing the service. In the future, PacketCable may support a 
method that does not require these keys to be pre-shared. 

6.4.3 Symmetric Key AS Request / AS Reply Exchange 
In PacketCable, a Kerberos client MAY use standard symmetric-key authentication (with 
a client key) during the AS Request / AS Reply exchange. Also, in PacketCable, a client 
not utilizing PKINIT is, at the same time, an Application Server for which other clients 
might obtain tickets. This means that a PacketCable entity may utilize the same 
symmetric key for both client authentication and for decrypting its service tickets. 

The Kerberos AS Request / AS Reply exchange, in general, is allowed to occur with no 
client authentication. The client, in those cases, would authenticate itself later by proving 
that it is able to decrypt the AS Reply with its symmetric key and make use of the session 
key.  

Such use of Kerberos is not acceptable within PacketCable. This approach would allow a 
rogue client to continuously generate AS Requests on behalf of other clients and receive 
the corresponding AS Replies. Although this rogue client would be unable to decrypt 
each AS Reply, it will know some of the fields that it should contain. This, and the 
availability of the matching encrypted AS Replies, would aid an attacker in the discovery 
of another client’s key with cryptanalysis. 

Therefore, PacketCable requires that whenever an AS Request is not using a PKINIT 
preauthenticator, it MUST instead use a different preauthenticator, of type PA-ENC-TS-
ENC. This preauthenticator is specified as: 

PA-ENC-TS-ENC ::= SEQUENCE {
patimestamp [0] KerberosTime,

-- client’s time
pausec [1] INTEGER OPTIONAL,
pachecksum [2] CheckSum OPTIONAL

-- keyed checksum of
-- KDC-REQ-BODY

}

The PA-ENC-TS-ENC preauthenticator MUST be encrypted with the client key using the 
encryption type des3-cbc-md5, as described in section 6.4.2.2. All optional fields inside 
PA-ENC-TS-ENC MUST be present for PacketCable. The pachecksum field MUST be a 
keyed checksum of type des3-cbc-md5 and MUST be validated by the KDC. The 
encrypted timestamp is used by the KDC to authenticate the client. At the same time, the 
timestamp inside this preauthenticator is used to prevent replays. The KDC checks for 
replays upon the receipt of this preauthenticator; this is similar to the checking performed 
by an Application Server upon receipt of an AP Request message. 

If the timestamp in the PA-ENC-TS-ENC preauthenticator differs from the current KDC 
time by more than the acceptable clock skew then KDC MUST reply with a clock skew 
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error message. The MTA MUST respond to this error message as specified in section 
6.4.2.1.2.1.1  

If the realm, target server name (e.g., the name of the KDC), along with the client name, 
time and microsecond fields from the PA-ENC-TS-ENC preauthenticator match any 
recently-seen such tuples, the KRB_AP_ERR_REPEAT error MUST be returned. The 
KDC MUST remember any such preauthenticator presented within acceptable clock 
skew period, so that a replay attempt is guaranteed to fail.  

If the Application Server loses track of any authenticator presented within the acceptable 
clock skew period, it MUST reject all requests until the acceptable clock skew interval 
has passed.  

Symmetric-key AS Request / AS Reply exchange is illustrated in the following figure: 

client KDC
Service Key{ }

Ticket,
Session Key{ }

AS Request:
Client name,
KDC name or other server name,
nonce,
PA-ENC-TS-ENC preauthenticator:

client time encrypted
with the client key

AS Reply:
TGT or other server ticket,
nonce + session key + key validity period

encrypted with the client key

 
Figure 6. Symmetric-Key AS Request / AS Reply Exchange 

6.4.3.1 Profile for the Symmetric Key AS Request / AS Reply Exchanges 
The content of the AS Request / AS Reply messages is the same as in the case of the 
PKINIT preauthentication (see section 6.4.2.1) with the exception of the type of the 
preauthenticator that is used. 

In general, clients using a symmetric-key form of the AS Request / AS Reply exchange 
are not required to always possess a valid TGT or a valid Application Server ticket. A 
client MAY obtain both a TGT and Application Server tickets on-demand, as they are 
needed for the key management with the Application Server.  

However, there may be cases where a client is required to quickly switch between servers 
for load balancing and the additional symmetric-key exchanges with the KDC are 
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undesirable. In those cases, a client MAY be optimized to obtain tickets in advance, so 
that the key management would take only a single roundtrip (AP Request / AP Reply 
exchange.)  

In the case that the KDC rejects the AS Request, it returns a KRB_ERROR message 
instead of the AS Reply, as specified in Appendix B. The KRB_ERROR MUST use 
typed-data of REQ-NONCE to bind the error message to the nonce from the AS-REQ 
message. This error message MUST include the optional e-cksum member that would 
contain an rsa-md5-des3 keyed checksum of the error reply, unless pre-authentication 
failed to prove knowledge of the shared symmetric key in which case the e-cksum MUST 
NOT be used.  
 
The rsa-md5-des3 checksum MUST be computed as follows:  

1. prepend the message with an 8-byte random byte sequence, called a confounder  

2. take an MD5 hash of the result of step 1   

3. prepend the hash with the same 8-byte confounder  

4. take the 3DES session key from the ticket and XOR each byte with F0  

5. use 3DES in CBC mode to encrypt the result of step 3, using the key in step 4 and 
with IV(initialization vector)=0  

Once a client receives an AS Reply, it SHOULD save both the obtained ticket and the 
session key information (found in the enc-part member of the reply) in non-volatile 
memory. Thus, the client will be able to re-use the same Kerberos ticket after a reboot, 
avoiding the need to perform the AS Request again.  

Kerberos Tickets MUST NOT be issued for a period of time that is longer than 7 days 
(same as for PKINIT exchanges).  

Upon receipt of a KRB_ERROR that contains an e-cksum field, the recipient MUST 
verify the validity of the checksum.  

6.4.4 Kerberos TGS Request / TGS Reply Exchange 
In the cases where a client obtained a TGT, that TGT is then used in the TGS Request / 
TGS Reply exchange to obtain a specific Application Server ticket. This is part of the 
Kerberos standard, as it is specified in Appendix B. 

A TGS Request includes a KRB_AP_REQ data structure (the same structure used in an 
AP Request: see section 6.4.4.1). This data structure contains the TGT as well as an 
authenticator that is used by the client to prove the possession of the corresponding 
session key. The TGS Reply has the same format as an AS Reply, except that it is 
encrypted using a different key – the session key from the TGT. 

The diagram below illustrates the TGS Request / TGS Reply exchange: 
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client KDC

Target Server Ticket,
Target Server Session Key{ }

TGT,
TGT Session Key{ } TGS Service Key,

Target Service Key{ }
TGS Request:

client name,
target server name and realm,
nonce,
KRB_AP_REQ preauthenticator:

TGT
client name + time + hash

encrypted with the
TGT session key

TGS Reply:
target server ticket,
nonce + target server session key +

key validity period encrypted
with the TGT session key

 

Figure 7. Kerberos TGS Request / TGS Reply Exchange 

The above diagram lists several important parameters in the TGS Request and Reply 
messages. These parameters are: 

• TGS Request 

• Client (principal) name, target server (principal) name and realm, nonce – 
found in the KDC-REQ-BODY Kerberos structure (see Appendix B) 

• TGS preauthenticator - found in the KDC-REQ Kerberos structure, inside the 
padata field (see Appendix B). The preauthenticator type in this case is PA-
TGS-REQ. 

• KRB_AP_REQ – the value of the preauthenticator of type PA-TGS-REQ 

• TGT – inside the KRB_AP_REQ 

• Client name, time – inside the Kerberos Authenticator structure, which is 
embedded in an encrypted form in the KRB_AP_REQ 

• TGS Reply 

• Target server ticket – found in the KDC-REP Kerberos structure (see 
Appendix B) 
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• Target server session key, nonce, key validity period – found in the 
EncKDCRepPart Kerberos structure (see Appendix B) 

In general, the TGS Request / Reply exchange may be performed on-demand - whenever 
an Application Server ticket is needed to establish Security Parameters. However, there 
may be PacketCable elements (e.g., MTAs) that are required to always possess a valid 
ticket for a particular Application Server (e.g., CMS) to improve efficiency in the load 
balancing scenarios. In those cases the client MUST initiate the TGS Request / Reply 
exchange at the time: TicketEXP – TGSGP. Here, TicketEXP is the expiration time of the 
current Application Server ticket and TGSGP is the TGS Grace Period. 

Once a client receives a TGS Reply, it SHOULD save both the obtained ticket and the 
session key information (found in the enc-part member of the reply) in non-volatile 
memory. Thus, the client will be able to re-use the same Kerberos ticket after a reboot, 
avoiding the need to perform the TGS Request again.  

The validity of the Application Server tickets MUST NOT extend beyond the expiration 
time of the TGT that was used to obtain the server ticket.  

6.4.4.1 TGS Request Profile 
The optional padata element in the KDC-REQ data structure MUST consist of exactly 
one element – a preauthenticator of type PA-TGS-REQ. The value of this 
preauthenticator is the KRB_AP_REQ data structure. Within KRB_AP_REQ:  

1. Options in the ap-options field MUST NOT be present.  

2. The ticket is the TGT.  

3. The encrypted authenticator MUST contain the checksum field – an MD5 
checksum of the ASN.1 encoding of the KDC-REQ-BODY data structure. It 
MUST NOT contain any other optional fields.  

4. The authenticator MUST be encrypted using 3-DES CBC with the following 
Kerberos etype: des3-cbc-md5.  

The optional fields from, enc-authorization-data, additional-tickets and rtime in the KDC-
REQ-BODY MUST NOT be present in the TGS Request. All other optional fields in the 
TGS Request MAY be present for PacketCable. The KDC MUST reject a TGT that has 
any ticket flags set, apart from the flags INITIAL, PRE-AUTHENT or TRANSITED-
POLICY-CHECKED. If the KDC receives any request that would otherwise cause it to 
set any flag in the service ticket, apart from the PRE-AUTHENT and TRANSIT-
POLICY-CHECKED flags, it MUST return an error with the error code 
KDC_ERR_POLICY. The KDC MUST NOT generate TGT-based service tickets with 
any other flags set.  

If the TGT contains a caddr field, the KDC MUST verify that it is a single IP address and 
that it is identical to the IP address in the IP header of the TGS Request. The KDC MUST 
reject TGS Requests from an MTA with a TGT that does not include the MTA's IP 
address, returning a KDC_ERR_POLICY error code (refer to section 6.4.4.3).  
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Upon receipt of a TGS Request, the KDC MUST:  

1. check the validity of the TGT;  

2. check the validity of the checksum in the authenticator.  

6.4.4.2 TGS Reply Profile 
In the TGS Reply, key-expiration, starttime and renew-till optional fields MUST NOT be 
present. The encrypted part of the TGS Reply MUST be encrypted with the encryption 
type set to des3-cbc-md5, using the same procedure as described in section 6.4.2.2.  

Upon receipt of a TGS Reply, the client MUST:  

1. use the value of the nonce to bind the reply to the corresponding TGS Request;  

2. check the validity of the checksum in the encrypted portion of the TGS Reply.  

6.4.4.3 Error Reply 
If the KDC is able to successfully parse the TGS Request and the TGT that is inside of it, 
but the TGS Request is rejected, it MUST return a Kerberos error message of type 
KRB_ERROR, as defined in Appendix B. The error message MUST include the optional 
e-cksum member, which is the keyed hash over the KRB_ERROR message. The 
checksum type MUST be rsa-md5-des3, calculated using the procedure described in 
section 6.4.3.1.  

The KRB_ERROR MUST also include typed-data of REQ-NONCE to bind the error 
message to the nonce from the TGS-REQ message.  

Upon receipt of a KRB_ERROR, the client MUST check the validity of the checksum.  

6.4.5 Kerberos Server Locations and Naming Conventions 

6.4.5.1 Kerberos Realms 
A realm name MAY use the same syntax as a domain name, however Kerberos Realms 
MUST be in all capitals. For a full specification of Kerberos realms, refer to Appendix B.  

6.4.5.2 KDC  
Kerberos principal identifier for the local KDC when it is in a role of issuing tickets is 
always: krbtgt/<realm>@<realm>, where <realm> is the Kerberos realm corresponding 
to the particular PacketCable zone. This is the service name listed inside a TGT. 

A Kerberos client MUST query KDC FQDNs for a particular realm name using DNS 
SRV records, as specified in Appendix E. For example, let us say that realm ASDF.COM 
contains two KDCs: kdc1.asdf.com and kdc2.asdf.com. The DNS SRV records in this 
case are: 

_kerberos._udp.ASDF.COM. IN SRV 0 0 88 kdc1.asdf.com. 
_kerberos._udp.ASDF.COM. IN SRV 1 0 88 kdc2.asdf.com. 

After the above DNS SRV records are retrieved, the client will try kdc1.asdf.com first, 
based on its priority. (Priority for kdc1.asdf.com is 0, while priority for kdc2.asdf.com is 
1: a lower priority number means a higher priority.) 
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When a PacketCable KDC is requesting information from a Provisioning Server (e.g., the 
mapping of an MTA MAC address to its corresponding FQDN) it MUST use a principal 
name of type NT- PRINCIPAL (1) with a single component “kdcquery” (without quotes). 

In a ASCII representation, the principal identifier is as follows: 

kdcquery@<realm> 
where <realm> is the Kerberos realm of the KDC.  

6.4.5.3 CMS 
A CMS Kerberos principal identifier MUST be constructed from the CMS FQDN as 
follows: 

cms/<FQDN>@<realm> 

where <FQDN> is the CMS’s FQDN (in lower case) and <realm> is its Kerberos 
realm.  

For example, a CMS with an FQDN ‘iptel-cms1.company1.com’ and with a realm name 
‘COMPANY1.COM’ would have the principal identifier: 

cms/iptel-cms1.company1.com@COMPANY1.COM 

The Kerberos PrincipalName data structure (inside the Kerberos messages) is defined as 
follows: 

PrincipalName ::= SEQUENCE {
name-type [0] INTEGER,
name-string [1] SEQUENCE OF GeneralString

} 

Within this data structure, name-type MUST be NT-SRV-HST (which has the value of 3 
according to the Kerberos specification). The name-string element of the data structure 
MUST have exactly two components, where the first component has the string value 
“cms” (without the quotes) and the second component is the CMS’s FQDN in lower case.   

For the full syntax of Kerberos principal names, refer to Appendix B. 

For the purpose of setting up an IPsec connection between the CMS and RKS, the first 
component of the CMS principal name MUST be of the form “cms:<ElementID”, where 
the <ElementID> is described in section 6.4.5.5.  

6.4.5.4 Provisioning Server  
When a PacketCable MTA Provisioning Server is acting in the role of an SNMP 
manager, it MUST use a principal name of type NT-SRV-HST (3) with the following two 
components:  
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1. “mtaprovsrvr” (without quotes) 

2. the FQDN of the Provisioning Server (in lower case)  

In ASCII representation, the Provisioning Server’s principal identifier MUST be as 
follows: 

mtaprovsrvr/<Prov Server FQDN>@<realm> 

where <realm> is the Kerberos realm of the Provisioning Server.  

When a PacketCable Provisioning Server is providing a service (to the KDC) that maps 
each MTA MAC address to its corresponding FQDN, it MUST use a principal name of 
type NT-SRV-HST (3) with the following two components:  

1. “mtafqdnmap” (without quotes)  

2. the FQDN of the Provisioning Server (in lower case)  

In ASCII representation, the principal identifier MUST be as follows: 

mtafqdnmap/<Prov Server FQDN>@<realm> 

where <realm> is the Kerberos realm of the Provisioning Server.   

6.4.5.5 Names of Other Kerberized Services 
All Kerberized services within PacketCable, except for the KDC krbtgt service (see 
6.4.5.2), MUST be assigned a service principal name of type KRB_NT_SRV_HST 
(Value=3), which has the following form according to the Kerberos specification:  

<service name>/<FQDN>   

This means that the first component of the service principal name is the service name in 
lower case, and the last is either an FQDN in lower-case or an IP address of the 
corresponding host.  If a specific host has an assigned FQDN, its principal name includes 
an FQDN and not an IP address.  When a KDC receives a ticket request for a service on 
this host with an IP address instead of an FQDN as the second component of the service 
principal name, the KDC MUST reject such a request.  

When a KDC database contains a service with a principal name that has an IP address as 
the second component, all ticket requests for this service MUST use the same service 
principal name with the same IP address as the second component.   When a KDC 
receives a ticket request for this service with an FQDN as the second component of the 
service principal name, the KDC MUST reject such a request.   (This scenario could 
happen if a service principal is defined in the KDC database at the time when the 
corresponding host does not have an FQDN, and then later an FQDN for this host is 
defined as well.) 

When an IP address is used, it MUST be formatted as follows: 

[A.B.C.D] 

where A, B, C and D are components of an IPv4 address expressed as decimal numbers.   
The components of an IP address MUST be separated by a period ‘.’ and the IP address 
MUST be surrounded by square brackets.    
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The following is an example of a principal name based on an IP address: 

df /[192.35.65.4] 

Figure 3 shows a number of interfaces for which the necessary security is provided by 
IPsec. In addition to supplying the required key management using IKE with pre-shared 
keys, some vendors may choose to implement, and operators to deploy, a Kerberized key 
management scheme for these interfaces. 

This specification requires that the RKS verifies billing event messages by ensuring that 
the Element ID contained in the message matches correctly the IP address at the far end 
of the IPsec Security Associations. In order to ensure that the RKS is able to maintain this 
mapping when Kerberized key management is used to generate the Security Associations, 
devices that communicate with the RKS include their Element ID in their principal name. 
This information is then passed to the RKS in the cname field of the ticket that the KDC 
issues; this ticket is passed to the RKS in the AP-REQ that is used to initiate the IPsec 
Security Associations. 

The first component of the principal name for the various PacketCable devices MUST be 
as follows: 

1. BP: bp[:<ElementID>] 

2. CMTS: cmts[:<ElementID>] 

3. DF: df[:<ElementID>] 

4. MG: mg[:<ElementID>] 

5. MGC: mgc[:<ElementID>] 

6. MP: mp[:<ElementID>] 

7. MPC: mpc[:<ElementID>] 

8. RKS: rks[:<ElementID>] 

9. SG: sg[<ElementID>]  

where: 

<ElementID> is the identifier that appears in billing event messages and it MUST be 
included in a principal name of every server that is capable of generating event messages. 

[8] defines the Element ID as an 5-octet right-justified, space-padded ASCII-encoded 
numerical string. When converting the Element ID for use in a principal name, any 
spaces MUST be converted to ASCII zeroes (0x48).  

For example, a CMTS that has the Element ID “  311” will have a principal name whose 
first component is “cmts:00311”. Similarly, a DF with no Element ID will have a 
principal name whose first component is “df”. 

6.4.6 MTA Principal Names 
An MTA principal name MUST be of type NT-SRV-HST with exactly two components, 
where the first component MUST be the string “mta” (not including the quotes) and the 
second component MUST be the FQDN of the MTA:  



PacketCable™ Security Specification PKT-SP-SEC-I07-021127 

11/27/02 CableLabs  71 

mta /<MTA FQDN> 

where <MTA FQDN> is the FQDN of the MTA in lower case.  

For example, if an MTA FQDN is “mta12345.mso1.com” and its realm is 
“MSO1.COM”, the principal identifier would be: 

mta/mta12345.mso1.com@MSO1.COM 

6.4.7 Mapping of MTA MAC Address to MTA FQDN 
The MTA authenticates itself with the MTA Device Certificate in the AS Request, where 
the certificate contains the MTA MAC address but not its FQDN. In order to authenticate 
the MTA principal name (containing the FQDN), the KDC MUST map the MTA MAC 
address (from the MTA Device certificate) to the MTA FQDN, in order to verify the 
principal name in the AS Request.  

The protocol for retrieving the MTA FQDNs is Kerberos-based. The Provisioning Server 
MUST listen for the request on UDP port 2246 and MUST return the response to the 
UDP port from which the request was transmitted on the client:  

1. MTA FQDN Request – sent from the KDC to the Provisioning Server, containing 
the MTA MAC address and the hash of the MTA public key. This message 
consists of the Kerberos KRB_AP_REQ concatenated with KRB_SAFE. 

2. MTA FQDN Reply – a reply to the KDC by the Provisioning Server, containing 
the MTA FQDN. This message consists of the Kerberos KRB_AP_REP 
concatenated with KRB_SAFE. 

3. MTA FQDN Error Reply – an error reply in response to the MTA FQDN 
Request. This message is the Kerberos KRB_ERROR. 

The format of each of these messages is specified in the subsections below. 

6.4.7.1 MTA FQDN Request 
The KDC MUST first verify the digital signature and certificate chain in the PKINIT 
Request, before sending out an MTA FQDN Request message to determine the MTA 
MAC address to FQDN mapping.  

In the case where the PKINIT Request and certificate signatures are all valid but the 
manufacturer certificate is revoked, the KDC MAY still proceed with the MTA FQDN 
Request. In this case, the KDC MUST provide the revocation time in the MTA FQDN 
Request.  

The MTA FQDN Request MUST be formatted as follows: 
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Table 6. MTA FQDN Request Format 

Field Name Length Description 

KRB_AP_REQ  Variable  DER-encoded, the length is in the ASN.1 header.  

KRB_SAFE   Variable  DER-encoded  

 

In the KRB_AP_REQ, only the following option is supported:  

• MUTUAL-REQUIRED – mutual authentication required. This option MUST 
always be set.  

• All other options are not supported 

The encrypted authenticator in the KRB_AP_REQ MUST contain the following field, 
which is optional in Kerberos:  

• seq-number - random value generated by the KDC 

All other optional fields within the encrypted authenticator are not supported within 
PacketCable. The authenticator itself MUST be encrypted using 3-DES CBC with the 
Kerberos etype value des3-cbc-md5 with the session key from the ticket that is contained 
in this KRB_AP_REQ object. The encryption method for des3-cbc-md5 is specified in 
section 6.4.2.2. 

KRB_SAFE MUST contain the following field, which is optional in Kerberos:  

• seq-number - same value as in the KRB_AP_REQ, to tie KRB_SAFE to 
KRB_AP_REQ and avoid replay attacks. 

All other optional fields within KRB_SAFE are not supported within PacketCable. The 
keyed checksum within KRB_SAFE MUST be of type rsa-md5-des3 and MUST be 
computed with the session key in the accompanying KRB_AP_REQ. The method for 
computing an rsa-md5-des3 keyed checksum is specified in section 6.4.3.1. 

The data that is wrapped inside KRB_SAFE MUST be formatted as follows:  

Table 7. KRB_SAFE Format 

Field Name Length Description 
Message Type  1 byte  1 = MTA FQDN Request  

Enterprise Number  4 bytes  Network byte order, MSB first. 

1 = PacketCable  

Protocol Version  1 byte  2 for this version  

MTA MAC Address  6 bytes  MTA MAC Address  

3 MTA Pub Key Hash  20 bytes  SHA-1 hash of DER-encoded 
SubjectPublicKeyInfo.  

Manufacturer Cert 
Revocation Time  

4 bytes  0 = MTA Manufacturer cert not revoked 

Otherwise, this is UTC time, number of seconds 
since midnight of Jan 1, 1970, in network byte order.  
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Once the KDC has sent an MTA FQDN Request, it MUST save the nonce value that was 
contained in the seq-number field in order to validate a matching MTA FQDN Reply.  

If the KDC times out before getting a reply it MUST give up and simply drop the 
PKINIT request with no error code returned. The KDC MUST NOT retry in this case, 
since it would still have to handle retries of PKINIT Request from the MTA. At the same 
time, after a time out the KDC SHOULD increase its time out value on the next request 
to the same Provisioning Server using an exponential back-off algorithm.  

The Provisioning Server receiving this message MUST validate the KRB_AP_REQ and 
verify that it is not a replay using the procedure specified in the Kerberos standard 
Appendix B, also described in section 6.5.2. After the KRB_AP_REQ has been validated, 
the Provisioning Server MUST also verify the KRB_SAFE component: that the 
checksum keyed with the session key is valid and that the seq-number field matches the 
KRB_AP_REQ.  

If the Manufacturer Cert Revocation Time field is 0 and the Provisioning Server supports 
the storage of MTA public key hashes, then it MUST update the MTA public key hash in 
its database. If the public key hash has changed or is saved for the first time, the 
Provisioning Server MUST also record the time this update (to the MTA public key hash) 
is performed.  

If the Manufacturer Cert Revocation Time field is non-zero, the Provisioning Server 
MUST validate that the public key hash hasn’t changed from the previous update and that 
the revocation time is after the last update to the MTA public key hash. If not – the error 
code KRB_MTAMAP_ERR_PUBKEY_NOT_TRUSTED MUST be returned. If the 
Provisioning Server does not support storage of MTA public key hashes and the 
Manufacturer Cert Revocation Time field is non-zero, the same error code MUST be 
returned.  

6.4.7.2 MTA FQDN Reply 
The MTA FQDN Reply MUST be formatted as follows:  

Table 8. MTA FQDN Format 

Field Name Length Description 
KRB_AP_REP   Variable  DER-encoded, the length is in the ASN.1 header.  
KRB_SAFE   Variable  DER-encoded  

 

The encrypted part of the KRB_AP_REP MUST contain the following field, which is 
optional in Kerberos:  

• seq-number - echoes the value in the KRB_AP_REQ  

All other optional fields within the encrypted part of the KRB_AP_REP are not 
supported within PacketCable. It MUST be encrypted using 3-DES CBC with the 
Kerberos etype value des3-cbc-md5 and MUST be computed with the session key from 
the preceding KRB_AP_REQ. The encryption method for des3-cbc-md5 is specified in 
section 6.4.2.2. 

KRB_SAFE MUST contain the following field, which is optional in Kerberos: 



PKT-SP-SEC-I07-021127 PacketCableTM 1.x Specifications 

74 CableLabs  11/27/02 

• seq-number - same value as in the KRB_AP_REP, to tie KRB_SAFE to 
KRB_AP_REP and avoid replay attacks.  

All other optional fields within KRB_SAFE are not supported within PacketCable. The 
keyed checksum within KRB_SAFE MUST be of type rsa-md5-des3 and MUST be 
computed with the session key from the preceding KRB_AP_REQ. The method for 
computing an rsa-md5-des3 keyed checksum is specified in section 6.4.3.1. 

The data that is wrapped inside KRB_SAFE MUST be formatted as follows:  

Table 9. KRB_SAFE Data Format 

Field Name Length Description 
Message Type  1 byte  2 = MTA FQDN Reply  
Enterprise Number  4 bytes  Network byte order, MSB first. 

1 = PacketCable  
Protocol Version  1 byte  2 for this version  
MTA FQDN  variable  MTA FQDN  
MTA IP Address  bytes  MTA-IP Address (MSB first)  

 

After the KDC receives this reply message, it MUST validate the integrity of both the 
KRB_AP_REP and KRB_SAFE objects (see Appendix B) and MUST also verify that the 
value of the seq-number field is the same for both. If this integrity check fails, the KDC 
MUST immediately discard the reply and proceed as if the message had never been 
received (e.g., if the KDC was waiting for a valid MTA FQDN Reply it should continue 
to do so). 

The Provisioning Server MAY set the MTA IP Address field of the MTA FQDN Reply 
to zero.  If the KDC receives an MTA FQDN REPLY with a non-zero MTA IP Address 
field, it MUST compare it to the IP address contained in the AS Request. If this check 
fails, then the KDC MUST NOT respond to the AS Request.  

6.4.7.3 MTA FQDN Error 
If the Provisioning Server is able to successfully parse the KRB_AP_REQ and the ticket 
that is inside of it, but the MTA FQDN Request is rejected, it MUST return an error 
message.  

All errors MUST be returned as a KRB_ERROR message, as specified in Appendix B. It 
MUST include typed-data of REQ-SEQ to bind the error message to the sequence 
number from the authenticator in the KRB_AP_REQ. Also, the error message MUST 
include the optional e-cksum member, which is the keyed hash over the KRB_ERROR 
message. The checksum type MUST be rsa-md5-des3 and MUST be computed with the 
session key from the preceding KRB_AP_REQ, as specified in section 6.4.3.1. In the 
case that the client time field inside KRB_AP_REQ differs from the Provisioning 
Server’s clock by more than the maximum allowable clock skew, a clock skew error 
MUST be handled as specified in section 6.5.2.3.2.  

If the error is application-specific (not a Kerberos-related error), then KRB_ERROR 
MUST include typed-data of type TD-APP-DEFINED-ERROR (value 106). The value of 
this typed-data is specified in Appendix B as follows: 
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AppSpecificTypedData ::= SEQUENCE {
oid [0] OPTIONAL OBJECT IDENTIFIER,

-- identifies the application
data-value [1] OCTET STRING

-- application specific data
}  

Inside AppSpecificTypedData the oid field MUST be set to: 

enterprises (1.3.6.1.4.1) cableLabs (4491) clabProjects (2) clabProjPacketCable (2) 
kerberosApplication (4) errorCodes (1) FQDN (3)  

The data-value field MUST correspond to the following typed-data value: 
PktcKrbMtaMappingError ::= SEQUENCE {
e-code [0] INTEGER,
e-text [1] GeneralString OPTIONAL,
e-data [2] OCTET STRING OPTIONAL

} 
 

The e-code field MUST correspond to one of the following error code values: 
KRB_MTAMAP_ERR_NOT_FOUND 1 MTA MAC Address not found 
KRB_MTAMAP_ERR_PUBKEY_NOT_TRUSTED 2 MTA public key is not trusted 
KRB_MTAMAP_VERSION_UNSUP 3 Unsupported Version Number 
KRB_MTAMAP_MSGTYPE_UNKNOWN 4 Unrecognized Message Type 
KRB_MTAMAP_ENTERPRISE_UNKNOWN 5 Unrecognized Enterprise Number 
KRB_MTAMAP_NOT_YET_VALID 6 MTA not yet valid 
KRB_MTAMAP_ERR_GENERIC 7 Generic MTA name mapping error  

The optional e-text field can be used for informational purposes (i.e., logging, network 
troubleshooting) and the optional e-data field is reserved for future use to transport any 
application data associated with a specific error. 

Upon receipt of a KRB_ERROR from the Provisioning Server, the KDC MUST check 
the validity of the checksum. If the KRB_ERROR passes the validity check, the KDC 
MUST send a corresponding KRB_ERROR to the MTA (as specified in 6.4.2.1.2), in 
response to the PKINIT Request. The application specific MAC-FQDN error codes 
MUST be mapped to Kerberos error codes in the error reply to the MTA according to 
Table 10.  

Table 10. Mapping of KRB_MTAMAP_ERR to KRB_ERR 

KRB_MTAMAP_ERR_NOT_FOUND KDC_ERR_C_PRINCIPAL_UNKNOWN 

KRB_MTAMAP_ERR_PUBKEY_NOT_TRUSTED KDC_ERR_CLIENT_REVOKED 

KRB_MTAMAP_VERSION_UNSUP KRB_ERR_GENERIC 

KRB_MTAMAP_MSGTYPE_UNKNOWN KRB_ERR_GENERIC 

KRB_MTAMAP_ENTERPRISE_UNKNOWN KRB_ERR_GENERIC 

KRB_MTAMAP_NOT_YET_VALID KDC_ERR_CLIENT_NOTYET 

KRB_MTAMAP_ERR_GENERIC KRB_ERR_GENERIC 
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6.4.8 Server Key Management Time Out Procedure 
The MTA MUST implement a retransmission strategy using exponential back-off with 
configurable initial and maximum retransmission timer values for any KDC or 
application server requests that have not been acknowledged by the server. During an 
exponential back-off, when a previous time out value was Ti, then the next time out 
value, value Ti+1, MUST satisfy the following criteria: 

 1.5 * Ti <= Ti+1 <= 2.5 * Ti  

After successfully processing an AS Request or TGS Request and generating a 
corresponding reply, the KDC MUST save:  

• The client principal identifier  
• The information that uniquely identifies the client pre-authentication field in the 

request (e.g., PKINIT). A client pre-authenticator may for example be identified 
by client time.  

• The full KDC reply  
 
The KDC MUST maintain this information for all requests with the client time field that 
is within the time window (T - ∆TMAX, T + ∆TMAX), where T is the current time and 
∆TMAX is the maximum clock skew that is allowed by KDC policy.  

When the KDC receives a request with a client timestamp that is within the clock skew 
window, it MUST try to match the client principal identifier and pre-authenticator to one 
of the entries in the cache, and if found – send back the same reply that it sent last time. 
The KDC MAY also perform this look up in its cache when a client timestamp is outside 
of the clock skew window, which would enable the KDC to perform the cache lookup 
first without having to parse the DER-encoded request and extract the client timestamp.  

The MTA may have learned several IP addresses for a KDC or application server. If the 
number of retransmissions for a KDC IP address has reached its maximum configured 
value and there are more IP addresses for the same KDC that have not been tried, then the 
MTA MUST direct the retransmissions to the remaining alternate addresses in its local 
list. Each time that the MTA switches to a new KDC IP address for retransmissions, it 
MUST start a new exponential back-off procedure.  If there are no more KDC IP 
addresses to try, then the MTA SHOULD actively query the name server in order to 
detect the possible change of KDC network interfaces, regardless of the Time To Live 
(TTL) associated with the DNS record to see if any other IP addresses have become 
available.  If there are new IP Addresses discovered, the MTA MUST go through the 
retransmission strategy again for the newly discovered IP Addresses.  

For Kerberized key management with application servers, when an application layer is 
informed that key management with a particular IP address failed, it is normally up to the 
application layer to select the next IP address. The switch over algorithm between 
multiple IP addresses mapped to the same FQDN is specified by each corresponding 
application protocol. For example, in the case of the Kerberized key management 
between the MTA and the CMS, refer to the NCS specification [3]. There are also cases 
when key management is performed independent of the application layer, e.g., to pre-
establish security associations during MTA initialization. In those cases, it is up to a 
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specific MTA implementation to decide if to fail over and how to fail over to another 
application server IP address. 

An application server may not respond to application messages (e.g., NCS messages) 
from the MTA. This may occur if the MTA has valid security parameters with the 
application server, but the security parameters on the server have been lost or corrupted 
(e.g., the CMS rebooted and lost all IPsec Security Associations). After an MTA has 
failed to get a response from every IP address mapped to the same application server 
FQDN, the MTA MUST attempt to re-establish a new set of security parameters with a 
particular server IP address before retrying the server at the application level. This 
behavior shall continue until positive application level response has been received from 
one of the application servers or until the application layer protocol determines that the 
MTA should give up. 

6.4.9 Service Key Versioning 
The service key that is shared between a KDC and an application server, to 
encrypt/decrypt service tickets, is a versioned key (refer to Appendix B). This key may be 
changed either due to a routine key refresh, or because it was compromised. When the 
Service key is changed, the application server MUST retain the older key for a period of 
time that is at least as long as the ticket lifetime used when issuing service tickets (i.e., up 
to 7 days). In the case of a routine service key change, the application server MUST 
accept any ticket that is encrypted with an older key that it has retained and is still valid 
(not compromised). This key versioning on the application server will prevent against 
many MTAs from suddenly flooding a KDC with PKINIT Requests for new tickets.  

If a service key is changed because it has been compromised, the application server 
MUST flag all older key versions it has retained as invalid and reject any AP Request that 
contains a ticket that is encrypted with one of these invalid keys. When rejecting the AP 
Request, the application server MUST respond as specified in Appendix B with a 
KRB_AP_ERR_BADKEYVER error. The application server MUST still decrypt the 
rejected ticket, using the invalid service key, in order to extract the session key. This 
session key is needed to securely bind the KRB_ERROR reply message to the AP 
Request message using a keyed checksum (see section 6.5.2.3.1). Note that this step is 
necessary in order to prevent denial-of-service attacks, which could otherwise occur if the 
MTA was unable to verify the authenticity of the KRB_ERROR message.  

Upon receiving this error reply, the MTA MUST discard the service ticket which is no 
longer valid and fetch a new one from its KDC.   

6.4.10 Kerberos Cross-Realm Operation 
It is possible that Security Parameters will have to be established between two entities in 
two different administrative domains. Each PacketCable administrative domain 
corresponds to a Kerberos realm.  

Kerberos key management requires that one of these entities (acting as a client) obtain a 
service ticket from the remote KDC (in the server’s realm). In the case that the client 
entity does not use PKINIT, it cannot authenticate directly to the remote KDC. 
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The client MUST first obtain a cross-realm TGT for the remote KDC from its local KDC. 
Then, the client MUST authenticate to the remote KDC with this cross-realm TGT in 
order to obtain a service ticket for the remote server. And, in order for the local KDC to 
issue a cross-realm TGT there needs to be some trust established between the two realms. 

There are two ways within Kerberos to establish trust between two realms. The first way 
is to establish a pre-shared key between the two realms, called a cross-realm key. The 
second way is the use of public key authentication and automatic establishment of the 
cross-realm key via the PKCROSS protocol, see Appendix D. PKCROSS utilizes 
PKINIT for establishing the inter-realm key and associated inter-realm policy to be 
applied in issuing cross-realm service tickets between realms and domains in support of 
Intradomain and Interdomain CMS-to-CMS signaling (called CMSS for CMS-to-CMS 
Signaling). A PacketCable KDC MUST support PKCROSS and MAY also support pre-
shared cross-realm keys.  

Section 6.4.2 outlines the various phases of Kerberos-based key management. Whenever 
cross-realm authentication is involved, that introduces a new key management phase. 
This phase would run after phase 1 and before phase 2 – we will call it phase 1.5. In 
phase 1.5, a client in realm A requests a cross-realm TGT for realm B from its local 
KDC. If a cross-realm key doesn’t already exist between realms A and B, the local KDC 
MUST automatically run PKCROSS to establish the cross-realm key. The local KDC 
(Realm A) MUST then return the requested cross-realm TGT to the client.  

Phase 2 will proceed as before, except that the client in realm A authenticates itself to the 
remote KDC in realm B with the cross-realm TGT obtained in phase 1.5, rather than with 
the TGT obtained in phase 1. Phase 3 in this case is unchanged. 
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Kerberos cross-realm authentication is illustrated in the diagram below: 
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Figure 8. Kerberos Cross-Realm Operation 

6.4.10.1 PacketCable Profile for Cross-Realm Operation 
There is a new exchange required by the cross-realm operation in phase 1.5, where the 
client obtains a cross-realm TGT. A client MUST request a cross-realm TGT with a TGS 
Request. The PacketCable profile for a TGS Request/TGS Reply exchange is specified in 
section 6.4.4. The only difference is that the cross-realm TGT is not encrypted with the 
normal TGS key of the local KDC – instead it is encrypted with a cross-realm key (see 
Appendix D).  

In the case where a cross-realm key doesn’t already exist, the TGS Request for a cross-
realm TGT MUST trigger a PKCROSS exchange between the two KDCs, resulting in the 
automatic establishment of the cross-realm key. This is specified in the section 6.4.10.3.  

6.4.10.2 Referrals 
In the above diagram, in phase 1.5 the client might not know the realm of the remote 
server and thus will be unable to generate a TGS Request for a cross-realm TGT. 



PKT-SP-SEC-I07-021127 PacketCableTM 1.x Specifications 

80 CableLabs  11/27/02 

For PacketCable, when the client does not know the realm of the server, it MUST assume 
that it is in the local realm and send a TGS Request for the service ticket to the local 
KDC. In this case, the local KDC MUST attempt to determine the realm of the server 
with a query for a DNS TXT record.  Below is an example of the DNS TXT records that 
map host names to a Kerberos realm: 

_kerberos.asdf.com.  IN  TXT  "ASDF.COM" 

_kerberos.CMS1.asdf.com. IN TXT "FOO.ASDF.COM" 

Suppose that in this case, the KDC gets a TGS Request for the service on the host 
CMS2.asdf.com. It would first query: 

_kerberos.CMS2.asdf.com. IN TXT 

Finding no match, it would then query: 

_kerberos.asdf.com. IN TXT 

And find an answer of ASDF.COM. This would be the realm that CMS2.asdf.com 
resides in. 

If another TGS Request asks for the Kerberized service on the host CMS1.asdf.com, the 
KDC would query: 

_kerberos.CMS1.asdf.com IN TXT 

And find an answer of FOO.ASDF.COM. 

Once the KDC has obtained the name of the remote realm using the above procedure, it 
MUST obtain a cross-realm ticket for that realm, which may require a PKCROSS 
exchange as described in section 6.4.10.3.  

In order to perform a PKCROSS exchange, the local KDC has to determine the FQDN of 
the remote KDC(s). If the local KDC does not already know the identity of the KDC(s) 
serving the remote realm, it MUST use the procedure described in section 6.4.5.2 (in 
which case the KDC acts as a “Kerberos client”).  

6.4.10.3 PKCROSS Exchange 
Kerberos cross-realm authentication requires that administrators maintain separate keys 
for every realm for which a direct trust relationship is possible. Indirect, transitive trust is 
also possible, but it relies on trust of intermediate realms, and it is unnecessarily complex 
due to location of intermediate realms and establishment of transitive trust policies. For 
more information on Kerberos transitive trust issues, see Appendix B. Direct trust 
relationships require n(n-1) keys to be established and administered, which rapidly 
becomes an unwieldy administrative burden for maintaining keys and policies.  

PKCROSS leverages a public key infrastructure (PKI) to establish trust between 
Kerberos realms, while it mitigates administrative issues of PKI by limiting the number 
of PKI endpoints to just Kerberos realms. In this way, Kerberos may be utilized for key 
management of large numbers of centrally administered principals, while PKI may be 
utilized for inter-realm key management of a small number of Kerberos realms. Thus, 
PKCROSS enables the dynamic establishment of cross-realm Kerberos keys. This 
exchange uses the PKINIT protocol and enables a remote Kerberos realm to issue a 
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cross-realm key and policy information to another realm. This key and policy information 
is then returned to the remote realm in the form of a special cross-realm ticket. 

Figure 8 above, depicts the flows for cross-realm authentication. The following 
description explains more of the PKCROSS exchange: 

Table 11. PKCROSS Exchange 

KDCL local KDC 
KDCR remote KDC 
XTKT(L,R) PKCROSS ticket that the remote KDC issues to the local KDC – contains 

the dynamic Cross-Realm key 
TGT(C,R) cross-realm TGT that the local KDC issues to the client for presentation to 

the remote KDC 
 
Phase 1.5: 

KDCL issues a PKINIT request to KDCR with the PKCROSS flag (bit 9) set in the 
AS-REQ kdc-options field. 

KDCR replies with XTKT(L,R) that is encrypted under KDCR’s PKCROSS key. Note 
that, within the PKCROSS protocol, the PKCROSS key, as defined in the PKCROSS 
specification, is used in place of the TGS key. Also, KDCR MAY place policy 
information in ticket extensions (for example, this policy information may reflect 
service level agreements.)  

KDCL applies the policies dictated by KDCR in XTKT(L,R) and it issues TGT(C,R) to 
the client. This TGT(C,R) is encrypted under the key that resides in XTKT(L,R). 
XTKT(L,R) is added to TGT(C,R) as a ticket extension (TicketExtensions is an optional 
field in a Kerberos Ticket). 

Phase 2: 

When the client presents TGT(C,R) to KDCR, KDCR extracts XTKT(L,R) and is then 
able to decrypt TGT(C,R) and verify policy on the ticket, then it issues a service ticket 
to the client. 

6.4.10.4 Determining the Location of a Remote KDC 
The FQDN of a remote KDC is determined with a DNS SRV record lookup. This 
mechanism is identical to the mechanism used by a client to locate a KDC in the local 
realm. 

6.5 Kerberized Key Management 

6.5.1 Overview 
This section specifies how Kerberos tickets are used to perform key management 
between a client and an Application Server, where a client is able to get a Kerberos ticket 
for the server but not the other way around. 
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The same protocol described here applies in a symmetric case – where both sides of a key 
management interface are able to get a ticket for each other, i.e., each side is both a client 
and a server. In the symmetric case only the AP Request and AP Reply messages apply. 

The Kerberos session key is used in the AP Request and AP Reply messages that are 
exchanged in order to re-establish security parameters. Subkeys from the AP-REQ and 
AP-REP are used to derive all of the secret keys used for both directions. The AP 
Request and AP Reply messages are small enough to fit into a standard UDP packet, not 
requiring fragmentation. 

A Kerberos AP Request / Reply exchange MAY occur periodically, to insure that there 
are always valid security parameters between the client and the Application Server. It 
MAY also occur on-demand, where the security parameters are allowed to time out and 
are re-established the next time that application traffic needs to be sent over a secure link.  

The UDP port used for all key management messages between the client and the 
Application Server MUST be 1293 (on both devices).  

A recipient of any Kerberized Key Management message that doesn't fully comply with 
the PacketCable requirements MUST reject the message.  
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6.5.2 Kerberized Key Management Messages 
 
The following figure illustrates an AP Request / AP Reply exchange: 
 

secure session

MTA Application
Server

Ticket,
Session Key

subkey      security parameters

Service  Key{ }{ }

{{ } }subkey      security parameters

(3) AP Reply:
time + subkey

encrypted with session key
Application Specific Data (e.g., SPI for IPsec)
selected ciphersuite
SA lifetime
Grace period
Re-establish flag
ACK required flag
SHA-1 HMAC

(2) AP Request:
Service Ticket,
MTA name + time + hash

encrypted with session key
Server-nonce
Application Specific Data (e.g., SPI for IPsec)
list of available ciphersuites
Re-establish flag
SHA-1 HMAC

(1) Wake Up*:
Server-nonce
Application Server Kerberos Principal Identifier

* This message is sent whenever key management is initiated by an
Application Server

** This message is optional, sent whenever the ACK-required flag is set in
the preceeding AP Reply

(4) Security Parameter Recovered**

 
Figure 9. Kerberos AP Request / AP Reply Exchange 
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(1) Wake Up - An Application Server sends this message when it initiates a new key 
management exchange.  

To prevent denial-of-service attacks, this message includes a Server-nonce field – a 
random value generated by the Application Server. The Client includes the exact value of 
this Server-nonce in the subsequent AP Request. 

This message also contains the Server Kerberos Principal Identifier, used by the Client to 
find or to obtain a correct Kerberos ticket for that Application Server. 

The Wake Up message MUST be formatted as the concatenation of the following fields:  
• Key Management Message ID – 1 byte value. Always set to 0x01.  

• Domain of Interpretation (DOI) – 1 byte value. Specifies the target protocol for 
which security parameters are established.  
 

DOMAIN OF INTERPRETATION VALUES 

VALUE TARGET PROTOCOL 

1 IPsec 

2 SNMPv3 

 
• Protocol Version – 1 byte. The high order nibble is the major version number, and 

the lower order nibble is the minor version number. For PacketCable, the major 
number MUST be 1, and the minor number MUST be 0.  

• Server-nonce – a 4-byte random binary string. Its value MUST NOT be all 0’s.  

• Server Kerberos Principal Identifier – a printable, null-terminated ASCII string, 
representing the Kerberos Principal Identifier of the Application Server, as 
defined in section 6.4.5.   

Once the Application Server has sent a Wake Up, it MUST save the Server-nonce. The 
Application Server MUST keep this nonce in order to validate a matching AP Request. In 
the case of a time out, the Application Server MUST adhere to the exponential retry 
backoff procedure described in section 6.4.8. The Application Server MUST begin each 
retry by re-sending a Wake Up message with a new server-nonce value. When the 
"Timeout Procedure" has completed without success, the Application Server MUST 
discard the server-nonce from the last retry, after which it will no longer accept a 
matching AP Request.  

(2) AP Request – MUST be sent by the Client in order to establish a new set of security 
parameters. Any time that the Client receives a Wake Up message, it MUST respond with 
this AP Request.  

In addition, this document specifies the use of this message by the Client to periodically 
establish a new set of security parameters with the Application Server – see section 
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6.5.4.2. It also specifies the use of this message by the Client to establish a new set of 
security parameters with the Application Server, when the Client somehow loses the 
security parameters (e.g., after a reboot) – see section 6.5.3.5. 

The Client starts out with a valid Kerberos ticket, previously obtained during a PKINIT 
exchange. The Application Server starts out with its Service Key that it can use to decrypt 
and validate Kerberos tickets. 

The Client sends an AP Request that includes a ticket and an authenticator, encrypted 
with the session key. The Application Server gets the session key out of the ticket and 
uses it to decrypt and then validate the authenticator. 

The AP Request includes the Kerberos KRB_AP_REQ message along with some 
additional information, specific to PacketCable. It MUST consist of the concatenation of 
the following fields:  

• Key Management Message ID – 1 byte value. Always set to 0x02.  

• Domain of Interpretation (DOI) – 1 byte value. Specifies the target protocol for 
which security parameters are established. See Table above.  

• Protocol Version – 1 byte. The high order nibble is the major version number, and 
the lower order nibble is the minor version number. For PacketCable, the major 
number MUST be 1, and the minor number MUST be 0.  

• KRB_AP_REQ – DER encoding of the KRB_AP_REQ Kerberos message, as 
specified in Appendix B.  

• Server-nonce – a 4-byte random binary string. If this AP Request is in response to 
a Wake Up, then the value MUST be identical to that of the Server-nonce field in 
the Wake Up message. If this AP Request is in response to a Rekey, next section 
6.5.2.1, then the value MUST be identical to that of the Server-nonce field in the 
Rekey message. Otherwise, the value MUST be all 0’s.  

• Application-Specific Data – additional information that must be communicated by 
the client to the server, dependent on the target protocol for which security is 
being established (e.g., IPsec or SNMPv3).  

• List of ciphersuites available at the Client: 

Number of entries in this list (1 byte) 

Each entry has the following format: 

Authentication Algorithm  
(1 byte) 

Encryption Transform ID  
(1 byte) 

 
The actual values of the authentication algorithms and encryption transform Ids 
are dependent on the target protocol.  

• Re-establish flag – a 1-byte Boolean value. When the value is TRUE (1), the 
Client is making an attempt to automatically establish a new set of Security 
Parameters before the old ones expire. Otherwise the value is FALSE (0).  
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• SHA-1 HMAC - (20 bytes) over the contents of this message, not including this 
field. The 20-byte key for this HMAC is determined by taking a SHA-1 hash of 
the session key.  

Whenever the AP Request is received (by the Application Server), it MUST verify the 
value of this HMAC. If this integrity check fails, the Application Server MUST 
immediately discard the AP Request and proceed as if the message had never been 
received (e.g., if the Application Server was waiting for a valid AP Request it should 
continue to do so).  

Once the client has sent an AP Request, it MUST save the nonce value that was 
contained in the seq-number field (a different nonce from the server-nonce specified 
above) along with the Server Kerberos Principal Identifier in order to validate a matching 
AP Reply. If the client generated this AP Request on its own, it MUST adhere to the 
exponential retry backoff procedure described in section 6.4.8.  

If the AP Request was generated in response to a message sent by the Application Server 
(Wake Up or Rekey), then the client MUST save the nonce and Server Kerberos 
Principal Identifier until the time specified by the appropriate Key Management MIB 
variables (pktcMtaDevProvSolicitedKeyTimeout for Prov Server, 
pktcMtaDevCmsSolicitedKeyTimeout for CMS). After the timeout has been exceeded or 
when the "Timeout Procedure" has completed without success, the client MUST discard 
this (nonce, Server Kerberos Principal Identifier) pair, after which it will no longer accept 
a matching AP Reply.  

If the MTA generated an AP Request on its own and has reached the maximum number 
of retries with a particular application server IP address failing to get an AP Reply, it 
must retry with alternate application server IP addresses as specified in section 6.4.8. 

In the case that the Server-nonce is 0 (not filled in), the Application Server MUST verify 
that this AP Request is not a replay using the procedure specified in the Kerberos 
standard (Appendix B):  

• If the timestamp in the AP Request differs from the current Application Server 
time by more than the acceptable clock skew then Application Server MUST 
reply with an error message specified in section 6.5.2.3.2.  

• If the realm, Application Server name, along with the Client name, time and 
microsecond fields from the Kerberos Authenticator (in the AP Request) match 
any recently-seen such tuples, the KRB_AP_ERR_REPEAT error is returned. 
The Application Server MUST remember any authenticator presented within the 
acceptable clock skew, so that a replay attempt is guaranteed to fail.  

• If the Application Server loses track of any authenticator presented within the 
acceptable clock skew, it MUST reject all requests until the interval has passed.  

In the case that the Server-nonce is not 0, the Application Server MAY follow the above 
procedure in order to fully conform with the Kerberos specification (Appendix B). In this 
case, the above procedure is not required because matching the Server-nonce in the Wake 
Up or Rekey message against the Server-nonce in the AP Request also prevents replays.  
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(3) AP Reply – Sent by the Application Server in response to AP Request. 
The AP Reply MUST include a randomly generated subkey (inside the Kerberos 
KRB_AP_REP message), encrypted with the same session key.  

The AP Reply includes the Kerberos KRB_AP_REP message along with some additional 
information, specific to PacketCable. It MUST consist of the concatenation of the 
following fields:  

• Key Management Message ID – 1 byte value. Always set to 0x03.  

• Domain of Interpretation (DOI) – 1 byte value. Specifies the target protocol for 
which security parameters are established. See Table in section 6.5.2.  

• Protocol Version – 1 byte. The high order nibble is the major version number, and 
the lower order nibble is the minor version number. For PacketCable, the major 
number MUST be 1, and the minor number MUST be 0.  

• KRB_AP_REP – DER encoding of the KRB_AP_REP Kerberos message, as 
specified in Appendix B.  

• Application-Specific Data – additional information that must be communicated by 
the server to the client, dependent on the target protocol for which security is 
being established (e.g., IPsec or SNMPv3).  

• Selected ciphersuite for the target protocol, using the same format as defined for 
AP Request. The number of entries in the list MUST be one.  

• Security parameters lifetime – a 4-byte value, MSB first, indicating the number of 
seconds from now, when these security parameters are due to expire.  

• Grace period – a 4-byte value in seconds, MSB first. This indicates to the client to 
start creating a new set of security parameters (with a new AP Request / AP Reply 
exchange) when the timer gets to within this period of their expiration time.  

• Re-establish flag – a 1-byte Boolean value. When the value is TRUE (1), a new 
set of security parameters MUST be established before the old one expires.  When 
the value is FALSE (0), the old set of security parameters MUST be allowed to 
expire.  

• ACK-required flag – a 1-byte Boolean value. When the value is TRUE (1), the 
AP Reply message requires an acknowledgement, in the form of the Security 
Parameter Recovered message 

• SHA-1 HMAC – (20 bytes) over the contents of this message, not including this 
field. The 20-byte key for this HMAC is determined by taking a SHA-1 hash of 
the session key.  

Whenever the AP Reply is received (by the Client) it MUST:  

• verify the value of HMAC field in AP Reply. If HMAC integrity check fails, the 
Client MUST immediately discard the AP Reply.  

• verify that the AP Reply Source IP Address matches the AP Request Destination 
IP Address in the list of outstanding AP Requests. The Client MUST immediately 
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discard the AP Reply, which cannot be matched for the corresponding AP 
Request.  

• verify that the nonce value contained in the seq-number field in AP Reply 
matches the one in the corresponding AP Request. The Client MUST immediately 
discard the AP Reply if seq-number field value in AP Reply does not match.  

If the AP Reply is discarded, the Client MUST proceed as if the message had never been 
received (e.g. if the Client was waiting for a valid AP Reply it should continue to do so).  

Once the Application Server has sent an AP Reply with the ACK-required flag set, it 
MUST compute the expected value in the Security Parameter Recovered message and 
save it for an appropriate timeout period during which it will accept a matching Security 
Parameter Recovered Message. Once the appropriate timeout period is exceeded, the 
Application Server MUST discard the saved values and no longer accept a matching 
Security Parameter Recovered Message.  

Each time the Application Server times out waiting for the Security Parameter Recovered 
message, it MUST continue with the exponential back-off algorithm until all retries have 
been exhausted, as specified in section 6.4.8. The Application Server MUST begin each 
retry by re-sending a Wake Up message with a new server-nonce value.  

(4) Security Parameter Recovered – Sent by the Client to the Application Server to 
acknowledge that it received an AP Reply and successfully set up new Security 
Parameters. This message is only sent when ACK-required flag is set in the AP Reply. 

This message MUST consist of the concatenation of the following:  

• Key Management Message ID – 1 byte value. Always set to 0x04.  

• Domain of Interpretation (DOI) – 1 byte value. Specifies the target protocol for 
which security parameters are established. See Table in section 6.5.2. 

• Protocol Version – 1 byte. The high order nibble is the major version number, and 
the lower order nibble is the minor version number. For PacketCable, the major 
number MUST be 1, and the minor number MUST be 0.  

• HMAC – a 20-byte SHA-1 HMAC of the preceding AP Reply message. The 20-
byte key for this HMAC is determined by taking a SHA-1 hash of the subkey 
from the AP Reply.  

If the receiver (Application Server) gets a bad Security Parameter Recovered message 
that does not match an AP Reply, the Application Server MUST discard it and proceed as 
if this Security Parameter Recovered message was never received.  

6.5.2.1 Rekey Messages 
The Rekey message replaces the Wake Up message and provides better performance, 
whenever a receiver (Application Server) wants to trigger the establishment of a Security 
Parameter with a specified Client. The Rekey message requires the availability of the 
shared Server Authentication Key, which is not always available. Thus, support for the 
Wake Up message is still required.  



PacketCable™ Security Specification PKT-SP-SEC-I07-021127 

11/27/02 CableLabs  89 

The Rekey message was added specifically for use with the NCS-based clustered Call 
Agents, potentially consisting of multiple IP addresses and multiple hosts. Any IP address 
or host within one cluster needs the ability to quickly establish a new Security Parameter 
with a Client, without a significant impact to the ongoing voice communication. 

The use of the Rekey message eliminates the need for the AP Reply message, thus 
reducing the key management overhead to a single roundtrip. This is illustrated in the 
following diagram: 

MTA CMS

(1) Rekey:
CMS nonce
CMS Kerberos Principal Identifier
timestamp
IPsec parameters:

list of available ciphersuites
SA lifetime
IPsec grace period
Re-establish flag

SHA-1 HMAC

(2) AP Request:
CMS ticket,
MTA name + time + subkey + hash

encrypted with the
session key

CMS nonce
IPsec parameters:

ASD
selected ciphersuite

SHA-1 HMAC

IPSEC ESP

sub-key    IPSEC ESP Keys {{ } }sub-key    IPSEC ESP Keys

Ticket,
Session Key,
Server Auth Key{ } Service Key,

Server Auth Key{ }

 

Figure 10. Rekey Message to Establish a Security Parameter 

 
The messages listed in this diagram are defined as follows: 

(1) Rekey – sent by the Application Server to establish a new set of Security Parameters. 
It MUST be a concatenation of the following:  

• Key Management Message ID – 1 byte value. Always set to 0x05.  
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• Domain of Interpretation (DOI) – 1 byte value. Specifies the target protocol for 
which security parameters are established. See Table in section 6.5.2.  

• Protocol Version – 1 byte. The high order nibble is the major version number, 
and the lower order nibble is the minor version number. For PacketCable, the 
major number MUST be 1, and the minor number MUST be 0.  

• Server-nonce – a 4-byte random binary string. Its value MUST NOT be all 0’s.  

• Server Kerberos Principal Identifier – a printable, null-terminated ASCII string, 
representing the Kerberos Principal Identifier of the Application Server, as 
defined in section 6.4.5. This allows the Client to both find the right Server 
Authentication Key and to pick the right Kerberos ticket for the subsequent AP 
Request message.    

• Timestamp – a string of the format YYMMDDhhmmssZ, representing UTC 
time. This string is not NULL-terminated.  

• Application-Specific Data – additional information that must be communicated 
by the server to the client, dependent on the target protocol for which security is 
being established (e.g., IPsec).  

• List of ciphersuites available at the server – see above specification for the AP 
Request message.  

• Security parameters lifetime – a 4-byte value, MSB first. This indicates the 
number of seconds from now, when this set of security parameters is due to 
expire.  

• Grace period – a 4-byte value in seconds, MSB first. This indicates to the client 
to start creating a new set of security parameters (with a new AP Request / AP 
Reply exchange) when the timer gets to within this period of their expiration 
time.  

• Re-establish flag – a 1-byte Boolean value. When the value is TRUE (1), a new 
set of security parameters MUST be established before the old one expires. 
When the value is FALSE (0), the old set of security parameters MUST be 
allowed to expire.  

• SHA-1 HMAC – over the concatenation of all of the above listed fields.  

The Server Authentication Key used for this HMAC is uniquely identified by the 
following name pair (client principal name, server principal name). This key MUST be 
updated at the Application Server right after it sends an AP Reply message. It MUST be 
set to a (20-byte) SHA-1 hash of the Kerberos session key used in that AP Reply. The 
Client MUST also update this key as soon as it receives the AP Reply. (Note that 
multiple AP Replies will continue using the same Kerberos session key, until it expires. 
That means that the derived Server Authentication Key may have the same value as the 
old one.) 

It is possible, that the Application Server sends a Rekey message as soon as it sends an 
AP Reply (from another IP address), and before the Client is able to derive the new 
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Server Authentication Key. In that case, the Client will not authenticate the Rekey 
message and the Application Server will have to retry.  

Similarly, after sending an AP Reply the Application Server might immediately send an 
IP packet using the just established Security Parameter, when the Client is not yet ready 
to receive it. In this case, the Client will reject the packet and the Application Server will 
have to retransmit. 

Both of these error cases could be completely avoided with a 3-way handshake (a Client 
acknowledging an AP Reply with a Security Parameter Recovered message). 

Whenever the Rekey message is received (by the Client), it MUST verify the value of 
this HMAC. If this integrity check fails, the Client MUST immediately discard this 
message and proceed as if the message had never been received.  

Once the Application Server has sent a Rekey, it MUST save the server-nonce in order to 
validate a matching AP Request. In the case of a time out, the Application Server MUST 
adhere to the exponential retry backoff procedure described in section 6.4.8. The 
Application Server MUST begin each retry by re-sending a Rekey message with a new 
server-nonce value. When the "Timeout Procedure" has completed without success, the 
Application Server MUST discard the server-nonce from the last retry, after which it will 
no longer accept a matching AP Request.  

When this Rekey message is received and validated by the Client, all previously existing 
outgoing Security Parameters with this Application Server IP address MUST be removed 
at this time. If the Client previously had a timer set for automatic refresh of Security 
Parameters with this Application Server IP address, that automatic refresh MUST be reset 
or disabled.  

The Client MUST verify that this Rekey message is not a replay using the procedure 
similar to the one for AP Request in the Kerberos standard Appendix B:  

• If |TCMS – (TMTA + Skew)| > The acceptable Clock Skew then the Client MUST 
drop the message. Here, TCMS is the timestamp in the Rekey message and TMTA 
is the reading of the MTA local clock. Skew is the saved difference between the 
Application Server and MTA clock. PktcSrvrToMtaMaxClockSkew is currently 
in the MTA MIB (see [28]) as the variable pktcMtaDevCmsMaxClockSkew.  

• If the Server-nonce, principal name and timestamp fields match any recently 
seen (within the pktcSrvrToMtaMaxClockSkew) Rekey messages, then the 
Client MUST drop the message.   

(2) AP Request – MUST be sent by the Client as a response to a Rekey message. Unlike 
the AP Request message described above, this one MUST also include the subkey (inside 
KRB_AP_REQ ASN.1 structure). KRB_AP_REQ will have a Kerberos flag set, 
indicating that an AP Reply MUST NOT follow.  

The format of the AP Request is as specified above in section 6.5.2. The only difference 
is that the list of ciphersuites here must contain exactly one entry – the ciphersuite 
selected by the client from the list provided in the Rekey message. 

Right before the client sends out this AP Request, it MUST establish the security 
parameters with the corresponding server IP address. If the corresponding Rekey message 



PKT-SP-SEC-I07-021127 PacketCableTM 1.x Specifications 

92 CableLabs  11/27/02 

had the Re-establish flag set, the client MUST be prepared to automatically re-establish 
new security parameters, as specified in section 6.5.  

Once this AP Request is received and verified by the Application Server, the server 
MUST also establish the security parameters.  

6.5.2.2 PacketCable Profile for KRB_AP_REQ / KRB_AP_REP Messages 
In the KRB_AP_REQ, only the following option is supported: 

• MUTUAL-REQUIRED – mutual authentication required. When this option is set, the 
server MUST respond with an AP Reply message. When this option is not set, the AP 
Reply message MUST NOT be sent in reply.  

All other options MUST NOT be set. If an application server receives a request 
containing the unsupported option USE-SESSION-KEY, it MUST return an error 
with the error code KRB_AP_ERR_METHOD. If an application server receives a 
request containing any other unsupported options, it MUST return an error with 
the error code KRB_ERR_GENERIC.   

When MUTUAL-REQUIRED is set, the encrypted authenticator in the 
KRB_AP_REQ MUST contain the following field, which is optional in 
Kerberos:  

• seq-number MUST contain a pseudo-random number generated by the client 
(to be used as a nonce).  

When MUTUAL-REQUIRED is not set, the encrypted authenticator MUST contain the 
following field that is optional in Kerberos.  

• subkey – used to generate security parameters for the target protocol. The subkey type 
MUST be set to –1. The actual subkey length is dependent on the target protocol. 

When MUTUAL-REQUIRED is set, the target protocol is IPsec and the client is an 
MTA, the client MAY include the subkey field; in the case that the target protocol is 
IPsec and the client is other than an MTA, the client SHOULD include the subkey field. 
For IPsec, the subkey, if present, MUST contain a pseudo-random number of length 46 
octets generated by the client.  

Other optional fields in the authenticator MUST NOT be present.If the authenticator 
contains the authorization-data field, the application server MUST return an error with 
the error code KRB_ERR_GENERIC. If the authenticator contains any other optional 
fields (apart from subkey and authorization-data), the application server MUST ignore 
those fields.  

The negative key type is used to indicate that it is application-specific and not defined in 
the Kerberos specification. When the Kerberos specification is updated to include this 
key type, the PacketCable spec will be updated accordingly. 

The authenticator itself MUST be encrypted using 3-DES CBC with the Kerberos etype 
value: des3-cbc-md5 as it is specified in section 6.4.2.2.  
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In the encrypted part of the KRB_AP_REP, the optional subkey field MUST be used for 
PacketCable. Its type and format MUST be the same as when it appears in the 
KRB_AP_REQ (see above).  

The optional seq-number MUST be present, and MUST echo the value that was sent by 
the client in the KRB_AP_REQ. In this context, the seq-number field is used as a random 
nonce. The encrypted part of the KRB_AP_REP MUST be encrypted with the Kerberos 
etype value: des3-cbc-md5.  

6.5.2.3 Error Handling 

6.5.2.3.1 Error Reply 
If the Application Server is able to successfully parse the AP Request and the ticket that 
is inside of it, but the AP Request is rejected, it MUST return an error message. This error 
message MUST be formatted as the concatenation of the following fields:  

• Key Management Message ID – 1 byte value. Always set to 0x06.  

• Domain of Interpretation (DOI) – 1 byte value. Specifies the target protocol for 
which security parameters are established. See section 6.5.2.  

• Protocol Version – 1 byte value. The high order nibble is the major version 
number and the lower order nibble is the minor version number. For 
PacketCable the major version number MUST be 1 and the minor version 
number MUST be 0.  

• KRB_ERROR – Kerberos error message as specified in Appendix B. It MUST 
include typed-data of REQ-SEQ to bind the error message to the sequence 
number from the authenticator in the AP-REQ message. Also, the error message 
MUST include the optional e-cksum member, which is the keyed hash over the 
KRB_ERROR message. The checksum type MUST be rsa-md5-des3, as it is 
specified in section 6.4.3.1.   

If the error is application-specific (not a Kerberos-related error), then the KRB_ERROR 
MUST include typed-data of type TD-APP-DEFINED-ERROR (value 106). The value of 
this typed-data is the following ASN.1 encoding (specified in Appendix B): 

AppSpecificTypedData ::= SEQUENCE {
oid [0] OPTIONAL OBJECT IDENTIFIER,

-- identifies the application
data-value [1] OCTET STRING

-- application specific data
}

Both the oid and the data-value fields inside AppSpecificTypedData are specified 
separately for each DOI. 

Upon receiving this error reply, the Client MUST verify both the keyed checksum and 
the REQ-SEQ field, to make sure that it matches the seq-number field from the 
authenticator in the AP Request.  

If the Application Server is not able to successfully parse the AP Request and the ticket, 
it MUST drop the request and it MUST NOT return any response to the Client. In case of 
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a line error, the Client will time out and re-send its AP Request. If the verification has 
failed, then the MTA MUST ignore this error message and continue waiting for the reply 
as if the error message was never received.  

6.5.2.3.2 Clock Skew Error 
When the Application Server clock and the client clock are off by more than the limit for 
a clock skew, an error code KRB_AP_ERR_SKEW MUST be returned. The value for the 
maximum clock skew allowed by the Application Server MUST NOT exceed 5 minutes.  
The optional client's time in the KRB_ERROR MUST be filled out, and the client MUST 
compute the difference (in seconds) between the two clocks based upon the client and 
server time contained in the KRB_ERROR message. The client SHOULD store this 
clock difference in non-volatile memory and MUST use it to adjust Kerberos timestamps 
in subsequent AP Request messages by adding the clock skew to its local clock value 
each time. The client MUST maintain a separate clock skew value for each realm and 
MAY share the same clock skew between the KDC and various application servers 
within that realm. The clock skew values are intended for uses only within the Kerberos 
protocol and SHOULD NOT otherwise affect the value of the local clock (since a clock 
skew is likely to vary from realm to realm).  

In the case that an AP Request failed due to a clock skew error, a client MUST 
immediately retry after adjusting the Kerberos timestamp inside the AP Request message.  

Additionally, the Client MUST validate the time offset returned in the clock skew error, 
to make sure that it does not exceed a maximum allowable amount. This maximum time 
offset MUST not exceed 1 hour. This Client check against a maximum time offset 
protects against an attack, where a rogue KDC attempts to fool a Client into accepting an 
expired KDC certificate (later, during the next PKINIT exchange). 

6.5.2.3.3 Handling Ticket Errors After a Wake Up 

6.5.2.3.3.1 KRB_AP_ERR_BADKEYVER after a Wake Up 
This section addresses a scenario when an application server sends a Wake Up to a client 
and subsequently receives an AP Request that contains a ticket that is encrypted using an 
obsolete service key (results in the KRB_AP_ERR_BADKEYVER error code). This 
error normally requires the client to get another ticket and retry but in this particular 
scenario the client has to retry in the middle of a key management transaction. 

In this scenario, the application server MUST reply to the invalid AP Request with the 
KRB_ERROR message with the KRB_AP_ERR_BADKEYVER error code. Subsequent 
to the reply, the server MUST wait for another AP Request and MUST use the same time 
out value that it would normally use when waiting for an AP Request.  The client, upon 
getting back the above error code MUST attempt to obtain a new ticket from the KDC (if 
the client hasn’t done so already while waiting for server’s reply) and if successful, 
MUST send another AP Request to the application server. If the client is unsuccessful in 
obtaining another ticket, it MUST not reply. If the server times out waiting for the second 
AP Request, it MUST proceed as if it timed out waiting for the original AP Request.  



PacketCable™ Security Specification PKT-SP-SEC-I07-021127 

11/27/02 CableLabs  95 

If the application server is able to validate the second AP Request, it MUST then proceed 
as specified in section 6.5.3. If the second AP Request again results in the 
KRB_AP_ERR_BADKEYVER error, the server MUST abort key management with this 
client and not reply.   

6.5.2.3.3.2 KRB_AP_ERR_SKEW After a Wake Up 
An application server is not required to check for a clock skew in this case, but if it does 
generate the KRB_AP_ERR_SKEW, the same procedure MUST be followed as in 
section 6.5.2.3.3.1, except that the client MUST retry after adjusting the timestamp (see 
section 6.5.2.3.2) instead of getting a new ticket.   

6.5.3 Kerberized IPsec 
This section specifies the Kerberized key management profile specific to IPsec ESP in 
transport mode. IPsec uses the term Security Association (SA) to refer to a set of security 
parameters. IPsec Security Associations are always uni-directional and they MUST 
always be established in pairs within PacketCable.  

An MTA MUST establish SAs with the IP address from where the corresponding 
Kerberized IPsec key management message (AP-REP or REKEY) has been received.   
Note that a CMS can notify an MTA that it is listening for NCS messages on a different 
port.  Also, both the CMS and the MTA can send NCS messages from different ports, 
and the response must be sent to the port from which the message was sent.  Kerberized 
Key Management does not allow for the negotiation of source or destination ports.  
Therefore SAs established to protect NCS signaling need to support multiple ports.  One 
way to accomplish this is to establish two separate policies, outbound and inbound, in the 
IPsec Security Policy Database (see [22]).  The following table illustrates an example 
policy that would support changes in port numbers.  Note that this table only illustrates 
inbound and outbound policies for NCS signaling between a specific MTA and a specific 
CMS.  The table is not a complete IPsec Security Policy Database.  Other entries would 
be required to support communications over different protocols with the same host (e.g., 
Kerberized Key Management), communications with other hosts, or default policies for 
unknown hosts. 

Table 12.  Example IPsec Security Policy Database Entries 
 for NCS Signaling between MTA and CMS 

Direction Policy Source IP Source Port Destination 
IP 

Destination Port 

Inbound – this 
applies to 
messages 
being received 

Apply IPsec 
ESP 

Remote IP 
address 

Wildcard - any 
port 

Local IP 
address 

Bind to local port(s) 
that NCS messages 
will be sent from, and 
the provisioned NCS 
listening port. 

Outbound – 
this applies to 
messages 
being sent 

Apply IPsec 
ESP 

Local IP 
address 

Bind to local 
port(s) that 
messages will be 
sent from. 

Remote IP 
address 

Wildcard - any port 

 

The DOI value for IPsec MUST be set to 1.  
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The ASD (Application-Specific Data) field in the AP Request key management message 
MUST be the SPI (Security Parameter Index) for the client’s inbound Security 
Association. It is a 4-byte integer value, MSB first.  

The ASD (Application-Specific Data) field in the AP Reply and Rekey key management 
messages MUST be the SPI (Security Parameter Index) for the server’s inbound Security 
Association. It is a 4-byte integer value, MSB first  

The subkey for IPsec MUST be a 46-byte value, defined as follows:   
- If the AP-REQ does not include a subkey, the 46-octet subkey from AP-REP 

is taken as the subkey for IPsec.  

- If the AP-REQ does include a subkey but no AP-REP (in the case of Rekey) is 
sent, then the 46-octet AP-REQ subkey is used as the subkey for IPsec.  

- Otherwise, both the AP-REQ and the AP-REP messages include 46-octet 
subkeys, and their bit-by-bit XOR is the 46-byte subkey for IPsec.    

An MTA MUST NOT perform Kerberized Key Management or establish IPsec Security 
Associations with a CMS when the pktcMtaDevCmsIpsecCtrl flag for that CMS is set to 
false in the pktcMtaDevCmsTable. Note that this flag may only be set in the MTA 
configuration file and cannot be updated using SNMPv3. In the case of an NCS Redirect 
or any other dynamic method for associating a new CMS with an MTA endpoint where 
there is not an entry in the pktcMtaDevCmsTable for the new CMS, the MTA MUST 
perform Kerberized Key Management and establish IPsec Security Associations with the 
new CMS.  

The CMS MUST be capable of disabling its Kerberized Key Management interface.  The 
CMS MUST NOT perform Kerberized Key Management or establish IPsec Security 
Associations when so configured.  

6.5.3.1 Derivation of IPsec Keys 
After the Application Server sends out an AP Reply message, it is ready to derive a new 
set of IPsec keys. Similarly, after the Client receives this AP Reply, it is ready to derive 
the same set of keys for IPsec. This section specifies how the IPsec keys are derived from 
the Kerberos subkey. 

The size of the Kerberos subkey MUST be 46 bytes (the same as with the SSL or TLS 
pre-master secret).  

The IPsec ESP keys MUST be derived in the following order:  

1. Message authentication key for Client->Application Server messages  

2. Encryption key for Client->Application Server messages  

3. Message authentication key for Application Server->Client messages  

4. Encryption key for Application Server->Client messages  

For specific authentication and encryption algorithms that may be used by PacketCable 
for IPsec, refer to section 6.1.2. 
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The derivation of the required keying material MUST be based on running a one-way 
pseudo-random function F(S, “IPsec Security Association”) recursively until the right 
number of bits has been generated. Here, S is the Kerberos subkey and the ASCII string 
“IPsec Security Association” is taken without quotes and without a terminating null 
character. F is defined in section 9.7. 

6.5.3.2 Periodic Re-establishment of IPsec Security Associations 
An IPsec SA is defined with an expiration time TEXP and a grace period GPIPsec. The 
subsections below specify how both the Client and the Application Server handle the re-
establishment of IPsec Security Associations (re-establish flag was TRUE in the AP 
Reply). When the re-establishment of IPsec SAs is required there MUST always be at 
least one SA available for each direction and there MUST NOT be an interruption in the 
call signaling.  

6.5.3.2.1 Periodic Re-establishment of IPsec SAs at the Client 
If the re-establish flag is set, the Client MUST attempt to establish a new set of IPsec SAs 
(one for each direction) starting at the time TEXP - GPIPsec. At this time, the Client MUST 
send an AP Request as specified in section 6.5. After the Client receives an AP Reply, it 
MUST perform the following steps:  

1. Create new IPsec SAs, based on the negotiated ciphersuite, SPIs and on the 
established Kerberos subkey, from which the IPsec keys are derived as specified 
in section 6.5. The expiration time for the outgoing SA MUST be set to TEXP, 
while the expiration time for the incoming SA MUST be set to TEXP + GPIPsec.  

2. From this point forward, the new SA MUST be used for sending messages to the 
Application Server. The old SA that the Client used for sending signaling 
messages to the Application Server MAY be explicitly removed at this time, or it 
MAY be allowed to expire (using an IPsec timer) at the time TEXP.  

3. Continue accepting incoming signaling messages from the Application Server on 
both the old and the new incoming SAs, until the time TEXP + GPIPsec. After this 
time, the old incoming SA MUST expire. If a Client receives a signaling message 
from the Application Server using a new incoming SA at an earlier time, it MAY 
at that time remove the old incoming SA.  

6.5.3.2.2 Periodic Re-establishment of IPsec SAs at the Application Server 
 When an AP Request message is received with re-establish flag set, the Application 
Server MUST perform the applicable processing steps in section 6.5.2. If the client is an 
MTA, the Application Server MUST also verify that the source IP address in the received 
datagram of the AP Request message is the same IP address as was used when the initial 
SA was established. The Application Server MUST ignore the AP Request if the IP 
addresses do not match.  

In addition, the Application Server MUST perform the following steps, in the specified 
order, immediately before an AP Reply is returned.  
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1. Create new IPsec SAs, based on the negotiated ciphersuite, SPIs and on the 
established Kerberos subkey, from which the IPsec keys are derived as specified 
in section 6.5.  

2. Send back an AP Reply.  

3. Continue sending signaling messages to the Client using an old outgoing SA until 
the time TEXP. During the same period, accept incoming messages from either the 
old or the new incoming SA.  

4. At the time TEXP both the old incoming and the old outgoing SAs MUST expire. 
At the time TEXP, the Application Server MUST switch to the new SA for 
outgoing signaling messages to the Client.  If for some reason the new IPsec SAs 
were not established successfully, there would not be any IPsec SAs that are 
available after this time. 

6.5.3.3 Expiration of IPsec SAs 
An IPsec SA is defined with an expiration time TEXP and a grace period GPIPsec. This 
section specifies how both the Client and the Application Server MUST handle the 
expiration of IPsec Security Associations (re-establish flag was FALSE in the AP Reply).   

At the Client: 

• Outgoing SA expires at TEXP 

• Incoming SA expires at TEXP + GPIPsec  

At the Application Server: 

• Outgoing SA expires at TEXP  

• Incoming SA expires at TEXP + GPIPsec  

Whenever an IPsec SA has been expired and a signaling message needs to be sent by 
either the Client or the Application Server, the key management layer MUST be signaled 
to establish a new IPsec SA. It is established using the same procedures as the ones 
specified in section 6.5.3.5. 

6.5.3.4 Initial Establishment of IPsec SAs 
When a Client is rebooted, it does not have any current IPsec SAs established with the 
Application Server, since IPsec SAs are not saved in non-volatile memory. In order to re-
establish them, it MUST go through the recovery procedure that is described in section 
6.5.3.5.  

6.5.3.5 On-demand Establishment of IPsec SAs 
This section describes the recovery steps that MUST be taken in the case that a IPsec SA 
is somehow lost and needs to be re-established.  

6.5.3.5.1 Client Loses an Outgoing IPsec SA 
If a client attempts to send a signaling message to the Application Server without a valid 
IPsec SA, the IPsec layer in the Client will realize the SA is missing and return an error 
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back to the signaling application. In this case, the following recovery steps MUST be 
taken at the key management layer:  

1. The Client first makes sure that it has a valid Kerberos ticket for the Application 
Server. If not, it must first perform a PKINIT exchange as specified in section 
6.4.2.  

2. Client sends a new AP Request to the Application Server and gets back an AP 
Reply, as specified in section 6.5.2. After the receipt of the AP Reply the Client 
MUST be prepared to use both of the newly created IPsec SAs.   

3. If the Kerberos ticket includes the optional caddr field and the caddr does not 
contain a matching source IP address for the AP Request datagram, the 
Application Server MUST ignore the request.  

4. The Application Server MAY set an ACK-required flag in the AP Reply. In that 
case, right after sending out an AP Reply, the Application Server MUST be 
prepared to receive messages on the incoming SA but cannot yet start using an 
outgoing SA for sending messages to the Client. In this case, the IPsec SA setup 
continues with the following steps 7 and 8.   

5. The Application Server also MAY NOT set the ACK-required flag in the AP 
Reply. In that case, right after sending out an AP Reply, the Application Server 
MUST be prepared to both send and receive messages on the newly created SAs. 
In this case, steps 7 and 8 below are skipped.  

6. After receiving this AP Request (with Re-establish flag = FALSE), the 
Application Server MUST remove any existing outgoing IPsec SAs that it might 
already have for this Client.  

7. Immediately after the Client establishes the new IPsec SAs, it sends a SA 
Recovered message to the Application Server.  

8. Upon receipt of this message, the Application Server will immediately activate 
the new outgoing SA for sending signaling messages to the Client, and will 
remove any existing outgoing IPsec SAs that it might already have for this 
Client.  

The key management application running on the Client MUST send an explicit signal to 
the signaling application when it completes the re-establishment of the IPsec SAs.  

6.5.3.5.2 Client Loses an Incoming IPsec SA 
When the Client receives an IP packet from an Application Server on an unrecognized 
IPsec SA, the Client MUST ignore this error and the packet MUST be dropped. In this 
case, any attempt at recovery (e.g., establishing a new IPsec SA) is prone to denial-of-
service attacks. 

6.5.3.5.3 Application Server Loses an Outgoing IPsec SA 
When an Application Server attempts to send a signaling message to the Client, and the 
IPsec layer in the Application Server realizes a valid SA is missing, the IPsec layer 
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MUST return an error back to the signaling application.3 In this case, the following 
recovery steps MUST be taken at the key management layer:  

1. Application Server sends a Wake Up message to the Client.  

2. The Client makes sure that it has a valid Kerberos ticket for the Application 
Server. If not, it MUST first obtain it from the KDC.  

3. Client sends a new AP Request to the Application Server, as specified in section 
6.5.2. If the Kerberos ticket includes the optional caddr field and the caddr does 
not contain a matching source IP address for the AP Request datagram, the 
Application Server MUST ignore the request.  

4. For each AP Request, the Client generates a nonce and puts it into the seq-number 
field. As specified in section 6.5.2, the Client will save this nonce for a short 
period of time and wait for a matching AP Reply (this is not the same nonce as 
the Server-nonce received in the Wake Up). However, after this timeout, the 
Client MUST NOT retry and MUST abort an attempt to establish a IPsec SA in 
response to a received Wake Up.  

Once the Client gets back a matching AP Reply, it will be in the format specified 
in section 6.5.2. The ACK-required flag in the AP Reply MUST be set, to insure 
that the Client replies with the SA Recovered message in the following step.  

If this Client previously had any outgoing IPsec SAs with this Application Server 
IP address, they MUST be removed at this time. If the Client previously had a 
timer set for automatic refresh of IPsec SAs with this Application Server IP 
address, that automatic refresh MUST be reset or disabled. The Client MAY start 
using both of the newly created SAs.  If the AP Reply had the Re-establish flag 
set, the Client MUST be prepared to automatically re-establish new IPsec SAs, as 
specified in section 6.5.3.2.  

The Application Server can receive signaling messages from the Client on the 
new incoming SA, but cannot yet start using an outgoing SA for sending 
messages to the Client. 

5. Immediately after the Client establishes the new IPsec SAs, it MUST send a SA 
Recovered message to the Application Server.  

6. Upon receipt of this message, the Application Server MUST immediately activate 
the new outgoing SA for sending signaling messages to the Client.  

The key management application running on the Application Server MUST send an 
explicit signal to the signaling application when it completes the re-establishment of the 
IPsec SAs.  

6.5.3.5.4 Application Server Loses an Incoming IPsec SA 
When the Application Server receives an IP packet from a Client on an unrecognized 
IPsec SA, the Application Server MUST ignore this error and the packet MUST be 

                                                 
3 In this case, there are no actual messages exchanged between the MTA and the CMS or other application server. 
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dropped. In this case, any attempt at recovery (e.g., establishing a new SA) is prone to 
denial-of-service attacks. 

6.5.3.6 IPsec-Specific Errors Returned in KRB_ERROR 
Inside AppSpecificTypedData the oid field MUST be set to: enterprises (1.3.6.1.4.1) 
cableLabs (4491) clabProjects (2) clabProjPacketCable (2) kerberosApplication (4) 
errorCodes (1) ipSec (1).  

The data-value field MUST correspond to the following typed-data value: 

 
PktcKrbIpsecError ::= SEQUENCE {
e-code [0] INTEGER,
e-text [1] GeneralString OPTIONAL,
e-data [2] OCTET STRING OPTIONAL

}

The e-code field MUST correspond to one of the following error code values: 

KRB_IPSEC_ERR_NO_POLICY 1 No IPsec policy defined for request 
KRB_IPSEC_ERR_NO_CIPHER 2 No support for requested ciphersuites 
KRB_IPSEC_NO_SA_AVAIL 3 No IPsec SA available (i.e., SAD 
  is full) 
KRB_IPSEC_ERROR_GENERIC 16 Generic KRB IPsec error  

The optional e-text field can be used for informational purposes (i.e., logging, network 
troubleshooting) and the optional e-data field is reserved for future use to transport any 
application data associated with a specific error. 

6.5.4 Kerberized SNMPv3 
This section specifies the Kerberized key management profile specific to SNMPv3, see 
[32]. In the case of SNMPv3, the security parameters are associated with the 
usmUserName (SNMPv3 user name), the agent’s usmUserEngineID (SNMPv3 engine 
ID) and the manager’s usmUserEngineID. 

Multiple SNMP managers on different hosts but with the same user name are considered 
as unique Kerberos principals. Still, the SNMPv3 keys generated by any one of these 
SNMP managers MUST be shared across all the managers – as long as they apply to the 
same SNMPv3 user name and the same SNMPv3 engine ID (of the agent).  

The security parameters consist of a single authentication key, a single privacy 
(encryption) key, SNMPv3 boot count and engine time. Within PacketCable, SNMPv3 
authentication MUST always be turned on. In addition, SNMPv3 privacy MAY also be 
used (it can be turned off by selecting a NULL encryption transform).  

The DOI value for SNMPv3 MUST be set to 2.  

The ASD field in the AP Request message MUST be set to the concatenation of the 
following:  
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Table 13. Required Format for Data in the AP Request 

Attribute Length 
Agent’s snmpEngineID Length  1 byte 
Agent’s snmpEngineID  variable 
Agent’s snmpEngineBoots  4 bytes, network byte order 
Agent’s snmpEngineTime  4 bytes, network byte order 
usmUserName Length  1 byte 
usmUserName  variable 

 

The ASD field in the AP Reply message MUST be set to the concatenation of the 
following:  

Table 14. Required Format for Data in the AP Reply 

Attribute Length 
Manager’s snmpEngineId Length  1 byte 
Manager’s snmpEngineId  variable 
Manager’s snmpEngineBoots  4 bytes, network byte order 
Manager’s snmpEngineTime  4 bytes, network byte order 
usmUserName Length  1 byte 
usmUserName  variable 

 

For PacketCable MTAs, the usmUserName contains in it the MTA MAC address (see 
[6]). The manager MUST verify that this MAC address and the MTA FQDN specified in 
the MTA principal name match. The manager MUST also verify that the SNMP 
INFORM message from the MTA contains a correct MAC address – the same one that is 
in the usmUserName. The usmUserName field inside the application-specific data field 
in the AP Reply MUST be the same as the one in the preceding AP Request.  

The Rekey message is not used for SNMPv3 key management. 

The subkey for SNMPv3 MUST be a 46-byte value.  

6.5.4.1 Derivation of SNMPv3 Keys 
After the server sends out an AP Reply message, it is ready to derive a new set of 
SNMPv3 keys. Similarly, after the client receives this AP Reply, it is ready to derive the 
same set of keys for SNMPv3. This section specifies how the SNMPv3 keys are derived 
from the Kerberos subkey. 

The size of the Kerberos subkey MUST be 46 bytes.  

The derived SNMPv3 keys MUST be as follows, in the specified order: 

SNMPv3 authentication key 

SNMPv3 privacy key  

For specific authentication and encryption algorithms that may be used by PacketCable 
for SNMPv3, refer to section 6.3. 

The derivation of the required keying material MUST use a one-way pseudo-random 
function F(S, “SNMPv3 Keys”) recursively until the right number of bits has been 
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generated. Here, S is the subkey and the string “SNMPv3 Keys” is taken without quotes 
and without a terminating null character. F is defined in section 9.7. 

6.5.4.2 Periodic Re-establishment of SNMPv3 Keys 
Periodic re-establishment of SNMPv3 keys, where the next set of keys is created before 
the old one expired, is currently not supported by PacketCable. The re-establish flag in 
the AP Reply key management message MUST be set to FALSE.  

6.5.4.3 Expiration of SNMPv3 Keys 
Expiration of SNMPv3 keys is currently not supported by PacketCable. The values of the 
Security Parameters Lifetime and Grace Period fields in the AP Reply MUST be set to 0.  

6.5.4.4 Initial Establishment of SNMPv3 Keys 
When a client is rebooted, it may not have any saved SNMPv3 keys established with the 
SNMP Manager. In order to re-establish them, it goes through the recovery procedure 
that is described in section 6.5.4.5.1. 

6.5.4.5 Error Recovery 
This section describes the recovery steps that must be taken in the case that SNMPv3 
keys are somehow lost and need to be re-established. 

6.5.4.5.1 SNMP Agent Wishes to Send with Missing SNMPv3 Keys. 
An SNMP agent is capable of initiating protocol exchanges with the manager, e.g., with 
the SNMP Trap and SNMP Inform messages. If the SNMP agent determines that it is 
missing SNMPv3 keys, it MUST perform the following steps before it is able to send out 
an SNMP message:  

1. The agent first makes sure that it has a valid Kerberos ticket for the Application 
Server. If not, it must first obtain it as specified in section 6.5.2. 

2. The agent sends a new AP Request to the manager and gets back an AP Reply, as 
specified in section 6.5.2. After the receipt of the AP Reply the agent is prepared 
to use the newly created SNMPv3 keys. In this scenario, the SNMP manager 
MUST NOT set an ACK-required flag in the AP Reply. Right after sending out 
an AP Reply, the manager is prepared to both send and receive messages with the 
new SNMPv3 keys. After receiving this AP Request (with Re-establish 
flag = FALSE), the manager MUST remove its previous set of SNMPv3 keys that 
it might already have for this agent (and for this SNMPv3 user name). 

It is possible that the SNMP manager already initiated key management (with a Wake 
Up) but instead receives an unsolicited AP Request from the agent (with server-
nonce = 0). This unlikely scenario might occur if the manager and the agent decide to 
initiate key management at about the same time. In this case, the SNMP manager MUST 
ignore the unsolicited AP Request message and continue waiting for the one that is in 
response to a Wake Up.   
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6.5.4.5.2 SNMP Agent Receives with Missing SNMPv3 Keys 
The SNMP agent receives a request from a manager and is unable to find SNMPv3 keys 
for the specified user. The agent MUST ignore this error and the message MUST be 
dropped. In this case, any attempt at recovery (e.g., establishing new SNMPv3 keys) is 
prone to denial-of-service attacks. 

6.5.4.5.3 SNMP Manager Wishes to Send with Missing SNMPv3 Keys 
SNMP manager attempts to send a message to the agent and does not find the desired 
user’s SNMPv3 keys (or considers the existing SNMPv3 keys invalid or compromised). 
In this case, the following recovery steps MUST be taken at the key management layer:  

1. Manager sends a Wake Up message to the agent. 

2. The agent makes sure that it has a valid Kerberos ticket for the manager. If not, it 
MUST first obtain it from the KDC.  

3. Agent sends a new AP Request to the manager, as specified in section 6.5.2. For 
each AP Request, the agent generates a nonce and puts it into the seq-number 
field. As specified in section 6.5.3.5.3, the agent will save this nonce for a short 
period of time and wait for a matching AP Reply (this is not the same nonce as 
the server-nonce received in the Wake Up). However, after this timeout, the agent 
MUST NOT retry and MUST abort an attempt to establish SNMPv3 keys in 
response to a received Wake Up.  
 
Once the agent gets back a matching AP Reply, it will be in the format specified 
in section 6.5.2. The ACK-required flag in the AP Reply MUST be set, to insure 
that the agent replies with the SA Recovered message in the following step.   
 
If this agent previously had SNMPv3 keys for the specified SNMPv3 user, they 
MUST be removed at this time.  

4. After the receipt and validation of the AP Reply, the agent sends SA Recovered 
message to the manager. At this time the agent will be ready to use the new 
SNMPv3 keys and will enable SNMPv3 security.  

5. Upon receipt of the SA Recovered message, the manager will immediately 
activate the new set of SNMPv3 keys and will enable SNMPv3 security.  

It is possible that the SNMP agent already initiated key management (with an unsolicited 
AP Request) but instead receives a Wake Up from the manager. This unlikely scenario 
might occur if the manager and the agent decide to initiate key management at about the 
same time. In this case, the SNMP agent MUST abort waiting for the reply to the 
unsolicited AP Request message and instead generate a new AP Request in response to 
the Wake Up.  

If an SNMP agent receives a second Wake Up message from a different SNMP manager 
for the same SNMPv3 user name before the first key management session has been 
completed, the SNMP agent MUST ignore the second Wake Up message.  

6.5.4.6 SNMPv3-Specific Errors Returned in KRB_ERROR 
Inside AppSpecificTypedData the oid field MUST be set to: 
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enterprises (1.3.6.1.4.1) cableLabs (4491) clabProjects (2) clabProjPacketCable 
(2) kerberosApplication (4) errorCodes (1) snmpv3 (2).   

The data-value field MUST correspond to the following typed-data value: 
PktcKrbSnmpv3Error ::= SEQUENCE {
e-code [0] INTEGER,
e-text [1] GeneralString OPTIONAL,
e-data [2] OCTET STRING OPTIONAL

}  
 

The e-code field MUST correspond to one of the following error code values: 

KRB_SNMPV3_ERR_USER_NAME 1 Unrecognized SNMPv3 user name 
KRB_SNMPV3_ERR_NO_CIPHER 2 No support for requested ciphersuites 
KRB_ SNMPV3_ERR_ENGINE_ID 3 Invalid SNMPv3 Engine ID Specified 
KRB_ SNMPV3_ERROR_GENERIC 16 Generic KRB SNMPv3 error  

The optional e-text field can be used for informational purposes (i.e., logging, network 
troubleshooting) and the optional e-data field is reserved for future use to transport any 
application data associated with a specific error.  

6.6 End-to-End Security for RTP 
RTP security is currently fully specified in section 7.6.2.1. Key Management for RTP 
requires that both the (encryption) Transform ID and the Authentication Algorithm are 
specified, analogous to the IPsec key management. This section lists the Transform IDs 
and Authentication Algorithms that are available for RTP security. 

Table 15. RTP Packet Transform Identifiers 

Transform ID Value Key Size  
(in bits) 

MUST 
Support  

Description 

RTP_ENCR_NULL 0x50  N/A yes Encryption turned off 
RTP_AES 0x51 128 yes AES-128 in CBC mode 

with 128-bit block size 
RTP_XDESX_CBC 0x53 192 no DESX-XEX-CBC 
RTP_DES_CBC_PAD 0X54 128 no  DES-CBC-PAD 
RTP_3DES_CBC 0X56 128 no 3DES-EDE-CBC 
RTP_RC4 0x57 128 no RC4 stream cipher 
reserved 0x58-59 - -  

The RTP_AES and RTP_ENCR_NULL Transform IDs MUST be supported.  AES-128 
[40] MUST be used in CBC mode with a 128-bit block size and an Initialization Vector 
(IV) generated in accordance with section 7.6.2.1.2.2.2. AES-128 requires 10 rounds of 
cryptographic operations [40]. 
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Table 16. RTP PacketCable Authentication Algorithms 

Authentication 
Algorithm 

Value Key Size (in bits) MUST 
Support  

Description 

AUTH_NULL 0x60 0 yes Authentication turned off. 

reserved 0x61 - -  

RTP_MMH_2 0x62 variable (see 
section 
7.6.2.1.2.1.1) 

yes 2-byte MMH MAC 

reserved 0x63 - -  

RTP_MMH_4 0x64 variable (see 
section 
7.6.2.1.2.1.1) 

yes 4-byte MMH MAC 

reserved 0x65 - -  

The Authentication Algorithms AUTH_NULL, RTP_MMH_2 and RTP_MMH_4 MUST 
be supported.  
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6.7 End-to-End Security for RTCP 
RTCP security is currently fully specified in section 7.6.2.2. Key Management for RTCP 
requires that both the (encryption) Transform ID and the Authentication Algorithm be 
specified. This section lists the Transform IDs and Authentication Algorithms that are 
available for RTCP security. 

Table 17. RTCP Packet Transform Identifiers 

Transform ID Value Key Size  
(in bits) 

MUST 
Support  

Description 

 
RTCP_ENCR_N
ULL 
 

0x70 0 yes Encryption turned off. 

AES-CBC 0x71 128 yes AES-128 in CBC mode 
with 128-bit block size 

XDESX-CBC 0x72 192 no DESX-XEX-CBC 
DES-CBC-PAD 0x73 128 no DES-CBC-PAD 
3DES-CBC 0x74 128 no 3DES-EDE-CBC 
reserved 0x75-7f - -  

The AES-CBC and RTCP_ENCR_NULL Transform IDs MUST be supported. The 
Initialization Vector (IV) MUST have a size of zero when RTCP_ENCR_NULL is used. 
AES-128 [40] MUST be used in CBC mode with a 128-bit block size and a randomly 
generated Initialization Vector (IV).  AES-128 requires 10 rounds of cryptographic 
operations [40]. 

Table 18. RTCP Authentication Algorithms 

Transform ID Value Key Size  
(in bits) 

MUST 
Support  

Description 

RTCP_AUTH_NULL 0x80 N/A yes Authentication turned off 
HMAC-SHA1-96 0x81 160 yes First 12 bytes of the 

HMAC-SHA1 as 
described in [26]. 

HMAC-MD5-96 0x82 128 no First 12 bytes of the 
HMAC-MD5 as described 
in [42]. 

reserved 0x83-8f - -  

The HMAC-SHA1-96 and RTCP_AUTH_NULL authentication algorithm MUST be 
supported  

6.8 BPI+ 
All Clients MUST use DOCSIS 1.1 compliant cable modems and MUST implement 
BPI+ [12].  Baseline Privacy Plus (BPI+) provides security services to the DOCSIS 1.1 
data link layer traffic flows running across the cable access network, i.e., between CM 
and CMTS. These services are message confidentiality and access control. The BPI+ 
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security services operating in conjunction with DOCSIS 1.1 provide cable modem users 
with data privacy across the cable network and protect cable operators from theft of 
service. 
The protected DOCSIS 1.1 MAC data communications services fall into three categories: 

• Best-effort, high-speed, IP data services; 

• QoS (e.g., constant bit rate) data services; and 

• IP multicast group services. 

When employing BPI+, the CMTS protects against unauthorized access to these data 
transport services by (1) enforcing encryption of the associated traffic flows across the 
cable network and (2) authenticating the DOCSIS MAC management messages that CMs 
use to establish QoS service flows. BPI+ employs a client/server key management 
protocol in which the CMTS (the server) controls distribution of keying material to client 
CMs. The key management protocol ensures that only authorized CMs receive the 
encryption and authentication keys needed to access the protected services. 

Baseline Privacy Plus has two component protocols: 

• An encapsulation protocol for encrypting packet data across the cable network. This 
protocol defines (1) the frame format for carrying encrypted packet data within 
DOCSIS MAC frames, (2) a set of supported cryptographic suites, i.e., pairings of 
data encryption and authentication algorithms, and (3) the rules for applying those 
algorithms to a DOCSIS MAC frame’s packet data. 

• A key management protocol (Baseline Privacy Key Management, or “BPKM”) 
provides the secure distribution of keying data from CMTS to CMs. Through this key 
management protocol, CM and CMTS synchronize keying data; in addition, the 
CMTS uses the protocol to enforce conditional access to network services. 

Baseline Privacy Plus does not provide any security services beyond the DOCSIS 1.1 
cable access network. The majority of PacketCable’s signaling and media traffic flows, 
however, take paths that traverse the managed IP “back haul” networks, which lie behind 
CMTSes. Since DOCSIS and PacketCable service providers typically will not guarantee 
the security of their managed IP back haul networks, the PacketCable security 
architecture defines end-to-end security mechanisms for all these flows. End-to-end 
security is provided at the Network layer through IPsec, or, in the case of Client media 
flows, at the application/transport layer through RTP application layer security. Thus, 
PacketCable does not rely on BPI+ to provide security services to its component protocol 
interfaces.  
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7 SECURITY PROFILE 
The PacketCable architecture defines over half a dozen networked components and the 
protocol interfaces between them. These networked components include the media 
terminal adapter (MTA), call management server (CMS), signaling gateway (SG), media 
gateway (MG) and a variety of OSS systems (DHCP, TFTP and DNS servers, network 
management systems, provisioning servers, etc.). PacketCable security addresses the 
security requirements of each constituent protocol interface by: 

• Identifying the threat model specific to each constituent protocol interface 
• Identifying the security services (authentication, authorization, confidentiality, 

integrity, non-repudiation) required to address the identified threats 
• For each constituent protocol interface, specifying the particular security mechanism 

providing the required security services 

Section 5.2 summarizes the threat models applicable to PacketCable’s protocol interfaces. 
In this section, we identify the security service requirements of each protocol interface 
and security mechanisms providing those services. 

The security mechanisms include both the security protocol (e.g., IPsec, RTP-layer 
security, SNMPv3 security) and the supporting key management protocol (e.g., IKE, 
PKINIT/Kerberos).  

The security analysis in section 5.3.3 is organized by functional categories. For each 
functional category, we identify the constituent protocol interfaces, the security services 
required by each interface, and the particular security mechanism employed to deliver 
those security services. Each per-protocol security description includes the detailed 
information sufficient to ensure interoperability. This includes cryptographic algorithms 
and cryptographic parameters (e.g., key lengths). 

As a convenient reference, each functional category’s security analysis includes a 
summary security profile matrix of the following form (Media security profile matrix 
shown): 
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Table 19. RTP – RTCP Security Profile Matrix 

 RTP (MTA – MTA,  
MTA – PSTN GW) 

RTCP (MTA – MTA,  
MTA – MG, MG – MG) 

authentication optional (indirect)  optional (indirect) 
access control optional optional 
integrity optional yes 
confidentiality yes yes 
non-repudiation no no 
Security 
mechanisms 

Application Layer Security via 
RTP PacketCable Security 
Profile keys distributed over 
secured MTA-CMS links 
AES-128 encryption algorithm 
Optional 2-byte or 4-byte MAC 
based on MMH algorithm 
PacketCable supports 
ciphersuite negotiation.  

Application Layer Security via RTCP 
PacketCable Security Profile keys 
distributed over secured MTA-CMS links 
RTCP ciphersuites are negotiated 
separately from the RTP ciphersuites and 
include both encryption and message 
authentication algorithms. 

Keys are derived from the end-end secret 
using the same mechanism as used for 
RTP encryption. 

 
Each matrix column corresponds to a particular protocol interface. All but the last row 
corresponds to a particular security service; the cell contents in these rows indicate 
whether the protocol interface requires the corresponding security service. The final row 
summarizes the security mechanisms selected to provide the required services.  

Note that the protocol interface column headings not only identify the protocol, but also 
indicate the network components the protocols run between.  

7.1 Device and Service Provisioning  
Device provisioning is the process by which an MTA is configured to support voice 
communications service. The MTA provisioning process is specified in [6]. 

The following figure illustrates the flows involved with the provisioning processes. The 
provisioning specification lays these flows out in detail. The flows involving security 
mechanisms are described in this section of the document. 
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CM-1 DHCP Broadcast Discover (Option Code 60 w/ MTA device identifier)
CM-2 DHCP Offer (Option Code 177 w/ Telephony Service Provider's DHCP server address)
CM-3 DHCP Request (device ID, e.g., MAC Address)
CM-4 DHCP ACK (CM IP, ftp srv addr, CM Configuration filename)
CM-5 DOCSIS 1.1 CM config file request
CM-6 DOCSIS 1.1 config file
CM-7 ToD Request
CM-8 ToD Response
CM-9 CM registration with CMTS
CM-10 CMTS Registration ACK

MTA-1 DHCP Broadcast Discover (Option Code 60 w/ MTA device identifier)
MTA-2 DHCP Offer (Option Code 177 w/ name of provision realm)
MTA-3 DHCP Request
MTA-4 DHCP ACK
MTA-5 DNS Request
MTA-6 DNS SRV (KDC host name associated with the provisioning REALM)
MTA-7 DNS Request
MTA-8 DNS Response (KDC IP Address)
MTA-9 AS Request
MTA-9a      MTA FQDN Request
MTA-9b      MTA FQDN Reply
MTA-10 AS Reply
MTA-11 TGS Request
MTA-12 TGS Reply
MTA-13 AP Request
MTA-14 AP Reply
MTA-15 SNMP Inform
MTA-16 SNMP Get Request(s) for MTA device capabilities (optional / iterative)
MTA-17 SNMP Get Response(s) containing MTA device capabilities (optional / iterative)
MTA-18      MTA config file
MTA-19 SNMP Set with URL encoded file download access method (TFTP or HTTP) and filename
MTA-20 Resolve TFTP server FQDN
MTA-21 TFTP server IP address
MTA-22 Telephony config file request
MTA-23 Telephony config file
MTA-24 MTA send telephony service provider SYSLOG a notification of provisioning completed
MTA-25 Notify completion of telephony provisioning (MTA MAC address, ESN, pass/fail)
SEC-1 DNS Request
SEC-2 DNS SRV (KDC host name associated with the telephony REALM)
SEC-3 DNS Request
SEC-4 DNS Response (MSO KDC IP Address)
SEC-5 AS Request (PKINIT) (MTA  Device Cert, MTA Manufacturer Cert, MTA FQDN, Prov CMS ID)
SEC-5a     MTA FQDN Request
SEC-5b     MTA FQDN Reply
SEC-6 AS Reply (PKINIT) (TGT with MTA service provide FQDN)
SEC-7 TGS Request (CMS Kerberos ticket)
SEC-8 TGS Reply (CMS Kerberos Ticket)
SEC-9 AP Request
SEC-10 AP Reply
SEC-11 SA Recovered
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Figure 11. PacketCable Provisioning Flows 

As part of the provisioning process, the MTA performs Kerberos key management (AS 
Request/AS Reply and AP Request/AP Reply, and optional TGS Request/TGS Reply).  
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The following table describes the execution of the Kerberos key management step during 
MTA Provisioning: 

Table 20. Kerberos Key Management During MTA Provisioning 

Flow Step Security Requirement Life Time Step Bypass Permitted 
MTA-9/MTA-10 
– AS 
Request/AS 
Reply (see 
section 6.4.1) 

TGT ticket if using TGS 
Request, Provisioning 
Server Ticket if otherwise 

Max. 7 days If current ticket is 
stored in NVRAM and 
has not expired 

MTA-11/MTA 
12 – TGS 
Request/TGS 
Reply (see 
section 6.4.4) 

Applies when a TGT is 
used. Obtains a 
Provisioning Server Ticket. 

Lifetime set to 
expire no later 
than the 
expiration time of 
the TGT ticket 

If TGT is not used or if 
current Provisioning 
Server Ticket is stored 
in NVRAM and has not 
expired 

MTA-9a/MTA-
9b – MTA 
FQDN 
Request/MTA 
FQDN Reply 
(see section 
6.4.7) 

MTA FQDN Request and 
Reply are protected using 
Kerberos tickets 

 No 

MTA-13/MTA-
14 – AP 
Request/AP 
Reply (see 
section 6.5.2 and 
section 6.5.4) 

Initial SNMPv3 
authentication and privacy 
keys for the MTA. The 
user name for the MTA is 
specified as “MTA-Prov-
xx:xx:xx:xx:xx:xx”. Where 
xx:xx:xx:xx:xx:xx 
represents the MAC 
address of the MTA. 
AP Req /AP Rep messages 
don't specify the SNMPv3 
key expiration time in the 
protocol, but the SNMP 
Manager may still set up 
expiration time locally; 
after the keys expire the 
manager can send a Wake 
Up message to create a 
new set of SNMPv3 keys. 

Expiration is not 
supported by 
PacketCable.  

None - new SNMPv3 
keys and User Ids are 
created each time the 
MTA is reinitialized. It 
is assumed that 
SNMPv3 keys and User 
Ids are not saved in 
NVRAM. Also note 
that this step is used for 
Engine ID 
determination and 
SNMPv3 time 
synchronization - the 
two sides exchange 
initial values for 
SNMPv3 boots and 
engine time parameters. 

 

An MTA MUST get a new ticket before performing Kerberized Key Management with a 
particular Application Server if the ticket(s) it currently possesses is not valid.  A ticket 
would no longer be valid if the KDC REALM or Application Server FQDN changes, or if 
the current time, adjusted by the time offset for that REALM or Application Server, does 
not fall within the ticket validity period. 

The PKINITGP for the Provisioning Server’s realm is specified in the MTA MIB inside 
the realm table. When the MTA implementation requests a TGT in an AS Request and 
when the MTA needs to obtain tickets for one or more CMSes in the same realm as the 
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Provisioning Server, the PKINITGP value specified in the MIB MUST be used to refresh 
the TGT. In all other cases, the AS Request for the TGT in the Provisioning Server’s 
realm or for the Provisioning Server’s ticket directly MAY be issued on-demand.  

The TGS Grace Period is not specified for the key management between the MTA and 
the Provisioning Server. The TGS Request for the Provisioning Server’s ticket MAY be 
issued on-demand.  

7.1.1 Device Provisioning 
Device provisioning occurs when an MTA device is inserted into the network. A 
provisioned MTA device that is not yet associated with a billing record MAY have 
minimal voice communications service available.  

Device provisioning involves the MTA making itself visible to the network, obtaining its 
IP configuration and downloading its configuration data. 

7.1.1.1 Security Services 

7.1.1.1.1 MTA-DHCP Server 
Authentication and Message Integrity is desirable on this interface, in order to prevent 
denial-of-service attacks, that cause an MTA to be improperly configured. Securing 
DHCP is considered an operational issue to be evaluated by each network operator. It is 
possible to use access control through the local DHCP relay inside the local loop. IPsec 
can be used for security between the DHCP relay and the DHCP server. 

7.1.1.1.2 MTA-SNMP Manager 
This section applies to all SNMP messages between the MTA and an SNMP Manager. 
Within the PacketCable architecture, the Provisioning Server includes the SNMP 
Manager function, although SNMP traffic occurs both during and after the provisioning 
phase. 

Authentication: the identity of the MTA that is sending configuration parameters and 
faults to the SNMP manager must be authenticated, to prevent denial of service attacks. 
For example, the Provisioning Server may be tricked into continuously creating bogus 
configuration files or into creating a configuration file based on incorrect MTA 
capabilities that in effect disable that MTA.  

Also, during the provisioning sequence the MTA is told (via an SNMP Set) the 
parameters needed to find, authenticate and decrypt its configuration file. If this SNMP 
Set were forged, it would disrupt the MTA provisioning sequence. 

Message Integrity: required to prevent denial of service attacks at the OSS and at the 
MTA – see the above description of the denial of service attacks under authentication. 

Confidentiality: may be used to protect sensitive MTA configuration data. PacketCable 
currently does not specify any such sensitive MTA parameters and so confidentiality is 
optional. 

Access Control: write access to the MTA configuration parameters must be allowed only 
to the authorized OSS users, to prevent denial of service/misconfiguration attacks. Read 
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access can be enforced in conjunction with confidentiality, which is optional (see above 
on confidentiality). 

Note that DHCP is used to configure the MTA with the Kerberos realm name, which 
points it to a particular KDC. DHCP also configures the MTA with the location of the 
Provisioning Server. Since PacketCable currently does not specify DHCP security, by 
faking DHCP responses it is possible to point MTAs to a wrong Provisioning Server and 
to a wrong KDC that permits security establishment with that Provisioning Server. (The 
MTA would only authenticate that wrong KDC if the CableLabs Service Provider Root 
CA signed the KDC certificate.) So, it is possible to bypass access control, but the attack 
has to be orchestrated by another MSO that had also been certified by PacketCable. 

7.1.1.1.3 MTA-Provisioning Server, via TFTP Server 
Authentication: required to prevent denial-of-service attacks that cause an MTA to be 
improperly configured. 

Message Integrity: required to prevent denial-of-service attacks that cause an MTA to be 
either improperly configured or configured with old configuration data that was replayed. 

Confidentiality: optional, it is up to the Provisioning Server to decide whether or not to 
encrypt the file. 

Access Control: not required at the TFTP Server. If needed, MTA configuration file is 
encrypted with the Provisioning Server-MTA shared key.  

Non-Repudiation: not required. 

7.1.1.2 Cryptographic Mechanisms 

7.1.1.2.1 Call Flows MTA-15, 16, 17: MTA-SNMP Manager: SNMP Inform/Get 
Requests/Responses 

All SNMP traffic between the MTA and the SNMP Manager in both directions is 
protected with SNMPv3 security [32]. PacketCable requires that SNMPv3 message 
authentication is always turned on with privacy being optional (see section 6.3). The only 
SNMPv3 encryption algorithm is currently DES-CBC. This is the limitation of the 
SNMPv3 IETF standard, although stronger encryption algorithms are desirable. See 
section 6.3 for the list of SNMPv3 cryptographic algorithms supported by PacketCable.  

7.1.1.2.2 Call Flow MTA-18: Provisioning Server-TFTP Server: Create MTA Config File 
In this flow, the Provisioning Server builds an MTA device configuration file. This file 
MUST contain the following configuration info for each endpoint (port) in the MTA:  

• CMS name (FQDN format)  

• Kerberos Realm for this CMS  

• Telephony Service Provider Organization Name  

• PKINIT Grace Period  

This file MUST be authenticated and MAY be encrypted. If the configuration file is 
encrypted then the SNMPv3 privacy MUST be used in order to transport the 
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configuration file encryption key securely. Once the Provisioning Server builds the 
configuration file, it will perform the following steps:   

1. The Provisioning Server decides to encrypt the file, it creates a configuration file 
encryption key and encrypts the file with this key. The encryption algorithm 
MUST be the same as the one that is used for SNMPv3 privacy. It then stores the 
key and the cipher. The file MUST be encrypted using the following procedure:  

a. prepend the file contents with a random byte sequence, called a confounder. 
The size of the confounder MUST be the same as the block size for the 
encryption algorithm. In the case of DES it is 8 bytes.   

b. append random padding to the result in (a). The output of this step is of length 
that is a multiple of the block size for the encryption algorithm.  

c. encrypt the result in (b) using IV=0. The output of this step is the encrypted 
configuration file.   

2. It creates a SHA-1 hash of the configuration file and stores it. If the file was 
encrypted, the hash is taken over the encrypted file.  

3. It sends the following items to the MTA in the SNMP SET in the flow MTA-19.  

a. pktcMtaDevConfigKey, which is the configuration file encryption key MIB 
variable generated in step 1.  

b. pktcMtaDevConfigHash, which is the SHA-1 of the configuration file MIB 
variable generated in step 2.  

c. Name and location of the configuration file.  

Steps 1 and 2 MUST occur only when a configuration file is created or an existing file is 
modified. If the pktcMtaDevConfigKey is set, then the MTA MUST use this key to 
decrypt the configuration file. Otherwise, MTA MUST assume that the file is not 
encrypted. SNMPv3 provides authentication when the pktcMtaDevConfigHash is set and 
therefore the configuration file is authenticated indirectly via SNMPv3.   

In the event that SNMPv3 privacy is selected during the key management phase, but is 
using a different algorithm than the one that was selected to encrypt the configuration file 
(or the configuration file was previously in the clear), the configuration file MUST be re-
encrypted and the TFTP server directory MUST be updated with the new file. Similarly, 
if the Provisioning Server decides not to encrypt the file this time, after it was previously 
encrypted, the TFTP server directory MUST be updated with the new file.  

MTA endpoints MAY also be configured for IP Telephony service while the MTA is 
operational. In that case the same information that is normally assigned to an endpoint in 
a configuration file MUST be assigned with SNMP Set commands.  

7.1.1.2.3 Call Flows MTA-19, 20 and 21: Establish TFTP Server Location 
This set of call flows is used to establish the IP address of the TFTP server from where 
the MTA will retrieve its configuration file. Although flow MTA-19 is authenticated via 
SNMPv3, MTA-20 and 21 are not authenticated. 
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Flow MTA-21 allows for denial-of-service attacks, where the MTA is pointed to a wrong 
TFTP server (IP address). The MTA cannot be fooled in accepting the wrong 
configuration file since checking the hash of the file authenticates the file – this denial-of-
service attack will result in failed MTA provisioning. 

The denial-of-service threats, where responses to DNS queries are forged, are currently 
not addressed by PacketCable. It is mainly because DNS security (DNSSEC) is not yet 
available as a commercial product and would cause significant operational difficulty in 
the conversion of the DNS databases. 

7.1.1.2.4 Call Flows MTA-22, 23: MTA-TFTP Server: TFTP Get/Get Response 
The TFTP get request is not authenticated and thus anyone can request an MTA 
configuration file. This file does not contain any sensitive data and may be encrypted 
with the Provisioning Server-MTA shared key if the Provisioning Server chooses to. In 
this case no one except the MTA can make use of this file. 

This flow is open for a denial-of-service attack, where the TFTP server is made busy with 
useless TFTP-get requests. This denial-of-service attack is not addressed at this time. 

The TFTP get response retrieves a configuration file from the TFTP server. The contents 
of the configuration file are listed in 7.1.1.2.2.  

7.1.1.2.5 Security Flows 

If the value of pktcMtaDevCmsIpsecCtrl in the pktcMtaDevCmsTable is true, then the 
following security flows MUST be performed immediately following the provisioning 
process. These flows MUST be performed for every CMS specified 
pktcMtaDevCmsTable with pktcMtaDevCmsIpsecCtrl set to true. For each CMS 
specified in pktcMtaDevCmsTable with pktcMtaDevCmsIpsecCtrl set to false, the MTA 
MUST NOT perform the following flows and MUST send and receive NCS messages 
without IPsec (i.e., NCS packets are sent in the “clear”).  

Table 21. Post-MTA Provisioning Security Flows 

Sec Flow Flow Description If Step Fails, Proceed Here 
Get Kerberos tickets associated with each CMS with which the MTA communicates. 
SEC-1 DNS SRV Request 

The MTA requests the Telephony KDC host name for 
the Kerberos realm.  

SEC-1  

SEC-2 DNS SRV Reply 
Returns the Telephony KDC host name associated with 
the provisioning REALM. If the KDC’s IP Address is 
included in the Reply, proceed to SEC-5.  

SEC-1.  

SEC-3 DNS Request  
The MTA now requests the IP Address of the Telephony 
KDC.  

SEC-1  

SEC-4  DNS Reply  
The DNS Server returns the IP Address of the 
Telephony KDC.  

SEC-1  
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Sec Flow Flow Description If Step Fails, Proceed Here 
SEC-5 AS Request 

For each different CMS assigned to voice 
communications endpoints, the MTA requests a TGT or 
a Kerberos Ticket for the CMS by sending a PKINIT 
REQUEST message to the KDC. This request contains 
the MTA Device Certificate and the MTA FQDN.   

Report alarm. Abort 
establishment of signaling 
security.  

SEC-5a MTA FQDN Request 
The KDC requests the MTA’s FQDN from the 
Provisioning Server. 

 

SEC-5b MTA FQDN Reply 
The Provisioning Server replies to the KDC request with 
the MTA’s FQDN. 

 

SEC-6 AS Reply 
The KDC sends the MTA a PKINIT REPLY message 
containing the requested Kerberos Ticket.  

Proceed to SEC-5 or abort 
signaling security depending 
upon error conditions.  

SEC-7 TGS Request  
In the case where the MTA obtained a TGT in SEC-6, it 
now obtains the Kerberos ticket for the TGS request 
message.  

Report alarm. Abort 
establishment of signaling 
security.  

SEC-8 TGS Reply  
Response to TGS Request containing the requested 
CMS Kerberos Ticket.  

Proceed to SEC-7/SEC-5 or 
abort signaling security 
depending upon error 
conditions.  

SEC-9 AP Request 
The MTA requests a pair of IPsec simplex Security 
Associations (inbound and outbound) with the assigned 
CMS by sending the assigned CMS an AP REQUEST 
message containing the CMS Kerberos Ticket.  

Report alarm. Abort 
establishment of signaling 
security.  

SEC-10 AP Reply 
The CMS establishes the Security Associations and then 
sends an AP REPLY message with the corresponding 
IPsec parameters. The MTA derives IPsec keys from the 
subkey in the AP Reply and establishes IPsec SAs.  

Proceed to SEC-9/SEC-
7/SEC-5 or abort signaling 
security depending upon 
error conditions.  

SEC-11 The MTA responds with an SA Recovered message that 
lets the CMS know, the MTA is now ready to receive on 
its incoming IPsec Security Association. This message 
is sent when requested by the flag in the AP Reply. This 
flag should not be used in the initial provisioning flows.  

Report alarm. Abort 
establishment of signaling 
security.  

 
Several tables in the MTA MIB are used to control security flows SEC-1 through SEC-11 
(see Table 21). 

The CMS table (pktcMtaDevCmsTable) and the realm table (pktcMtaDevRealmTable) 
are used for managing the MTA security signaling. The realm table defines the domains 
for the CMSes. The CMS table defines the CMSes within the domains. An endpoint is 
associated with one CMS at any given time. The following restrictions MUST be adhered 
to:  
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a. The realm table in the configuration file MUST at a minimum include an entry 
for the realm that is identified in DHCP option 177, suboption 6.  

b. There MUST be a realm table entry for each CMS table entry. Multiple CMS 
table entries MAY utilize the same realm table entry.  

c. Each MTA endpoint defined in the NCS endpoint table 
(pktcNcsEndPntConfigTable) MUST be configured with a CMS FQDN 
(pktcNcsEndPntConfigCallAgentId) that is also present in the CMS table 
(pktcMtaDevCmsFqdn).  

d. All members of a CMS cluster defined by the same FQDN MUST use the same 
configuration for establishing Security Associations as defined in 
pktcMtaDevCmsTable.  

e.  If NCS signaling selects a CMS (with an N: parameter selection) that is not 
defined by an entry in the CMS table, the same realm and CMS parameters, 
with the exception of the CMS FQDN and pktcMtaDevCmsIpsecCtrl, are used 
as defined in the current CMS table entry.   The pktcMtaDevCmsIpsecCtrl flag 
for the new CMS MUST be set to true.  

The use of the security-relevant MIB tables immediately following step MTA-25 is as 
follows:  

1. The MTA finds a list of CMSes with which it needs to establish IPsec SAs. This 
list MUST include every CMS that is assigned to a configured endpoint, as 
specified by the NCS MIB table pktcNcsEndPointConfigTable. This list of 
CMSes MUST include only CMSes that are listed in the pktcMtaDevCmsTable.  

2. For each CMS in the above list, the MTA MUST attempt to establish IPsec 
Security Associations as follows:  

a. Find the corresponding CMS table entry.  

b. If the MTA doesn’t already possess a ticket for the specified CMS, use the 
pktcMtaDevCmsKerbRealmName parameter in the CMS table entry to 
index into pktcMtaDevRealmTable. Then, using the parameters associated 
with that realm perform steps SEC-1 through SEC-6 and optionally SEC-7 
and SEC-8 in order to obtain the desired CMS ticket.  

c.  Perform IPsec key management according to flows SEC-9 and SEC-10. 
This step MAY occur at any time after step b. above, but it must occur 
before any signaling messages are exchanged with that CMS.  

The CMS table entry contains various timing parameters used in steps SEC-9 
and SEC-10. In the case of time outs or other errors, the MTA may retry using 
the timing parameters specified in the CMS table entry. 

The above steps MUST also apply when an additional MTA endpoint is 
activated (See [6]) or when an endpoint is configured (via SNMP sets) for a new 
CMS in the NCS MIB (see [29]).  

3. Any time before an MTA endpoint sends a signaling message to a particular 
CMS, it MUST ensure that the respective Security Association is present. If the 
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MTA is unable to establish IPsec SAs with a CMS that is associated with a 
configured endpoint (by the NCS MIB), it MUST set the NCS MIB variable 
pktcNcsEndPntStatusError to noSecurityAssociation (2).  

After the initial establishment of the IPsec Security Associations for CMSes, the MTA 
MIB is utilized in subsequent key management as follows: 

When the MTA receives a Wake Up message, it MUST respond with an AP 
Request when the corresponding CMS FQDN is found in the 
pktcMtaDevCmsTable and MUST NOT respond otherwise.  

Note that establishment of IPsec Security Associations due to a Wake Up does not 
result in any call signaling traffic between the MTA and the CMS. 

7.1.1.2.5.1 Call Flows SEC-5,6: Get a Kerberos Ticket for the CMS 
The MTA uses PKINIT protocol to get a Kerberos Ticket for the specified CMS (see 
section 6.4.3). After the KDC receives a ticket request, it retrieves the MTA FQDN from 
the provisioning server so that it can verify the request before replying with a ticket. The 
Telephony KDC issues the Kerberos Ticket for a group of one or more CMSes uniquely 
identified with the pair (Kerberos Realm, CMS Principal Name). 

In the event that different MTA ports are configured for a different group of CMSes, the 
MTA MUST obtain multiple Kerberos Tickets by repeating these call flows for each 
CMS.  Note that there is no requirement that the MTA obtain all the tickets from a single 
KDC. 

7.1.1.2.5.2 Call Flows SEC-7,8,9: Establish IPsec SAs with the CMS 
The MTA uses the Kerberos Ticket to establish a pair of simplex IPsec Security 
Associations with the given CMS. In the event that different MTA ports are configured 
with different CMS FQDN names, multiple pairs of SAs will be established (one set for 
each CMS). 

When a single Kerberos ticket is issued for clustered Call Agents, it is used to establish 
more than one pair of IPsec SAs. 

A CMS FQDN MAY translate into a list of multiple IP addresses, as would be the case 
with the NCS clustered Call Agents. In those cases, the MTA MUST initiate Kerberized 
key management with one of the IP addresses returned by the DNS Server. The MTA 
MAY also establish SAs with the additional CMS IP addresses.  

Additional IPsec SAs with the other IP addresses MAY be established later, as needed 
(e.g., the current CMS IP address does not respond).  

7.1.1.3 Key Management 

7.1.1.3.1 MTA – SNMP Manager 
Key Management for the MTA-Provisioning SNMPv3 user MUST use the Kerberized 
key management protocol as it is specified in section 6.5.4. The MTA and the 
Provisioning Server MUST support this key management protocol.  Additional SNMPv3 
users MAY be created with the standard SNMPv3 cloning method [32] or with the same 
Kerberized key management protocol.  
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In order to perform Kerberized key management, the MTA must first locate the KDC. It 
retrieves the provisioning realm name from DHCP and then uses a DNS SRV record 
lookup to find the KDC FQDN(s) based on the realm name (see section 6.4.5.1). When 
there is more than one KDC (DNS SRV record) found, DNS assigns a priority (and 
possibly a weighting) to each one. The MTA will choose a KDC based on the DNS 
priority and weight labeling and will go through the list until it finds a KDC that is able to 
respond. 

7.1.1.3.2 MTA – TFTP Server 
The optional encryption key for the MTA configuration file is passed to the MTA with an 
SNMP Set command (by the Provisioning Server) shown in the provisioning flow MTA-
19. SNMPv3 security is utilized to provide message integrity and privacy. In the event 
that SNMPv3 privacy is not enabled, the MTA configuration file MUST NOT be 
encrypted and the file encryption key MUST NOT be passed to the MTA.   

The encryption algorithm used to encrypt the file MUST be the same as the one used for 
SNMPv3 privacy. The same file encryption key MAY be re-used on the same 
configuration file while the MTA configuration file contents are unchanged. However, if 
the MTA configuration file changes or if a different encryption algorithm is selected for 
SNMPv3 privacy, the Provisioning Server MUST generate a new encryption key, MUST 
re-encrypt the configuration file and MUST update the TFTP Server with the re-
encrypted file.  

7.1.1.4 MTA Embedded Keys 
The MTA device MUST be manufactured with a public/private RSA key pair and an 
X.509 device certificate that MUST be different from the BPI+ device certificate.  
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7.1.1.5 Summary Security Profile Matrix – Device Provisioning 

Table 22. Security Profile Matrix – MTA Device Provisioning  

 SNMP TFTP (MTA – TFTP server) 
authentication Yes Yes: authentication of source of 

configuration data. 
access control Yes: write access to MTA 

configuration is limited to 
authorized SNMP users.  
Read access can also be 
limited to the valid users when 
confidentiality is enabled. 

Yes: write access to the TFTP server must be 
limited to the Provisioning Server but is out 
of scope for PacketCable. Read access can be 
optionally indirectly enabled when the MTA 
configuration file is encrypted. 

integrity Yes Yes 
confidentiality Optional Optional (of MTA configuration information 

during the TFTP-get) 
non-repudiation No No 
security 
mechanisms 

SNMPv3 authentication and 
privacy. Kerberized key 
management protocol defined 
by PacketCable. 

Hash of the MTA configuration file is sent to 
the MTA over SNMPv3, providing file 
authentication. When the file is encrypted, 
the key is also sent to the MTA over 
SNMPv3 (with SNMPv3 encryption turned 
on). 

 

7.1.2 Subscriber Enrollment 
The subscriber enrollment process establishes a permanent customer billing account that 
uniquely identifies the MTA to the CMS via the endpoint ID, which contains the MTA’s 
FQDN. The billing account is also used to identify the services subscribed to by the 
customer for the MTA.  

Subscriber enrollment MAY occur in-band or out-of-band. The actual specification of the 
subscriber enrollment process is out of scope for PacketCable and may be different for 
each Service Provider. The device provisioning procedure described in the previous 
section allows the MTA to establish IPsec Security Associations with one or more Call 
Agents, regardless of whether or not the corresponding subscriber had been enrolled. 

As a result, when subscriber enrollment is performed in-band, a communication to a CSR 
(or to an automated subscriber enrollment system) is protected using the same security 
mechanisms that are used to secure all other voice communication. 

During each communication setup (protected with IPsec ESP), the CMS MUST check the 
identity of an MTA against its authorization database to validate which voice 
communications services are permitted. If that MTA does not yet correspond to an 
enrolled subscriber, it will be restricted to permitting a customer to contact the service 
provider to establish service (“customer enrollment”). Some additional services, such as 
communications with emergency response organizations (e.g., 911), may also be 
permitted in this case. Since in-band customer enrollment is based on standard security 
provided for call signaling and media streams, no further details are provided in this 
section. Refer to section 7.6 and to section 6.6 on media streams. 
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7.2 Quality of Service (QoS) Signaling 

7.2.1 Dynamic Quality of Service (DQoS) 

7.2.1.1 Reference architecture for embedded MTAs 
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Figure 12. QoS Signaling Interfaces in PacketCable Network 

7.2.1.2 Security Services 

7.2.1.2.1 CM-CMTS DOCSIS 1.1 QoS Messages  
Refer to the DOCSIS 1.1 RFI spec [11].  

7.2.1.2.2 Gate Controller – CMTS COPS Messages  
Authentication, Access Control and Message Integrity: required to prevent QoS theft and 
denial-of-service attacks. 

Confidentiality: required to keep customer information private. 

7.2.1.3 Cryptographic Mechanisms 

7.2.1.3.1 CM-CMTS DOCSIS 1.1 QoS Messages 
The DOCSIS 1.1 QoS messages are specified in the DOCSIS 1.1 RFI spec [11]. 

7.2.1.3.1.1 QoS Service Flow 
A Service Flow is a DOCSIS MAC-layer transport service that provides unidirectional 
transport of packets either to upstream packets transmitted by the CM or to downstream 
packets transmitted by the CMTS. A service flow is characterized by a set of QoS 
Parameters such as latency, jitter, and throughput assurances. In order to standardize 
operation between the CM and CMTS, these attributes include details of how the CM 
requests mini-slots and the expected behavior of the CMTS upstream scheduler. 
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DOCSIS defines a Classifier, which consists of some packet matching criteria (IP source 
address, for example), a Classifier priority, and a reference to a service flow. If a packet 
matches the specified packet matching criteria, it is then delivered on the referenced 
service flow. 

Downstream Classifiers are applied by the CMTS to packets it is transmitting, and 
Upstream Classifiers are applied at the CM and may be applied at the CMTS to police the 
classification of upstream packets. 

The network can be vulnerable to IP packet attacks; i.e., attacks stemming from an 
attacker using another MTA's IP source address and flooding the network with the 
packets intended for another MTA's destination address. A CMTS controlling 
downstream service flows will limit an MTA's downstream bandwidth according to QoS 
allocations. If the CMTS is flooded from the backbone network with extra packets 
intended for one of its MTAs, packets for that MTA may be dropped to limit the 
downstream packet rate to its QoS allocation. The influx of the attacker’s packets may 
result in the dropping of good packets intended for the destination MTA. 

To thwart this type of network attack, access to the backbone network should be 
controlled at the entry point. This can be accomplished using a variety of QoS Classifiers, 
but is most effective when the packet source is verified by its source IP address. This will 
limit the ability of a rogue source to flood the network with unauthorized IP packets. 

CMTSes SHOULD use classifiers to police upstream packets (including verifying source 
IP addresses) arriving over the HFC access network.  

For more information regarding the use of packet Classifiers, refer to the DOCSIS 1.1 
RFI spec [11]. 

7.2.1.3.2 Gate Controller – CMTS COPS Messages  
To download a QoS policy for a particular communications connection, the Gate 
Controller function in the CMS must send COPS messages to the CMTS. These COPS 
messages MUST be both authenticated and encrypted with IPsec ESP. Refer to section 
6.1.2 on the details of how IPsec ESP is used within PacketCable and for the list of 
available ciphersuites.  

7.2.1.4 Key Management 

7.2.1.4.1 Gate Controller – CMTS COPS Messages 
Key management for this COPS interface is either IKE or Kerberos. Implementations 
MUST support IKE with pre-shared keys. Implementations MAY support IKE with 
X.509 certificates and they MAY support Kerberos using symmetric keys. For more 
information on the PacketCable use of IKE, refer to section 6.2.2. For more information 
on the PacketCable use of Kerberos with symmetric keys, refer to sections 6.4.3 and 6.5. 

7.2.1.4.2 Security Profile Matrix Summary 

Table 23. Security Profile Matrix – DQoS 
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 COPS 
(CMTS-CMS) 

Authentication Yes 
access control Yes 
Integrity Yes 
Confidentiality yes  
non-repudiation No 
security mechanisms IPsec with encryption and message 

integrity 
IKE or Kerberos 

 

7.2.2 Interdomain QoS 
Interdomain QoS consists of two different mechanisms, Differentiated Services 
(DiffServ) and an admission control protocol called RSVP, see Informative Reference 
[4]. 

7.2.2.1 Architecture Overview 
The overall IQoS network architecture is depicted in the Figure below. The backbone 
consists of a general topology managed IP network that may comprise multiple 
administrative domains.  

Domain A Domain B

Gate Controllers

Trunk
Gateway

Called party

Border
Routers

To/from other
providers

Calling party

Edge router Edge router

CM1 CM2

CMTS2
CMTS1

 

Figure 13. Interdomain QoS Architecture 
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In this architecture, it is assumed that DQoS signaling is used in the access network. At a 
minimum, the backbone is expected to be compliant with the DiffServ architecture. 
Border routers are those that sit at the boundaries between providers. They have specific 
roles in a DiffServ environment (such as aggregate policing and re-marking) that are 
discussed in more detail in the sections that follow. 

7.2.2.2 Differentiated Services (DiffServ) 
DiffServ allows IP traffic to be marked with different DiffServ Code Points (DSCP) to 
obtain different queuing treatment on routers. The PacketCable Interdomain Quality of 
Service Specification [5] defines separate DSCP-based Per Hop Behavior (PHB) for 
media flows as opposed to signaling flows. It also provides PHB rules for the CMTS to 
manage upstream bandwidth. 

The use of DiffServ Code Points and their associated per hop behavior MUST comply 
with requirements in [5].  

7.2.2.2.1 Security Services 
Authorization: This is the only security service provided by DiffServ. Based on the 
DSCP, each IP packet is authorized for a different level of QoS at each DiffServ router. 
As DiffServ does not provide any authentication, it is possible for an unauthorized router 
to remark an IP packet with an invalid QoS level. This DiffServ vulnerability is generally 
tolerated because cryptographic processing on each packet at each router is considered to 
be too much overhead. 

7.2.2.2.2 DiffServ Summary Security Profile Matrix 

Table 24. Security Profile Matrix – IQoS 

 DiffServ Router- DiffServ Router 

authentication no 
access control  yes, in the form of DSCP authorization 
integrity no 
confidentiality no  
non-repudiation no 
security mechanisms PHB Authorization based on DSCP. 

DSCP marking is performed on the upstream channel of edge 
and border routers.  

7.2.2.3 Resource Reservation Protocol (RSVP) 
RSVP is normally used to preserve bandwidth for individual media stream sessions. This 
type of admission control may be provided at each PacketCable CMTS. When the IP 
traffic is entering the IP Backbone, keeping track of every individual resource reservation 
does not scale well enough for the expected growth of PacketCable networks. For this 
reason, the PacketCable IQoS Specification [5] optionally defines the aggregation of 
RSVP reservations at the edge and border routers. In general, the IQoS Specification 
defines various RSVP mechanisms for admission control, but none of them are required 
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for PacketCable. This section specifies the PacketCable profile for RSVP security for 
those PacketCable elements that employ RSVP. 

The aggregation (edge and border) routers have the responsibility of creating aggregate 
reservations across an aggregation region, which may be the entire DiffServ cloud or a 
defined aggregation region within the cloud. Each aggregate reservation represents an 
aggregate flow of traffic from an ingress router (or aggregator) to an egress router (the 
de-aggregator). Aggregate reservations may be configured statically based on the 
expected load from an ingress to an egress router, or they may be automatically 
established and re-sized. Each aggregate reservation carries the traffic from a number of 
“end-to-end” RSVP reservations that share a common ingress/egress router pair. An end-
to-end reservation represents a single microflow, and signaling for such a reservation is 
accomplished using standard RSVP. “End-to-end” RSVP messages are originated by the 
CMTS on behalf of the MTA. Such E2E RSVP messages are “tunneled” across the 
aggregation region by setting the IP protocol number in the Path message to “RSVP-E2E-
IGNORE”.  

7.2.2.3.1 Security Services 
Authentication: required to prevent theft of bandwidth and denial-of-service attacks. 
Because RSVP messages are modified at each RSVP capable router, RSVP 
authentication is performed separately at each RSVP hop. 

Access Control: required on this interface. The mechanism used to provide access control 
and policy information at RSVP routers is currently out of scope for PacketCable. 

Message Integrity: required on this interface. Without it, the same bandwidth theft 
scenarios are still possible, along with the denial-of-service attacks. 

Confidentiality: not supported on this interface as it is not part of the IETF standard. 
Normally, bandwidth reservation signals via RSVP do not carry application level data 
that needs additional privacy protection. 

7.2.2.3.2 Cryptographic Mechanisms 
Authentication and Message Integrity: All RSVP messages MUST include an RSVP 
INTEGRITY object as it is specified in [36]. The RSVP integrity object contains a keyed 
message digest over the entire RSVP message. Within PacketCable, the keyed message 
digest algorithm MUST be HMAC-MD5.   

In order to support secure RSVP router restart/recovery, all RSVP routers MUST support 
the integrity handshake mechanism as specified in [36].   

Access Control: automatically provided with the use of pre-shared keys. Access is 
granted to another router when pre-shared keys are established with that router. 

7.2.2.3.3 Key Management 
Pre-shared keys MUST be used to secure all RSVP interfaces.  PacketCable has reviewed 
RFC 2752, Identity Representation for RSVP where public key and Kerberos approaches 
are used for RSVP authentication. Within PacketCable, public key and Kerberos 
approaches for RSVP authentication MUST NOT be used.  
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Public key authentication is considered to be too computationally expensive to be used 
for RSVP. Kerberos authentication, as it is specified in RFC 2752, is incomplete.  

7.2.2.3.4 RSVP Summary Security Profile Matrix 

Table 25. Security Profile Matrix – RSVP 

 RSVP Router- RSVP Router 

authentication yes 
access control  yes 
integrity yes 
confidentiality no  
non-repudiation no 
security mechanisms HMAC-MD5 for message authentication and integrity. 

Pre-shared keys satisfy access control requirements. 

7.3 Billing System Interfaces 

7.3.1 Security Services 

7.3.1.1 CMS-RKS Interface 
Authentication, Access Control and Message Integrity: required to prevent service theft 
and denial-of-service attacks. Want to insure that the billing events reported to the RKS 
are not falsified. 

Confidentiality: required to protect subscriber information and communication patterns. 

7.3.1.2 CMTS-RKS Interface 
Authentication, Access Control and Message Integrity: required to prevent service theft 
and denial-of-service attacks. Want to insure that the billing events reported to the RKS 
are not falsified. 

Confidentiality: required to protect subscriber information and communication patterns. 
Also, effective QoS information and network performance is kept secret from 
competitors. 

7.3.1.3 MGC – RKS Interface 
Authentication, Access Control and Message Integrity: required to prevent service theft 
and denial-of-service attacks. Want to insure that the billing events reported to the RKS 
are not falsified. 

Confidentiality: required to protect subscriber information and communication patterns.  

7.3.2 Cryptographic Mechanisms 
Both message integrity and privacy MUST be provided by IPsec ESP, using any of the 
ciphersuites that are listed in section 6.1.2.  
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RADIUS itself defines MD5-based keyed MAC for message integrity at the application 
layer. And, there does not appear to be a way to turn off this additional integrity check at 
the application layer. For PacketCable, the key for this RADIUS MAC MUST always be 
hardcoded to the value of 16 ASCII 0s. This in effect turns the RADIUS keyed MAC into 
an MD5 hash that can be used to protect against transmission errors but does not provide 
message integrity. No key management is needed for RADIUS MACs.   

Billing event messages contain an 8-octet binary Element ID of the CMS, CMTS or the 
MGC. The RKS MUST verify each billing event by ensuring that the specified Element 
ID correctly corresponds to the IP address. This check is done via a lookup into a map of 
IP addresses to Element IDs. Refer to section 7.3.3 on how this map is maintained.   

7.3.2.1 RADIUS Server Chaining 
RADIUS servers may be chained. This means that when the local RADIUS server that is 
directly talking to the CMS or CMTS client is not able to process a message, it forwards 
it to the next server in the chain. 

PacketCable specifies security mechanisms only on the links to the local RADIUS server. 
PacketCable also requires authentication, access control, message integrity and privacy 
on the interfaces between the chained RADIUS servers, but the corresponding 
specifications are outside of the scope of PacketCable. 

Key Management (in the following section) applies to the local RADIUS Server/RKS 
only. 

7.3.3 Key Management 

7.3.3.1 CMS – RKS Interface 
The CMS and the RKS MUST negotiate a shared secret (CMS-RKS Secret) using IKE or 
Kerberos with symmetric keys (implementations MUST support IKE with pre-shared 
keys;  they MAY support IKE with X.509 certificates and they MAY support Kerberos 
using symmetric keys).  For more information on the PacketCable use of IKE, refer to 
section 6.2.2. For more information on the PacketCable use of Kerberos with symmetric 
keys, refer to sections 6.4.3 and 6.5. 

The key management protocol MUST run asynchronous to billing event generation, and 
will guarantee that there is always a valid, non-expired CMS-RKS Secret.  

An RKS MUST maintain a mapping between an IP address and an Element ID for each 
host with which it has IPsec Security Associations.  How this mapping is created depends 
on the IPsec key management protocol: 

1. IKE with Pre-Shared Keys. One way to implement this mapping is to associate a 
pre-shared key directly with an Element ID. IKE negotiations will use an 
ISAKMP identity payload of type ID_KEY_ID to identify the pre-shared key. 
The value in that identity payload will be the Element ID used in billing event 
messages. For more details refer to [24]. 

2. IKE with Certificates. As specified in section 8.2.3.4.3, a certificate of a server 
that sends billing event messages to an RKS contains its Element ID in the CN 
attribute of the distinguished name. During IKE phase 1, the RKS MUST save a 
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mapping between the server IP address and its Element ID that is contained in the 
certificate.  

3. Kerberized Key Management. As specified in section 6.4.5.5, a principal name of 
each server that reports billing event messages to the RKS includes its Element 
ID. After an RKS receives and validates an AP Request message, it MUST save a 
mapping between the server IP address and its Element ID that is contained in the 
principal name.  

When an event message arrives at the RKS, the RKS MUST retrieve a source IP address 
based on the Element ID, using the mapping established during key management. The 
RKS MUST ensure that this address is the same as the source IP address in the IP packet 
header.  

7.3.3.2 CMTS – RKS Interface 
The CMTS and the RKS MUST negotiate a shared secret (CMTS-RKS Secret) using IKE 
or Kerberos (implementations MUST support IKE with pre-shared keys;  they MAY 
support IKE with X.509 certificates and they MAY support Kerberos using symmetric 
keys).  For more information on the PacketCable use of IKE, refer to section 6.2.2. For 
more information on the PacketCable use of Kerberos with symmetric keys, refer to 
sections 6.4.3 and 6.5. 

The key management protocol MUST be running asynchronous to billing event 
generation, and will guarantee that there is always a valid, non-expired CMTS-RKS 
Secret.  

An RKS maintains a mapping between an IP address and an Element ID for each host 
with which it has IPsec Security Associations, as specified in section 7.3.3.1. This 
includes the CMTS. 

When a billing event arrives at the RKS, the RKS MUST retrieve a source IP address 
based on the Element ID, using the mapping established during key management. The 
RKS MUST ensure that this address is the same as the source IP address in the IP packet 
header  

7.3.3.3 MGC – RKS Interface 
The MGC and the RKS MUST negotiate a shared secret (MGC-RKS Secret) using IKE 
or Kerberos (implementations MUST support IKE with pre-shared keys;  they MAY 
support IKE with X.509 certificates and they MAY support Kerberos using pre-shared 
keys).  For more information on the PacketCable use of IKE, refer to section 6.2.2. For 
more information on the PacketCable use of Kerberos with symmetric keys, refer to 
sections 6.4.3 and 6.5. 

The key management protocol MUST be running asynchronous to billing event 
generation, and will guarantee that there is always a valid, non-expired MGC-RKS 
Secret.  

An RKS maintains a mapping between an IP address and an Element ID for each host 
with which it has IPsec Security Associations, as specified in section 7.3.3.1. This 
includes the MGC. 
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When an event message arrives at the RKS, the RKS MUST retrieve a source IP address 
based on the Element ID, based on the mapping established during key management. The 
RKS MUST ensure that this address is the same as the source IP address in the IP packet 
header.  

7.3.4 Billing System Summary Security Profile Matrix 

Table 26. Security Profile Matrix – RADIUS 

 RADIUS Accounting 
(CMS - RADIUS 

Server/RKS) 

RADIUS Accounting 
(CMTS – RADIUS 

Server/RKS) 

RADIUS Accounting 
(MGC – RADIUS 

Server/RKS) 
authentication yes yes yes 
access control yes yes yes 
integrity yes yes yes 
confidentiality yes yes yes 
non-repudiation no no no 
security 
mechanisms 

IPsec ESP with 
encryption and message 
integrity enabled. 
key management using 
IKE or Kerberos 

IPsec ESP with encryption 
and message integrity 
enabled 
key management using 
IKE or Kerberos  

IPsec ESP with 
encryption and message 
integrity enabled 
key management using 
IKE or Kerberos  

7.4 Call Signaling 

7.4.1 Network Call Signaling (NCS) 

7.4.1.1 Reference Architecture 
The following diagram shows the network components and the various interfaces to be 
discussed in this section. 

 

Remote
MTA

CMS a

CMS b
(Call Agent Cluster)

Remote
CMS

MTA
pkt-s3: RTP

pkt-s4: RTCP

pkt-s5: NCS

pkt-s16:
CMSS

 

Figure 14. NCS Reference Architecture 
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Figure 14 shows a CMS containing a cluster of Call Agents, which are identifiable by one 
CMS FQDN. It also shows, even though this is not a likely scenario in early 
deployments, that different CMSes could potentially manage different endpoints in a 
single MTA.  

The security aspects of interfaces pkt-s3 and pkt-s4 (RTP bearer channel and RTCP) are 
described in section 6.6 of this document. The protocol interface pkt-s16 (CMS to CMS) 
is SIP with PacketCable extensions, as specified in [37]. 

When a call is made between two endpoints in different zones, the call signaling has to 
traverse the path between two different CMSes. The signaling protocol between CMSes 
is SIP with PacketCable specific extensions. See [37] for more details. Initially, the 
initiating CMS may not have a direct signaling path to a terminating CMS. The call 
routing table of the initiating CMS may point it to an intermediate SIP proxy. That SIP 
proxy, in turn, may point to another SIP proxy. In general, we make no assumptions 
about the number of SIP proxies in the signaling path between the CMSes. Once the two 
CMSes have discovered each other’s location, they have the option to continue SIP 
signaling directly between each other. The SIP proxies that route traffic between 
Domains are called Exterior Border Proxies (EBPs). EBPs enforce access control on all 
signaling messages routed between domains. They also provide application level security 
on sensitive information contained within SIP messages.  

Administratively, various SIP proxies and CMSes are grouped into Kerberos realms. If 
there is a signaling path between two realms, there is a trust relationship between the 
corresponding KDCs. 

7.4.1.2 Security Services 
The same set of requirements applies to both CMS-MTA and CMS-CMS signaling 
interfaces.  

Authentication: signaling messages should be authenticated, in order to prevent a third 
party masquerading as either an authorized MTA or CMS. 

Confidentiality: NCS messages carry dialed numbers and other customer information, 
which must not be disclosed to a third party. Thus confidentiality of signaling messages 
should be required. The signaling messages carry media stream keying material that must 
be kept private not only on each signaling hop, but also end-to-end between the initiating 
and target CMSes, to avoid exposure at SIP signaling proxies. 

Message integrity: should be assured in order to prevent tampering with signaling 
messages – e.g., changing the dialed numbers.  

Access control: Services enabled by the NCS signaling should be made available only to 
authorized users – thus access control is required at the CMS. 

7.4.1.3 Cryptographic Mechanisms 
IPSec ESP MUST be used to secure each signaling hop. IPsec keys MUST be derived 
using the mechanism described in section 6.5.3.1.  

The first SIP signaling roundtrip between the initiating and target CMSes may transit 
through any number of intermediate SIP signaling proxies. Since IPsec is applied 
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separately on each signaling hop, the contents of the SIP signaling message is decrypted 
and re-encrypted at each SIP signaling proxy. The full contents of the SIP signaling 
message, including media stream keying material, are available in the clear at each 
intermediate SIP signaling proxy.  

In order to protect the media stream keying material from the SIP proxies, the second half 
of the keying material that is sent in a SIP reply from the target CMS back to the 
initiating CMS is encrypted as specified in section 7.4.1.3.3. 

7.4.1.3.1 MTA-CMS Interface 
Each signaling message coming from the MTA and containing the MTA domain name 
(included in the NCS endpoint ID field) must be authenticated by the CMS. This domain 
name is an application-level NCS identifier that will be used by the Call Agent to 
associate the communication with a paying subscriber. In order to perform this 
authentication, the CMS MUST maintain an IP address to FQDN map for each MTA IP 
address that has a current SA. This map MUST be built during the key management 
process described in the following section and does not need to reside in permanent 
storage.  

7.4.1.3.2 CMS-CMS, CMS-SIP Proxy and SIP Proxy – SIP Proxy Interfaces 
When a CMS or a SIP Proxy receives a SIP signaling message, it MUST map the source 
IP address to the identity (FQDN) of the CMS or SIP Proxy and to the local policy 
associated with that FQDN. This lookup MUST utilize an IP address to FQDN map for 
all CMSes and SIP Proxies that have current IPsec Security Associations with this host.  
This map is built during key management described in the following section and does not 
need to reside in permanent storage. 

Whenever the SIP signaling message contains the FQDN of the previous hop (e.g., in the 
SIP Via header field), that FQDN MUST be identical to the FQDN in the local IP address 
to FQDN map.  If they are not the same, the SIP message MUST be rejected as an invalid 
message.  

7.4.1.3.3 End-to-End Protection of Media Stream Keying Material 
Before the target CMS returns media stream keying material to the initiating CMS inside 
a SIP message, it MUST determine if the previously received SIP message came directly 
from the initiating CMS or if it transited through one or more SIP proxies (which should 
be apparent from the “Via” SIP header field). In the case that there are no intermediate 
SIP proxies, the target CMS MUST forward the media stream keying material to the 
initiating CMS in the same format (inside SDP) that it received it from the target MTA.  

If instead the target CMS received a SIP message via one or more SIP proxies (and 
therefore must reply using the same route), in the SIP reply it MUST place the media 
stream keying material inside the X-pc-secret SDP attribute using the “encrypted-base64” 
encoding method (see [37] for SDP attribute definitions). When the “encrypted-base64” 
encoding method is utilized, the media stream keying material MUST be formatted as 
follows (prior to being base-64 encoded):  
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Table 27. Encrypted Media Stream Keying Material Inside 

Field Name Length Description 
KRB-AP-REQ  Variable  DER-encoded, the length is in the ASN.1 header.  
KRB-PRIV  Variable  DER-encoded  

 
Options inside the KRB-AP-REQ MUST NOT be used.  

The encrypted authenticator in the KRB-AP-REQ MUST NOT contain any optional 
ASN.1 fields. The authenticator itself MUST be encrypted using 3-DES CBC with the 
Kerberos etype value des3-cbc-md5 with the session key from the ticket that is contained 
in this KRB-AP-REQ object. The encryption method for des3-cbc-md5 is specified in 
section 6.4.2.2. 

KRB-SAFE MUST NOT contain any optional ASN.1 fields. The encrypted part of KRB-
PRIV MUST be encrypted with the session key from the accompanying KRB-AP-REQ 
with the etype value des3-cbc-md5.  

Data in the encrypted part of KRB-PRIV is in the “user-data” ASN.1 field, wrapped 
inside an OCTET STRING. This user data wrapped inside the OCTET STRING MUST 
be formatted as follows:  

Table 28. Format of User Data Inside KRB-PRIV 

Field Name Length Description 
Object Type  1 byte  1 = Media Stream Keying Material  
Version  1 byte  1 for this version  
End-End Secret1 46 bytes  See section 7.6.2.3  
Pad0 46 bytes  This field is optional, see section 7.6.2.3 

7.4.1.4 Key Management 

7.4.1.4.1 MTA-CMS Key Management 
The MTA MUST use Kerberos with PKINIT to obtain a CMS service ticket (see section 
6.4.3). The MTA SHOULD first obtain a TGT (Ticket Granting Ticket) via the AS 
Request/AS Reply exchange with the KDC (authenticated with PKINIT). In the case that 
the MTA obtained a TGT, it performs a TGS Request/TGS Reply exchange to obtain the 
CMS service ticket (see section 6.4.4).  

After the MTA has obtained a CMS ticket, it MUST execute a Kerberized key 
management protocol (that utilizes the CMS ticket) with the CMS to create SAs for the 
pkt-s10 interface. This Kerberized key management protocol is specified in section 6.5. 
Section 6.5 also describes the mechanism to be deployed to handle timed-out IPsec keys 
and Kerberos tickets. The mechanism for transparently handling key switchover from one 
key lifetime to another key lifetime is also defined.  

The key distribution and timeout mechanism is not linked to any specific NCS message. 
Rather, the MTA will obtain the Kerberos ticket from the KDC when started and will 
refresh it based on the timeout parameter. Similarly, the MTA will obtain the sub-key 
(and thus IPsec ESP keys) based on the IPsec timeout parameters. In addition, when the 
IPsec ESP keys are timed out and the MTA needs to transmit data to the CMS, it will 
perform key management with the CMS and obtain the new keys. It is also possible for 
the IPsec SAs to expire at the CMS while it has data to send to the MTA. In this case, 
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section 6.5.3.5.3 describes the technique for the CMS to initiate key management and 
establish new Security Associations. 

7.4.1.4.1.1 Call Agent Clustering  
At the time that the CMS receives a Kerberos ticket for establishing an IPsec SA, it 
MUST extract the MTA FQDN from the MTA principal name in the ticket and map it to 
the IP address. This map is later used to authenticate the MTA endpoint ID in the NCS 
signaling messages.  

In the case a CMS, or an application server, is constructed as a cluster of Call Agents 
with different IP addresses, all Call Agents should share the same service key for 
decrypting a Kerberos ticket. Thus the MTA will need to execute single PKINIT 
Request/Reply sequence with the KDC and multiple AP Request/Reply sequence for 
each Call Agent in the cluster. The Kerberos messages are specified in section 6.4.4 

Optimized key management is specified for the case when in the middle of a 
communication, a clustered Call Agent sends a message to an MTA from a new IP 
address, where it doesn’t yet have a IPsec SA with that MTA (see section 6.5.2.1). 

In this optimized approach, the CMS sends a Rekey message instead of the Wake Up. 
This Rekey message is authenticated with a SHA-1 HMAC, using a Server 
Authentication Key, derived from a session key used to encrypt the last AP Reply sent 
from the same CMS (or another CMS with the same Kerberos Principal Name).  

Additionally, the Rekey message includes IPsec parameters, to avoid the need for the AP 
Reply message. The MTA responds with a different version of the AP Request that 
includes the MTA-CMS Secret, normally sent by the CMS in the AP Reply. As a result, 
after the MTA responds with the AP Request, a new IPsec SA can be established with no 
further messages. The total price for establishing a new SA with this optimized approach 
is a single roundtrip time. This is illustrated in the following figure: 
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Figure 15. Key Management for NCS Clusters 

In this figure, an NCS clustered Call Agent suddenly decides to send an NCS message 
from a new IP address that didn't previously have any SA established with that MTA. 

The first Security Association SA1 with CMS at IP1 was established with a basic AP 
Request / AP Reply exchange. HMAC key KSRA for authenticating Rekey message from 
the CMS was derived from the session key used to encrypt the AP Reply. 

When a new SA3 needs to be established between the MTA and CMS at IP3, the key 
management is as follows: 

(4) The CMS at IP3 sends a REKEY message, similar in functionality to the Wake Up 
message, but with a significantly different content. It contains: 

• IPsec parameters (also found in the AP Reply): SPI, selected ciphersuite, SA 
lifetime, grace period, and re-establish flag. The purpose of adding these IPsec 
parameters to REKEY is to eliminate the need for the subsequent AP Reply 
message. 

• SHA-1 HMAC using KSRA 

(5) AP Request that includes the MTA-CMS secret, normally sent in the AP Reply 
message. This is a legal Kerberos mode, where the key is contained in the AP Request 
and AP Reply is not used at all. 

For more details, refer to section 6.5.3. 
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7.4.1.4.1.2 MTA Controlled by Multiple CMSes  
In the case a single MTA is controlled by multiple CMSes and each CMS is associated 
with a different Kerberos realm, the MTA will need to execute multiple PKINIT 
Request/Reply exchanges with the KDC, one for each realm, optionally followed by a 
TGS Request/Reply exchanges. Then, an MTA would execute multiple AP 
Request/Reply exchanges in order to create the Security Associations with the individual 
CMSes. 

7.4.1.4.1.3 Transferring from one CMS to another via NCS signaling  
When control of an MTA endpoint is transferred from one CMS to another via NCS 
signaling, the following steps are taken: 

1. The new CMS might not have been included in the CMS table. In that case, the 
corresponding table entry MUST be locally created. For a new CMS the realm 
MUST be copied from the CMS that previously controlled this endpoint.Default 
values SHOULD be used for the clock skew and AP request/AP reply adaptive 
backoff parameters.   The pktcMtaDevCmsIpsecCtrl flag MUST be set to true.  

2. If the MTA doesn’t already have IPsec SAs established with this CMS (e.g., via 
an earlier Wake Up), it MUST attempt to establish them at this time.   

3. If the MTA now possesses valid IPsec Security Associations with the new CMS, 
the NCS signaling software is notified and the Security Association can be 
utilized. Further signaling traffic for this affected endpoint related to the prior 
CMS Security Association MUST NOT be sent.  

7.4.1.4.2 CMS-CMS, CMS-SIP Proxy, SIP Proxy-SIP Proxy Key Management 
When a CMS or a SIP Proxy has data to send to another CMS or SIP Proxy and doesn’t 
already have Security Associations with that host, it MUST utilize a Kerberized key 
management protocol (see section 6.5) to establish them. In this case, any CMS or SIP 
Proxy is responsible for obtaining a ticket for to which it wants to connect; therefore the 
Wake Up message MUST NOT be used.  

A CMS or a SIP Proxy MUST first obtain a TGT (Ticket Granting Ticket) before it can 
obtain an application server ticket for another application server or SIP Proxy. In order to 
obtain a TGT, a CMS or a SIP Proxy MUST authenticate itself to the KDC with its 
symmetric service key (see section 6.4.3). Once a CMS or a SIP Proxy has obtained a 
TGT, it uses the TGS Request/TGS Reply exchange to obtain the application server ticket 
(see section 6.4.4).   

7.4.1.4.2.1 Key Management for End-to-End Protection of Media Stream Keying Material 
The target CMS must encrypt the media stream keying material that it sends inside a SIP 
message to the initiating CMS, in order to protect it from the intermediate SIP signaling 
proxies. As specified in section 7.4.1.3.3, the encrypted keying material inside an SDP 
attribute is accompanied with an AP Request. In order for the target CMS to generate an 
AP Request, it first has to obtain a Kerberos ticket for the initiating CMS (see section 
6.5). 
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7.4.1.4.2.2 Inter-Domain Call Setup 
In the case of an inter-domain calls, some of the signaling hops between the two CMSes 
may contain two hosts belonging to two different Kerberos realms.  

In the cross-realm case, Security Associations in the form of KDC-KDC tickets are used 
to establish trust between the two KDCs in two different realms. These tickets are 
obtained with the PKCROSS protocol. After the KDC-KDC trust is established, an CMS 
or SIP Proxy in one realm is able to get a service ticket for an CMS or SIP Proxy in 
another realm (see section 6.4.10 for details). After the service ticket is obtained, the 
Kerberized IPsec key management flows remain the same for the cross-realm case. 

7.4.1.4.2.3 Example of Inter-Domain Call Setup with Key Management Flows 
A CMS or a SIP Proxy SHOULD create SAs ahead of time (before they are needed) 
whenever possible. One such example is illustrated in the following diagram.  

The diagram illustrates the beginning of an inter-domain call setup. In this example, the 
signaling between the two CMSes is routed through two EBPs (Exterior Border Proxies). 
After one roundtrip between the CMSes (after the 183 SDP message is received by CMS 
“A”), the rest of the CMS-CMS signaling is done directly, without the involvement of the 
intermediate EBPs. 

The diagram assumes that there are no prior SAs between the two CMSes and that CMS 
“B” does not possess a service ticket for CMS “A”. It shows the key management flows 
necessary to establish the necessary SAs for this call. 

CMS “B” sends a TGS Request to its local KDC (KDC “B”) to get a ticket for CMS “A”. 
This TGS Request is sent about the same time as the Gate-Set message to the local 
CMTS. The key management flows continue in parallel with the subsequent DQoS flows 
(Gate-Set ACK) and also in parallel with some NCS signaling flows (CRCX from CMS 
“B” to MTA “B” and the 200+SDP response from MTA “B”). After the 200+SDP 
response no more parallelism is possible.  

The next signaling message that CMS “B” sends out is the 183 SDP to EBP “B” that has 
to wait until CMS “B” obtains a ticket for CMS “A”, in order to encrypt the media stream 
keying material inside SDP. To insure synchronization CMS “B” also waits until it 
establishes IPSec SAs with CMS “B”, before sending the 183 SDP. This guarantees that 
when CMS “A” later sends a signaling message (PRACK) directly to CMS “B”, IPSec 
SAs will already be established. 

Since CMS “A” is in a different realm (and not in KDC “B’s” database), the TGS 
Request from CMS “B” causes KDC “B” to perform a DNS lookup to retrieve CMS 
“A’s” realm name. After the DNS lookup is complete, KDC “B” will attempt to locate a 
ticket for KDC “A” in its local ticket cache. If it finds that ticket, it will immediately 
return to CMS “B” the cross-realm TGT needed to authenticate to KDC “A”. If (in a rare 
circumstance) KDC “B” does not currently have a ticket for KDC “A”, it will first have 
to perform DNS lookups to locate it and then perform a PKCROSS exchange with KDC 
“A” to obtain the KDC ticket. 

Once CMS “B” finally receives a cross-realm TGT for KDC “A”, it has to send another 
TGS Request for KDC “A” and then finally obtain the service ticket for CMS “A”. In 
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order for CMS “B” to contact KDC “A”, it will first have to perform two more DNS 
queries (one to get the KDC “A’s” FQDN and another to get its IP address).  

After CMS “B” had obtained a ticket for CMS “A”, it will initiate Kerberized IPSec key 
management with CMS “A” in order to set up SAs. After IPSec SAs are established, 
CMS “B” continues with signaling by sending 183 SDP SIP message to CMS “A”, via 
the external border proxy EBP “B”. The keying material inside 183 SDP is encrypted as 
specified in section 7.4.1.3.3. Further SIP signaling between the two CMSes is sent 
directly, without the participation of the border proxies and using the just established 
IPSec SAs. 
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Figure 16. CMS – CMS Signaling Flow with Security 
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7.4.2 Call Signaling Security Profile Matrix  

Table 29. Security Profile Matrix – Network Call Signaling 

 MTA-CMS 
 

CMS-CMS CMS-SIP Proxy / 
SIP Proxy-SIP Proxy 

authentication optional yes yes 
access control optional yes yes 
integrity optional yes yes 
confidentiality optional yes yes 
non-repudiation no no no 
security 
mechanisms 

IPsec ESP with 
encryption and message 
integrity enabled 
Authentication via 
Kerberos with PKINIT 
Kerberized key 
management defined by 
PacketCable 
Security may be disabled 
through the provisioning 
process. 

IPsec ESP with encryption 
and message integrity 
enabled 
Authentication via 
Kerberos with symmetric 
keys 
Kerberized key 
management defined by 
PacketCable 
End-to-End encryption of 
media stream keying 
material using Kerberos, if 
a SIP Proxy is in between 
the two CMSes 

IPsec ESP with encryption 
and message integrity 
enabled 
Authentication via 
Kerberos with symmetric 
keys 
Kerberized key 
management defined by 
PacketCable 

7.5 PSTN Gateway Interface 

7.5.1 Reference Architecture 
A PacketCable PSTN Gateway consists of three functional components: 

• a Media Gateway Controller (MGC) which may or may not be part of the CMS, 

• a Media Gateway (MG), and 

• a Signaling Gateway (SG). 

These components are described in detail in [7]. 

7.5.1.1 Media Gateway Controller  
The Media Gateway Controller (MGC) is the PSTN gateway’s overall controller. The 
MGC receives and mediates call-signaling information between the PacketCable and the 
PSTN domains (from the SG), and it maintains and controls the overall state for all 
communications. 

7.5.1.2 Media Gateway  
Media Gateways (MG) provide the bearer connectivity between the PSTN and the 
PacketCable IP network.  
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7.5.1.3 Signaling Gateway  
PacketCable provides support for SS7 signaling gateways. The SG contains the SG to 
MGC interface. Refer to [7] for more detail on signaling gateways.  

The SS7 Signaling Gateway performs the following security-related functions: 

• Isolates the SS7 network from the IP network. Guards the SS7 network from 
threats such as Information Leakage, integrity violation, denial-of-service, and 
illegitimate use. 

• Provides mechanism for certain trusted entities (“TCAP Users”) within the 
PacketCable network, such as Call Agents, to query external PSTN databases via 
TCAP messages sent over the SS7 network. 

7.5.2 Security Services 

7.5.2.1 MGC – MG Interface  
Authentication: Both the MG and the MGC must be authenticated, in order to prevent a 
third party masquerading as either an authorized MGC or MG. 

Access Control: MG resources should be made available only to authorized users – thus 
access control is required at the MG. 

Integrity: must be assured in order to prevent tampering with the TGCP signaling 
messages – e.g., changing the dialed numbers. 

Confidentiality: TGCP signaling messages carry dialed numbers and other customer 
information, which must not be disclosed to a third party. Thus confidentiality of the 
TGCP signaling messages is required.  

7.5.2.2 MGC – SG Interface 
Authentication: signaling messages must be authenticated, in order to prevent a third 
party masquerading as either an authorized MGC or SG. 

Access Control: Services enable by the NCS signaling should be made available only to 
authorized users – thus access control is required at the MGC. 

Integrity: must be assured in order to prevent tampering with the signaling messages – 
e.g., changing the dialed numbers. 

Confidentiality: NCS messages carry dialed numbers and other customer information, 
which must not be disclosed to a third party. Thus confidentiality of signaling messages 
is required.  

7.5.2.3 CMS – SG Interface 
This interface is used for TCAP queries for LNP (Local Number Portability) and other 
voice communications services. 

Authentication: TCAP queries must be authenticated, in order to prevent release of 
information to an unauthorized party. 

Access Control: required along with the authentication, in order to prevent release of 
information to an unauthorized party. 
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Integrity: must be assured in order to prevent tampering with the TCAP queries, to 
prevent a class of denial-of-service attacks. 

Confidentiality: TCAP queries contain dialed numbers and other subscriber information 
that MUST be kept private. Thus, confidentiality is required.   

7.5.3 Cryptographic Mechanisms 

7.5.3.1 MGC – MG Interface 
IPsec ESP MUST be used to both authenticate and encrypt the messages from MGC to 
MG and vice versa. Refer to section 6.1.2 for details of how IPsec ESP is used within 
PacketCable and for the list of available ciphersuites.   

7.5.3.2 MGC – SG Interface  
IPsec ESP MUST be used to both authenticate and encrypt the messages from MGC to 
SG and vice versa. Refer to section 6.1.2 for details of how IPsec ESP is used within 
PacketCable and for the list of available ciphersuites.   

7.5.3.3 CMS – SG Interface 
This interface is used for TCAP queries for LNP (Local Number Portability) and other 
voice communications services. IPsec ESP MUST be used to both authenticate and 
encrypt the messages from CMS to SG and vice versa. Refer to section 6.1.2 for details 
of how IPsec ESP is used within PacketCable and for the list of available ciphersuites.   

7.5.4 Key Management 

7.5.4.1 MGC – MG Interface 
Key management for the MGC-MG interface is either IKE or Kerberos. Implementations 
MUST support IKE with pre-shared keys. Implementations MAY support IKE with 
X.509 certificates and they MAY support Kerberos using symmetric keys. For more 
information on the PacketCable use of IKE, refer to section 6.2.2. For more information 
on the PacketCable use of Kerberos with symmetric keys, refer to sections 6.4.3 and 6.5.  

The key management protocol ensures that there is always a valid, non-expired MGC – 
MG secret. 

7.5.4.2 MGC – SG Interface 
Key management for the MGC – SG interface is either IKE or Kerberos. 
Implementations MUST support IKE with pre-shared keys. Implementations MAY 
support IKE with X.509 certificates and they MAY support Kerberos using symmetric 
keys. For more information on the PacketCable use of IKE, refer to section 6.2.2. For 
more information on the PacketCable use of Kerberos with symmetric keys, refer to 
sections 6.4.3 and 6.5. 

The key management protocol ensures that there is always a valid, non-expired MGC – 
SG secret. 
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7.5.4.3 CMS – SG Interface 
Key management for the CMS – SG interface is either IKE or Kerberos. Implementations 
MUST support IKE with pre-shared keys. Implementations MAY support IKE with 
X.509 certificates and they MAY support Kerberos using symmetric keys. For more 
information on the PacketCable use of IKE, refer to section 6.2.2. For more information 
on the PacketCable use of Kerberos with symmetric keys, refer to sections 6.4.3 and 6.5. 

The key management protocol ensures that there is always a valid, non-expired CMS – 
SG secret.  

7.5.5 MGC-MG-CMS-SG Summary Security Profile Matrix 

Table 30. Security Profile Matrix – TCAP/IP & TGCP 

 TCAP-IP, ISUP-IP (MGC - SG) TGCP (MG – MGC) TCAP-IP (CMS - SG) 
authentication yes yes yes 
access control yes yes yes 
integrity yes yes yes 
confidentiality yes yes yes 
non-repudiation no no no 
security 
mechanisms 

IPsec 
IKE or Kerberos  

IPsec 
IKE or Kerberos 

IPsec 
IKE or Kerberos 

 

7.6 Media Stream 
This security specification allows for end-to-end ciphersuite negotiation, so that the 
communicating parties can choose their preferred encryption and authentication 
algorithms for the particular communication.  

7.6.1 Security Services 

7.6.1.1 RTP 
Authentication: End-to-end authentication cannot be required, because the initiating party 
may want to keep their identity private. Optional end-to-end exchanges for both 
authentication and additional key negotiation are possible but are outside of the scope for 
PacketCable.  

Encryption: The media stream between MTAs and/or MGs should be encrypted for 
privacy. Without encryption, the stream is vulnerable to eavesdropping at any point in the 
network. 

Key Distribution via the CMS, a trusted third party, assures the MTA (or MG) that the 
communication was established through valid signaling procedures, and with a valid 
subscriber. All this guarantees confidentiality (but not authentication). 

Message Integrity: It is desirable to provide each packet of the media stream with a 
message authentication code (MAC). A MAC ensures the receiver that the packet came 
from the legitimate sender and that it has not been tampered with en route. A MAC 
defends against a variety of potential known attacks, such as replay, clogging, etc. It also 
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may defend against as-yet-undiscovered attacks. Typically, a MAC consists of 8 or more 
octets appended to the message being protected. In some situations, where data 
bandwidth is limited, a MAC of this size is inappropriate. As a tradeoff between security 
and bandwidth utilization, a short MAC consisting or 2 or 4 octets is specified and 
selectable as an option to protect media stream packets. Use of the MAC during an end-
to-end connection is optional; whether it is used or not is decided during the end-to-end 
ciphersuite negotiation (see section 7.6.2.3.1). 

Low complexity: Media stream security must be easy to implement. Of particular concern 
is a PSTN gateway, which may have to apply security to thousands of media streams 
simultaneously. The encryption and MAC algorithms used with the PSTN gateway must 
be of low complexity so that it is practical to implement them on such a scale. 

7.6.1.2 RTCP 
Authentication: see the above section. 

Encryption: within PacketCable, RTCP messages are not permitted to contain the identity 
of the RTCP termination endpoint. Snooping on RTCP messages, therefore, does not 
reveal any subscriber-specific information but may reveal network usage and reliability 
statistics. RTCP encryption is optional 

Message Integrity: RTCP signaling messages (e.g., BYE) can be manipulated to cause 
denial-of-service attacks and alteration of reception statistics. To prevent these attacks, 
message integrity should be used for RTCP. 

7.6.2 Cryptographic Mechanisms 
MTAs and MGs MUST have an ability to negotiate a particular encryption and 
authentication algorithm. If media security parameters are negotiated and RTP encryption 
is on (Transform ID is not RTP_ENCR_NULL), each media RTP packet MUST be 
encrypted for privacy. If RTP encryption is on, encryption MUST be applied to the RTP 
payload and MUST NOT be applied to the RTP header. Security MUST NOT be applied 
to RTP packets if the negotiated RTP ciphersuite is AUTH_NULL and 
RTP_ENCR_NULL. Each RTP packet MAY include an optional message authentication 
code (MAC). The MAC algorithm can also be negotiated. The MAC computation MUST 
span the packet’s unencrypted header and encrypted payload. The receiver MUST 
perform the same computation as the sender and it MUST discard the received packet if 
the value in the MAC field does not match the computed value.  

Keys for the encryption and MAC calculation MUST be derived from the End-End 
secret, which is exchanged between sending and receiving MTA as described in section 
7.6.2.3.1. 

7.6.2.1 RTP Messages 
Figure 18 shows the format of an encoded RTP packet. PacketCable MUST adhere to the 
RTP packet format as defined by RFC 1889 and RFC 1890 after being authenticated and 
decrypted (where the MAC bytes, if included, are stripped off as part of the 
authentication).   
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The packet’s header consists of 12 or more octets, as described in [13]. The only field of 
the header that is relevant to the encoding process is the timestamp field. 

The RTP header has the following format (RFC-1889): 

 

0 1  2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
320 1

Timestamp
Synchronization Source (SSRC) Identifier

Contributing Source (CSRC) Identifier

V=2 P X CC M PT Sequence Number

 

Figure 17. RTP Packet Header Format 

The first twelve octets are present in every RTP packet, while the list of CSRC identifiers 
is present only when inserted by a mixer.  
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payload
(0 or more octets)

. . .
(4 or more octets)

. . .
(4 octets)

optional MAC
(0, 2, or 4 octets)

timestamp
(4 octets)

authenticated

encrypted

header

 

Figure 18. Format of Encoded RTP Packet 

In PacketCable, an RTP packet will carry compressed audio from the sender’s voice 
codec, or it will carry a message describing one or more events such as a DTMF tone, 
trunk or line signaling, etc. For simplicity, the former is referred to as a “voice packet” 
and the latter as an “event packet.” 

A voice packet’s payload consists of compressed audio from the sender’s voice codec. 
The length of the payload is variable and depends on the voice codec as well as the 
number of codec frames carried by the packet. 

An event packet’s payload consists of a message describing the relevant event or events. 
The format of the message is outside the scope of this specification. The length of the 
payload is variable, but it will not exceed a known, maximum value. 

For either type of packet, the payload MUST be encrypted. If the optional MAC is 
selected, the MAC field is appended to the end of the packet after the payload.  

Parameters representing RTP packet characteristics are defined as follows:  

• Nc, the number of octets in one frame of compressed audio. Each codec has a well-
defined value of Nc. In the case of a codec that encodes silence using short frames, Nc 
refers to the number of octets in a nonsilent frame.  
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• Nu, the number of speech samples in one frame of uncompressed audio. The number 
of speech samples represented by a voice packet is an integral multiple of Nu.  

• Nf, the frame number. The first frame of the sender’s codec has a value of zero for Nf. 
Subsequent frames increment Nf by one. Nf increments regardless of whether a frame 
is actually transmitted or discarded as silent.  

• Mf, the maximum number of frames per packet. Mf is determined by the codec’s 
frame rate and by the sender’s packetization rate. The packetization rate is specified 
during communications setup. For NCS signaling, it is a parameter in the 
LocalConnectionOptions – see [3].  

For example, suppose the speech sample rate is 8,000 samples/sec, the frame rate is 
10 msec, the packetization rate is 30 msec, and the compressed audio rate is 16,000 
bits/sec. Then Nc = 20, Nu = 80, Mf = 3, and Nf counts the sequence 0, 1, 2. 

Ne, the maximum number of bytes that might be sent within the duration of one codec 
frame. It is assumed that an event packet can have a payload as large as that of a 
voice packet, but no longer. In the case of a block cipher, the cryptographic keys do 
not change after midstream codec changes. When a codec change does not require a 
corresponding key change, the value of Ne MUST be calculated as follows: 

Ne = MAX { NcK } for K = 1, … N 

Where N1, N2, … NK are the different frame sizes for codecs that are supported by a 
particular endpoint. 

Otherwise, Ne = Nc , where Nc is the frame size for the current codec.  

• Nm, the number of MAC octets. This value is 0, if the optional MAC is not selected; 
or 2 or 4, representing the MAC size if the optional MAC is selected. 



PKT-SP-SEC-I07-021127 PacketCableTM 1.x Specifications 

148 CableLabs  11/27/02 

Header Timestamp CSCI Payload MMH MAC

Nm
(bytes)

octet octet octet octet octet

S S S S S S S S S S S S S S S

Frame N (N-1) Frame N (1) Frame N (N+1)

Mf (Frames / Packet)

Nc (Octets / Frames)

Compressed Frame

Uncompressed Frame

Nu (Samples)

 

Figure 19. RTP Packet Profile Characteristics 

7.6.2.1.1 RTP Timestamp 
According to RFC1889, the timestamp field is a 32-bit value initially chosen at random. 
to PacketCable, the timestamp MUST increment according to the codec sampling 
frequency. The timestamp in the RTP header MUST reflect the sampling instant of the 
first octet in each RTP packet presented as offset from the initial random timestamp 
value. The timestamp field MAY be used by the receiver to synchronize its decryption 
process to the encryption process of the sender.  

Based on the definition of the timestamp and the packet parameters described in the 
previous section, the timestamp MUST equate to the value: ((Nf*Nu) + (RTP Initial 
Timestamp)) modulo 232, where Nf is the frame number of the first frame included in the 
packet.  

7.6.2.1.2 Packet Encoding Requirements 
Prior to encoding the packets of an RTP stream, the sending MTA MUST derive the keys 
and parameters from the End-End Secret it shares with the receiving MTA, as specified 
in section 7.6.2.3.3.  

An MTA MUST derive two distinct sets of these quantities, one set for processing 
outgoing packets and another set for processing incoming packets.  

7.6.2.1.2.1 Encryption and MMH MAC Option 

7.6.2.1.2.1.1 Deriving an MMH MAC Key 
The MMH MAC Key size MUST be determined before generating the MMH MAC Key.  
The following algorithm specifies how to derive the MMH MAC Key when being used 
with both block ciphers and stream ciphers. 
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MMH MAC key size = (Mf * Ne) + Nh + Nm - 2 + P 

Where: Mf is the maximum number of frames per packet; Ne is maximum number of 
octets in one frame of compressed audio; Nh is the maximum number of octets in the RTP 
header, as defined in section 7.6.2.1; and Nm is the number of octets in the MAC. 
Therefore, (Mf * Ne) + Nh represents the maximum size of an RTP packet, and Nm – 2 
represents the additional two octets that are added to the key size when a four octet MMH 
MAC is used. (The key size is the same as the maximum RTP packet size when a two 
octet MMH MAC is used.) P is 0 or 1, as needed to make the MMH MAC key size an 
even number so that it is a multiple of the word size (2 bytes) used in the MMH MAC 
algorithm. 

The number of octets in the RTP header ranges from 12 to 72, inclusive, depending on 
the number of CSRC identifiers that are included [13]. An implementation MUST choose 
Nh at least as large as required to accommodate the maximum number of CSRC 
identifiers that may occur during a session. An implementation MUST set Nh to 72 if the 
maximum number of CSRC identifiers is otherwise unknown.  

Since the key derivation procedure generates the MMH MAC key last (see section 
7.6.2.3.3.1), it is not necessary to generate a complete MMH MAC key at the start of the 
RTP session. Implementations MAY generate less than the full MMH MAC key and 
generate the rest later, as needed. For example, instead of using a value of Ne that reflects 
all possible codecs supported by an endpoint, an implementation might initially derive an 
MMH key of size (Mf * Nc) + Nh + Nm – 2 + P, where Nc is the frame size for the 
currently selected codec. Later, after a codec change that results in a larger value of Nc, 
additional bytes for the MMH key may be generated. 

7.6.2.1.2.1.2 RTP Timestamp Wrap-around 
Let us say that the initial RTP timestamp value is T0. A timestamp wrap-around occurs 
when: 

• an RTP packet with sequence number i has a timestamp value 232 - ξ1 for 
0 < ξ1 <= ∆TMAX , where ∆TMAX is the maximum difference between two 
consecutive RTP timestamps. 

• an RTP packet with a sequence number i+1 has a timestamp value ξ2 for 0 <= 
ξ2 < ∆TMAX. 

The wrap-around point is between the RTP packets i and i+1. 

Each endpoint MUST keep a count NWRAP of RTP timestamp wrap-arounds, with a range 
from 0 to 216-1 and initialized to zero at the start of the connection NWRAP MUST be 
incremented by the sender right after the wrap-around point. NWRAP MUST also be 
incremented by the receiver before it decrypts any RTP packets after the wrap-around 
point.   

7.6.2.1.2.2 Block Cipher Encryption of RTP Packets 
The AES Block Cipher must be supported for encryption of RTP packets. The following 
sections specify how to support any Block Cipher, including AES. Refer to Appendix G 
for information on how to provide optional support for the RC4 stream cipher. 
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7.6.2.1.2.2.1 Block Termination 
If an implementation supports block ciphers, residual block termination (RBT) MUST be 
used to terminate streams that end with less than a full block of data to encrypt (see 
section 9.3).   

7.6.2.1.2.2.2 Initialization Vector 
An Initialization Vector (IV) is required when using a block cipher in CBC mode to 
encrypt RTP packet payloads. The size of an IV is the same as the block size for the 
particular block cipher. For example, the IV size for DESX and 3-DES is 64 bits, while 
for AES-CBC it is 128 bits. In order to calculate the IV each endpoint MUST keep track 
of NWRAP - the count of timestamp wrap-arounds during this RTP session, see section 
7.6.2.1.2.1.2  The IV MUST be calculated new for each RTP packet as specified below:  

1. Take the first N bits of the header, where N = min(cipher block size, RTP 
header size).  

2. In the result of the previous step replace the first 16 bits of the header with the 
16-bit value of NWRAP, MSB first.  

3. Pad the result of previous step with 0's on the right, so that the resulting bit 
string is equal in size to the cipher block size.  

4. XOR the result of the previous step with the RTP Initialization Key (defined in 
section 7.6.2.3.3.1). The size of the RTP Initialization Key is the same as the 
cipher block size.  

5. Encrypt the result of the previous step using the same block cipher that is used 
to encrypt RTP packets, but in ECB mode. The result of this step is the 
Initialization Vector for this RTP packet 

7.6.2.1.2.2.3 MMH-MAC Pad Derivation When Using a Block Cipher 
The MMH-MAC algorithm requires a one-time pad for each RTP packet. The MMH-
MAC Pad MUST be derived by performing the MMH Function on the Block Cipher’s 
IV. For a 2-byte MMH-MAC, use the MMH Function described in section 9.8.1.1; for a 
4-byte MMH-MAC, use the MMH Function described in section 9.8.1.2.  

The IV is calculated according to section 7.6.2.1.2.2.2 for block ciphers that require an 
IV. Even if the block cipher does not require an IV, one MUST be derived according to 
section 7.6.2.1.2.2.2 and used as the basis of the MMH-MAC Pad derivation. 

A key is also required by the MMH digest function in order to calculate the pad. The 
MMH MAC key derived in section 7.6.2.3.3.1 MUST be truncated according to section 
9.8.2.3 and MUST then be used as the key to the MMH digest. Accordingly, the MMH 
MAC key is truncated to: 

<size of IV> + Nm – 2 

Where <size of IV> is 16 bytes for AES, Nm is the size of the MMH MAC in bytes, as 
defined in section 7.6.2.1, and Nm – 2 represents the additional two octets that are added 
to the key size when a four octet MMH MAC is used). (The truncated key size is the 
same as the IV size when a two octet MMH MAC is used.) 
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7.6.2.1.3 Packet Decoding Requirements 
Prior to decoding the packets of an RTP stream, the receiving MTA MUST derive the 
keys and parameters from the End-End Secret it shares with the sending MTA, as 
specified in section 7.6.2.3.3.  

The derived quantities MUST match the corresponding quantities at the sending MTA.  

7.6.2.1.3.1 Timestamp Tolerance Check 
Before processing a received packet, the receiver SHOULD perform a sanity check on 
the timestamp value in the RTP header, consisting of items (1) and (2) below:  

1. Beginning with the RTP timestamp in the first packet received from a sender, 
the receiver calculates an expected value for the timestamp of the sender’s 
next RTP packet based on timestamps received in the sender’s previous 
packets for the session.  

2. The next packet is rejected without being processed if its timestamp value is 
outside a reasonable tolerance of the expected value. (Timestamps from 
rejected packets are not to be used to predict future packets). The tolerance 
value is defined to be:  

a. sufficiently tight to ensure that an invalid timestamp value cannot derail 
the receiver's state so much that it cannot quickly recover to decrypting 
valid packets.  

b. able to account for known differences in the expected and received 
timestamp values, such as might occur at call startup, codec switch over 
and due to sender/receiver clock drift.  

If the timestamp value in the RTP headers from a sender never comes back within the 
acceptable range, the receiver discontinues the session.  

At the receipt of each packet, the receiver adjusts its time relationship with the sender 
within the acceptable tolerance range of estimated values.  

7.6.2.1.3.2 Packet Authentication 
If authentication is used on an RTP packet stream, verification of the MAC MUST be the 
first step in the packet decoding process. When the timestamp tolerance check is 
performed, the MAC MAY be verified on packets with valid RTP timestamps 
immediately after the check is completed.  

If the MAC does not verify, the packet MUST be rejected.   
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7.6.2.2 RTCP Messages 

7.6.2.2.1 RTCP Format 
RFC 1889 defines the packet format of RTCP messages.  

v=2 p count pkt type length

SSRC

 

Figure 20. RTCP Packet Format 

The RTCP packet type could be SR (sender reports), RR (receiver reports), SDES (source 
description), BYE (leaving conference), and APP (application specific function). The 
length varies depending on the message type, but generally around 40 bytes. 

7.6.2.2.2 RTCP Encryption 
RTCP messages MUST always be encrypted in their entirety when the negotiated 
encryption algorithm is a block cipher in CBC mode. RTCP messages MUST NOT be 
encrypted when the negotiated encryption algorithm is RTCP_ENCR_NULL. However, 
the encoded RTCP messages MUST still be formatted according to section 7.6.2.2.2 
when RTPC_ENCR_NULL is selected in conjunction with a non-NULL authentication 
algorithm (e.g., HMAC-SHA1-96 or HMAC-MD5-96).  Security MUST NOT be applied 
to RTCP packets if the negotiated RTCP ciphersuite is RTCP_AUTH_NULL and 
RTCP_ENCR_NULL. After the message is encrypted, an additional header and MAC 
(Message Authentication Code) are added. The result packet has the format in the 
following diagram. 

sequence number (4 bytes)

IV

Encrypted RTCP message

MAC

 
Figure 21. RTCP Encrypted Packet Format 
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The first 4 bytes MUST be the sequence number, MSB first. The initial sequence number 
for each direction of traffic MUST be 0. Afterwards, the sequence number for each 
direction MUST be incremented by 1. Generally, one RTCP message is sent every 5 
seconds for each channel. Thus 32 bits for the sequence number field would be big 
enough for any connections without wrapping around. 

The IV (Initialization Vector) MUST immediately follow the sequence number. The IV 
MUST be randomly generated by the sender for each RTCP message and the IV size 
MUST be the same as the block size for the selected block cipher.  

The original cleartext RTCP message encrypted in its entirety MUST immediately follow 
the IV. The MAC (Message Authentication Code) computed over the concatenation of 
the sequence number, IV and the encrypted message MUST follow the encrypted RTCP 
message. The size of the MAC is algorithm-dependent. 

7.6.2.2.3 Sequence Numbers 
The receiver of RTCP messages SHOULD keep a sliding window of the RTCP sequence 
numbers. The size of the sliding window WRTCP depends on the reliability of the UDP 
transport and is locally configured at each endpoint. WRTCP SHOULD be 32 or 64. The 
sliding window is most efficiently implemented with a bit mask and bit shift operations. 

When the receiver is first ready to receive RTCP packets, the first sequence number in 
this window MUST be 0 and the last MUST be WRTCP – 1. All sequence numbers within 
this window MUST be accepted the first time but MUST be rejected when they are 
repeated. All sequence numbers that are smaller than the “left” edge of the window 
MUST be rejected.  

When an authenticated RTCP packet with a sequence number that is larger than the 
“right” edge of the window is received, that sequence number is accepted and the “right” 
edge of the window is replaced with this sequence number. The “left” edge of the 
window is updated in order to maintain the same window size. 

When for a window (SRIGHT – WRTCP + 1, SRIGHT), sequence number SNEW is received and 
SNEW > SRIGHT, then the new window becomes: 

(SNEW – WRTCP + 1, SNEW) 

7.6.2.2.4 Block Termination 
Residual block termination (RBT) MUST be used to terminate RTCP messages that end 
with less than a full block of data to encrypt (see section 9.3).  

7.6.2.2.5 RTCP Message Encoding 
Each RTCP message MUST be encoded using the following procedure:  

1. A random IV is generated.  

2. The entire RTCP message is encrypted with the selected block cipher and the 
just generated IV.  

3. The current sequence number, IV and the encrypted RTCP message are 
concatenated in that order.  
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4. The MAC is computed (using the selected MAC algorithm) over the result in 
c) and appended to the message.  

7.6.2.2.6 RTCP Message Decoding 
Each RTCP message MUST be decoded using the following procedure:  

1. Regenerate the MAC code and compare to the received value. If the two don’t 
match, the message is dropped.  

2. The sequence number is verified based on the sliding window approach 
specified in section 7.6.2.2.3. If the sequence number is rejected, the message 
is dropped. The sliding window is also updated as specified in section 
7.6.2.2.3.  

3. The RTCP message is decrypted with the shared encryption key and with the 
IV that is specified in the message header.  

7.6.2.3 Key Management 
The key management specified here for end-to-end communication is identical in the 
cases of the MTA–to-PSTN and MTA-to-MTA communications. In the case of the 
MTA-to-PSTN communications, one of the MTAs is replaced by a MG (Media 
Gateway).  

The descriptions below refer to MTA-to-MTA communications only for simplicity. In 
this context, an MTA actually means a communication end point, which can be an MTA 
or a MG. In the case that the end point is a MG, it is controlled by an MGC instead of a 
CMS. 

During call setup MTA0 (the initiating MTA) and MTA1 (the terminating MTA) 
exchange randomly generated keying material, carried inside the call signaling messages. 
Call signaling messages are themselves protected by IPsec ESP at each hop. This keying 
material is then used to generate the AES-CBC keys used to protect both RTP and RTCP 
messages between the two MTAs. 

MTA0 generates two randomly generated values: End-End Secret0 (46-bytes) and Pad1 
(46-bytes).  

MTA1 generates two randomly generated values: End-End Secret1 (46-bytes) and Pad0 
(46-bytes). 

MTA0 uses End-End Secret1 and Pad1 to derive encryption and authentication keys to be 
applied to its outbound traffic and used by MTA1 to decrypt and authenticate it. 

MTA1 uses End-End Secret0 and Pad0 to derive encryption and authentication keys to be 
applied to its outbound traffic, and used by MTA0 to decrypt and authenticate it. As a 
result, both MTA0 and MTA1 contribute randomly generated bytes to all of the keying 
material for both RTP and RTCP traffic.  

The distribution of the end-to-end keying material is specific to the call signaling from 
[3] and is described in the following subsections. 
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7.6.2.3.1 Key Management over NCS 
The diagram below shows the actual NCS messages that are used to carry out the 
distribution of end-to-end keys. Each NCS message that is involved in the end-to-end key 
management is labeled with a number of the corresponding key management interface. 

The name of each NCS message is in bold. Below the NCS message name is the 
information needed in the NCS message, in order to perform end-to-end key distribution. 
Messages between the CMSes are labeled as SIP+ messages.  
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Figure 22. End-End Secret Distribution over NCS 
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This figure shows that before the start of this scenario, both the source and destination 
MTAs had already established an IPsec ESP session with their local CMS. It is also 
assumed that CMS-CMS signaling is secure. 

This allows the End-End Secrets to be distributed securely, with privacy, integrity and 
anti-replay mechanisms already in place. The CMSes have access to this keying material 
but are trusted by the MTAs. 

7.6.2.3.1.1 NULL Ciphersuite Combinations and Ordering 
RTP_ENCR_NULL MUST only be used in conjunction with AUTH_NULL. RTP 
packets with encryption and without authentication are not allowed.  

RTCP_AUTH_NULL MUST only be used in conjunction with RTCP_ENCR_NULL. 
RTCP messages with authentication and without encryption are not allowed.  

Both RTP and RTCP security must be enabled or disabled together. The following five 
combinations MUST NOT be generated.   

• RTP NULL encryption and RTP non-NULL authentication  

• RTCP non-NULL encryption & RTCP NULL authentication  

• RTP non-NULL encryption and RTCP NULL authentication  

• RTP NULL encryption and RTCP non-NULL authentication  

• RTP NULL encryption and RTCP non-NULL encryption.  

If the MTA receives LocalConnectionOptions parameter that meet the above 
combinations, the MTA MUST return the error code 524 (Internal inconsistency in 
LocalConnectionOptions). Otherwise, if the MTA receives RemoteConnectionDescriptor 
parameter that meet the above combinations, then the MTA MUST return the error code 
505 (Unsupported RemoteConnectionDescriptor).  

For both RTP and RTCP ciphersuite lists exchanged during ciphersuite negotiation, the 
combination of NULL encryption and NULL authentication algorithms MUST always be 
included last. For example, the list of RTP ciphersuites “60/50;62/51;64/51” is not 
allowed, while the list of RTP ciphersuites “62/51;64/51;60/50”, or “60/50” is allowed. If 
the list of ciphersuites in LocalConnectionOptions includes the NULL authentication and 
NULL encryption combination (60/50 for RTP, and 80/70 for RTCP), but this 
combination is not last, the MTA MUST return error code 524 (Internal inconsistency in 
LocalConnectionOptions). Otherwise, if this combination is not last in a 
RemoteConnectionDescriptor, error code 505 (Unsupported 
RemoteConnectionDescriptor) MUST be returned.  

7.6.2.3.1.2 Ciphersuite Negotiation For MTAs 
This specification only defines security for RTP/RTCP media streams, therefore 
ciphersuite negotiation applies only to RTP/RTCP media streams. Use of security for any 
other type of media streams is not specified. 

An MTA MUST perform RTP and RTCP ciphersuite negotiation when processing any of 
the following:  
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• a CreateConnection command  

• a ModifyConnection command with a RemoteConnectionDescriptor parameter  

• a ModifyConnection command where the LocalConnectionOptions parameter 
includes ciphersuite fields.  

 An MTA MUST NOT perform ciphersuite negotiation in any other case. The steps 
involved in ciphersuite negotiation are the following:  

1. An approved list of ciphersuites is formed by taking the intersection of the 
internal list of ciphersuites and ciphersuites allowed by the 
LocalConnectionOptions parameter, subject to the constraints specified in section 
7.6.2.3.1.1. The internal list of ciphersuites contains the ciphersuites that the MTA 
supports and which this specification requires. If the LocalConnectionOptions 
parameter was not included, or if the ciphersuite fields were not provided in the 
LocalConnectionOptions parameter, the approved list of ciphersuites contains the 
previously agreed upon approved list, or if no such list exists, the internal list of 
ciphersuites.  

2. If the approved list of ciphersuites is empty, an error response MUST be 
generated, error code 532 (Unsupported value(s) in LocalConnectionOptions). 

3. Otherwise, a negotiated list of ciphersuites is formed by taking the intersection of 
the approved list of ciphersuites and ciphersuites allowed by the 
RemoteConnectionDescriptor parameter (if present), subject to the constraints 
specified in section 7.6.2.3.1.1. If a RemoteConnectionDescriptor was not 
provided, the negotiated list of ciphersuites thus contains the approved list of 
ciphersuites. If a RemoteConnectionDescriptor parameter is provided without 
fields containing the RTP and RTCP ciphersuite lists, then the RTP 
AUTH_NULL/RTP_ENCR_NULL and 
RTCP_AUTH_NULL/RTCP_ENCR_NULL ciphersuites are assumed for the 
remote endpoints, and the regular ciphersuite negotiation process continues (i.e., 
the negotiated list of ciphersuites is formed by taking the intersection of the 
approved list of ciphersuites and the RTP AUTH_NULL/RTP_ENCR_NULL and 
RTCP_AUTH_NULL/RTCP_ENCR_NULL ciphersuites).  

4. If the negotiated list of ciphersuites is empty, a ciphersuite negotiation failure has 
occurred and an error response MUST be generated. If a 
RemoteConnectionDescriptor parameter was provided, two different error codes 
can be returned:  

a. If the endpoint does not support any of the ciphersuites allowed by the 
RemoteConnectionDescriptor, error code 505 (Unsupported 
RemotedConnectionDescriptor) MUST be used.  

b. If the endpoint does support at least one of the ciphersuites, but the 
negotiated list of ciphersuites ended up being empty, error code 506 
(Unable to satisfy both LocalConnectionOptions and 
RemoteConnectionDescriptor) MUST be used.  
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5. Otherwise, ciphersuite negotiation has succeeded, and the negotiated list of 
ciphersuites is returned in the LocalConnectionDescriptor parameter. Note that 
both LocalConnectionOptions and the RemoteConnectionDescriptor parameters 
can contain a list of ciphersuites that MUST be ordered by preference provided by 
the CMS in the RemoteConnectionDescriptor parameter. When both are supplied, 
the MTA SHOULD adhere to the preferences provided by the CMS in the 
RemoteConnectionDescriptor parameter, and otherwise, the MTA SHOULD 
adhere to the preferences provided in the LocalConnectionOptions parameter. If 
the MTA receives a RemoteConnectionDescriptor parameter with 
AUTH_NULL/RTP_ENCR_NULL for RTP or 
RTCP_AUTH_NULL/RTCP_ENCR_NULL for RTCP that is not last in the list, 
it MUST return the error code 505 (Unsupported RemoteConnectionDescriptor).  

The following requirements apply during ciphersuite negotiation: 

• A CMS MUST be capable of sending the allowable lists of ciphersuites for RTP 
and/or RTCP in the LocalConnectionOptions parameter of a CreateConnection 
command (CRCX) or a ModifyConnection command (MDCX) in the order of 
preference specified by the operator subject to the constraints specified in section 
7.6.2.3.1.1  

• Whenever possible, a MTA SHOULD select the first supported ciphersuite for RTP 
and the first supported ciphersuite for RTCP in the RemoteConnectionDescriptor 
parameter. This allows the MTA to immediately start sending RTP and RTCP packets 
to the other MTA.  An MTA MAY instead select alternate ciphersuites specified by 
the other MTA.  

• When returning a LocalConnectionDescriptor, an MTA MUST include an End-End 
Secret (for incoming RTP and RTCP packets) and MAY include a Pad value (for 
outgoing RTP and RTCP packets). The following rules apply: 

1. The MTA MUST generate a new End-End Secret when responding to a 
CreateConnection command and the negotiated list of RTP and RTCP 
ciphersuites contains at least one non-NULL selection each.  

2. The MTA MUST generate a new End-End Secret when responding to a 
ModifyConnection command if the remote connection address (e.g., IP 
Address) or the remote transport address (e.g., port) are not identical to what 
was previously assigned.  

3. The MTA MUST use the existing End-End Secret when responding to a 
ModifyConnection command where there was no previous 
RemoteConnectionDescriptor provided.  

4. The MTA MUST generate a new Pad when responding to a CreateConnection 
command without a RemoteConnectionDescriptor, and the negotiated lists of 
RTP and RTCP ciphersuites contains at least one non-NULL selection each.  

5. The MTA MUST generate a new Pad when generating a new End-End Secret 
in response to a ModifyConnection command without a 
RemoteConnectionDescriptor.  
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6. If not otherwise required, the MTA MAY generate a new Pad when 
generating a new End-End Secret.  

7. The MTA MUST NOT generate a new Pad when not generating a new End-
End Secret.  

• If, in response to a CreateConnection command, the list of ciphersuites selected for 
RTP contains at least one non-NULL encryption or authentication algorithm, before 
sending the response message, an MTA MUST:  

1. Establish inbound RTP security based on the preferred (first) RTP ciphersuite, 
its End-End Secret (which it generated), and a Pad value (if included in the 
RemoteConnectionDescriptor), as described in section 7.6.2.3.3.1 of this 
specification.  

2. If a RemoteConnectionDescriptor was included and it contains media security 
attributes, establish outbound RTP security based on the selected RTP 
ciphersuite, End-End Secret (generated by the other MTA), and a Pad value 
(which it may have generated) as described in section 7.6.2.3.3.1 of this 
specification.  

3. If connection mode allows, be ready to receive RTP packets, which may 
arrive any time after the Response message is sent.  

• If, in response to a CreateConnection command, the list of ciphersuites for RTCP 
contains at least one non-NULL encryption algorithm, before sending the response 
message, an MTA MUST:  

1. Establish inbound RTCP security based on the preferred (first) RTCP 
ciphersuite, its End-End Secret (which it generated), and a Pad value (if 
included in the RemoteConnectionDescriptor), as described in section 
7.6.2.3.3.1 of this specification.  

2. If a RemoteConnectionDescriptor was included and it contained media 
security attributes, establish outbound RTCP security based on the selected 
RTCP ciphersuite, End-End Secret (generated by the far-end MTA), and a Pad 
value (which it may have generated) as described in section 7.6.2.3.3.1 of this 
specification.  

3. Be ready to receive RTCP packets, which may arrive any time after the 
Response message is sent.  

• If, in response to a ModifyConnection command that includes a 
RemoteConnectionDescriptor, and negotiated lists of ciphersuites for RTP and RTCP 
contain at least one non-NULL encryption or authentication algorithm each, before 
sending the response message, an MTA MUST:  

1. If a Pad was included in the RemoteConnectionDescriptor and it is different 
than a Pad that may have previously been received, remove any existing 
inbound RTP keys and generate new ones, based on the keys that are 
generated from both the End-End Secret (generated locally) and the Pad 
(generated by the other MTA). The MTA MUST re-initialize the RTP 



PKT-SP-SEC-I07-021127 PacketCableTM 1.x Specifications 

160 CableLabs  11/27/02 

timestamp if new keys are generated  The ciphersuites used for these inbound 
keys are taken from the RemoteConnectionDescriptor parameter just received 
from the CMS.   

2. If a Pad was included in the RemoteConnectionDescriptor and it is different 
than a Pad that may have previously been received, remove any existing 
inbound RTCP keys and generate new ones, based on the keys that are 
generated from both the End-End Secret (generated locally) and the Pad 
(generated by the other MTA). The MTA MUST re-initialize RTCP sequence 
numbers if new keys are generated. The ciphersuites used for these inbound 
keys are taken from the RemoteConnectionDescriptor parameter just received 
from CMS.   

3. If the RemoteConnectionDescriptor parameter was received without a Pad, 
check if the first RTP ciphersuite field in the RemoteConnectionDescriptor 
parameter differs from the one that the MTA originally selected. Also, check 
to see if a Pad had been previously received. If the ciphersuites differ, or if a 
Pad had been previously received, perform the following steps:  

a. Remove any existing inbound RTP key.  

b. If the new RTP ciphersuite is non-NULL, generate new inbound RTP 
keys and RTP timestamp from the same End-End Secret (generated 
locally) as the last time, as specified in section 7.6.2.3.3.1. 

4. If the RemoteConnectionDescriptor parameter was received without a Pad, 
check if the first RTCP ciphersuite field in the RemoteConnectionDescriptor 
parameter differs from the one that the MTA originally selected. Also, check 
to see if a Pad had been previously received. If the ciphersuites differ, or if a 
Pad had been previously received, perform the following steps:  

a. Remove any existing inbound RTCP key.  

b. If the new RTCP ciphersuite is non-NULL, generate new inbound 
RTCP keys and a RTCP sequence number from the same End-End 
Secret (generated locally) as the last time, as specified in section 
7.6.2.3.3.1.  

5. If the End-End Secret included in the RemoteConnectionDescriptor has 
changed or the negotiated RTP ciphersuite has changed, perform the 
following steps:  

a. Remove any existing outbound RTP keys.  

b. If the new list of RTP ciphersuites is non-NULL, generate new 
outbound RTP keys, based on the End-End Secret (generated by the 
other MTA) and the Pad (generated locally), and generate a new RTP 
timestamp.  

6. If the End-End Secret included in the RemoteConnectionDescriptor has 
changed or the negotiated RTCP ciphersuite has changed, perform the 
following steps:  
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a. Remove any existing outbound RTCP keys  

b. If the new list of RTCP ciphersuites is non-NULL, generate new 
outbound RTCP keys, based on the End-End Secret (generated by the 
other MTA) and the Pad (generated locally), and generate a new RTCP 
sequence number.  

7. Be ready to send RTCP messages to and receive RTCP messages from the 
remote MTA. If connection mode allows, be ready to send and receive RTP 
messages with the remote MTA. If the list of ciphersuites for RTP was sent 
within a ModifyConnection command, the CMS MAY send an inactive 
directive to the MTA in the same command. The MTA should be returned to 
active status only when the new ciphersuite negotiation is complete. 

• If, in response to a ModifyConnection command that does not include a 
RemoteConnectionDescriptor, and negotiated lists of ciphersuites for RTP and RTCP 
contain at least one non-NULL encryption or authentication algorithm each, before 
sending the response message, an MTA MUST:  

1. If the first RTP ciphersuites field in the negotiated list differs from the one 
that the MTA previously selected, then perform the following steps:  

a. Remove any existing inbound RTP keys.  

b. Generate new inbound RTP keys from the previous End-End Secret 
(locally generated) and Pad (generated by the other MTA), and 
generate a new RTP timestamp.  

2. If the first RTCP ciphersuites field in the negotiated list differs from the one 
that the MTA previously selected, then perform the following steps:  

a. Remove any existing inbound RTCP keys.  

b. Generate new inbound RTCP keys from the previous End-End Secret 
(locally generated) and Pad (generated by the other MTA), and 
generate a new RTCP sequence number.  

3. Be ready to send RTCP messages to and receive RTCP messages from the 
remote MTA. If connection mode allows, be ready to send and receive RTP 
messages with the remote MTA. If the list of ciphersuites for RTP was sent 
within a ModifyConnection command, the CMS MAY send an inactive 
directive to the MTA in the same command. The MTA should be returned to 
active status only when the new ciphersuite negotiation is complete.  

• If an MTA receives a ModifyConnection command, and the resulting intersection of 
ciphersuites results in NULL encryption and authentication algorithms for RTP and 
RTCP, then the MTA MUST remove any existing RTP and RTCP keys and do not 
perform security on the RTP and RTCP packets.  

• If an MTA returns a LocalConnectionDescriptor parameter, it MUST return the latest 
negotiated list of ciphersuites and the Secret and Pad (if generated) when necessary.  

The following message flow is informative. Each of the numbered flows in Figure 22 is 
described below: 
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(1) CMS0 -> MTA0 

CMS0 may send the allowable lists of ciphersuites for the new communication to 
MTA0 in the CreateConnection (CRCX) command, inside the 
LocalConnectionOptions parameter. The ciphersuites are provided in the order of 
preference specified by the operator subject to the constraints specified in section 
7.6.2.3.1.1. There can be two lists of ciphersuites, one list for RTP security and 
one for RTCP security. Each of these two lists may be included to specify the list 
of allowable ciphersuites, however ciphersuite negotiation will take place for both 
RTP and RTCP irrespective of whether the lists are included or not. 

If RTP and/or RTCP ciphersuites are included but do not adhere to the rules 
provided in section 7.6.2.3.1.1, the MTA returns an error, e.g. 524 (Internal 
inconsistency in LocalConnectionOptions). 

(2) MTA0 -> CMS0 

MTA0 performs ciphersuite negotiation according to the ciphersuite negotiation 
procedure described above, and returns a non-empty list of RTP ciphersuites in 
the response message. This list contains the list of MTA0’s list of allowed 
ciphersuites in the order of preference specified by CMS0 if the 
LocalConnectionOptions ciphersuites parameter(s) is included in step (1), as 
specified above. If RTP or RTCP ciphersuite negotiation fails, MTA0 returns an 
error code as specified above. 

If the lists of negotiated ciphersuites for RTP and RTCP contain at least one non-
NULL combination each, MTA0 generates the End-End Secret0 and Pad1 value 
and returns them along with the ciphersuites in the LocalConnectionDescriptor 
parameter. For further details on the NCS message syntax, refer to [3]. Note that 
the NULL authentication and NULL encryption combinations will be at the end 
of each ciphersuite list. 

The response message also includes the ConnectionId and the EndpointId for 
MTA0 as described in [3]. The pair (ConnectionId, EndpointId) uniquely 
identifies this connection, where the EndpointId is an NCS identifier for MTA0. 

If the list of ciphersuites for RTP contains at least one non-NULL encryption or 
authentication algorithm, before sending the response message, MTA0 must: 

1. Establish inbound RTP security based on its preferred (first) RTP 
ciphersuite and End-End Secret0, as described in section 7.6.2.3.3.1 of this 
specification.  

2. If connection mode allows,be ready to receive RTP packets, which may 
arrive any time after this message is sent by the MTA0. If the list of 
ciphersuites for RTP was sent within a ModifyConnection command, the 
CMS may send an inactive directive to the MTA in the same command. 
The MTA should be returned to active status only when the new 
ciphersuite negotiation is complete. 

If the list of ciphersuites for RTCP contains at least one non-NULL encryption 
algorithm, before sending the response message, MTA0 must: 
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1. Establish inbound RTCP security based on its preferred (first) RTCP 
ciphersuite and End-End Secret0, as described in section 7.6.2.3.3.1 of this 
specification. 

2. Be ready to receive RTCP packets, which may arrive any time after this 
message is sent by MTA0. 

If MTA1 decides to use an alternate ciphersuite listed by MTA0, MTA0 will later 
have to update its RTP and RTCP keys. If MTA1 decides to send MTA0 packets 
before ciphersuite negotiation had completed, processing on those packets at 
MTA0 will fail (since it assumed a different ciphersuite). If media stream security 
is disabled (AUTH_NULL/RTP_ENCR_NULL ciphersuite list for RTP and 
RTCP_AUTH_NULL/RTCP_ENCR_NULL for RTCP), MTA0 will later have to 
discard its keys and send and receive RTP and RTCP packets without any 
security. 

(3) CMS0 -> CMS1 

CMS0 must send End-End Secret0 (if included), Pad1 (if included) and the list of 
RTP and RTCP ciphersuites to CMS1 (local to MTA1) as selected by MTA0. 
CMS1 will later forward this information to MTA1. Note that End-End Secret0 and 
Pad1 will not be included if the RTP and RTCP ciphersuites lists both contain 
only the NULL authentication and NULL encryption combination. 

(4) CMS1 -> MTA1 

CMS1 sends a CreateConnection to MTA1. Depending on the policy on CMS1, 
inside the LocalConnectionOptions parameter CMS1 may provide list(s) of 
approved RTP and RTCP ciphersuites. The ciphersuites are provided in the order 
of preference specified by the operator subject to the constraints specified in 
section 7.6.2.3.1.1. These ciphersuites should be what CMS1 policy allows.  

The RemoteConnectionDescriptor must be included in this CRCX command. It 
must contain End-End Secret0 (if sent in step (3))and Pad1 (if sent in step (3)) 
received from MTA0 (via CMS0). It must also contain the ciphersuites preferred 
by MTA0.  

(5) MTA1 -> CMS1 

MTA1 has received a CRCX message that contains both LocalConnectionOptions 
and RemoteConnectionDescriptor parameters and must follow the ciphersuite 
negotiation procedure described above to negotiate RTP and RTCP ciphersuites. 
This list will consist of MTA1’s allowed ciphersuites in the order of preference 
specified by CMS1 if the LocalConnectionOptions ciphersuites parameter is 
included in step (4). If RTP and RTCP ciphersuite negotiation succeeds and there 
is at least one RTP ciphersuite and at least one RTCP ciphersuite, then MTA1 
returns the negotiated list of ciphersuites in the subsequent response message, in 
the LocalConnectionDescriptor parameter, in the form of SDP attributes. Note 
that if media stream security is being disabled, the NULL authentication and 
NULL encryption combination will be the only entry in both the RTP and RTCP 
ciphersuites lists. If RTP or RTCP ciphersuite negotiation fails, MTA1 must return 
an error code as specified above. 
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In the event that MTA1 receives SDP in the RemoteConnectionDescriptor 
parameter without ciphersuites media attributes, MTA1 assumes that the lists of 
RTP and RTCP ciphersuites supported by the remote endpoint is RTP 
AUTH_NULL/RTP_ENCR_NULL and 
RTCP_AUTH_NULL/RTCP_ENCR_NULL.  

If the RTP and RTCP ciphersuites provided do not adhere to the rules provided in 
section 7.6.2.3.1.1, the MTA returns an error, e.g. 524 (Internal inconsistency in 
LocalConnectionOptions). 

Whenever possible, MTA1 should select the first supported ciphersuite for RTP 
and the first supported ciphersuite for RTCP in the RemoteConnectionDescriptor 
parameter. This allows MTA1 to immediately start sending RTP and RTCP 
packets to MTA0. MTA1 may instead select alternate ciphersuites specified by 
MTA0. MTA1 returns a response message, which includes lists of the selected 
ciphersuites inside the LocalConnectionDescriptor parameter, in the form of SDP 
attributes. The first ciphersuite in each list (one for RTP and one for RTCP) must 
be the one that was selected by MTA1. Additional ciphersuites in each list are 
alternatives in a prioritized order. If at any time, MTA0 wants to switch to one of 
the alternatives that were selected by MTA1, it would have to go through a new 
key negotiation. The response message must also include the ConnectionId 
(generated by MTA1) as specified in [3]. Thus, both End-End Secret0 and End-
End Secret1 are now associated with a pair (EndpointId, ConnectionId). 

If the lists of ciphersuites for RTP and RTCP contain at least one non-NULL 
selection each, then MTA1 must generate the End-End Secret1 for the incoming 
RTP and RTCP packets, MTA1 must and return it along with the ciphersuite lists 
in the LocalConnectionDescriptor parameter. If the lists of ciphersuites for RTP 
and RTCP contain at least one non-NULL selection each, MTA1 should also 
generate Pad0 and return it in the same LocalConnectionDescriptor parameter.  

Although the option of not generating Pad0 is provided in order to better support 
early media flows from MTA1, it results in MTA1 using a send key that is 
completely dependent on a random value generated by MTA0. In other words, 
privacy of the media stream generated by MTA1 in this case depends on the 
strength of MTA0’s random number generator. 

If the list of ciphersuites for RTP contains at least one non-NULL encryption or 
authentication algorithm, before sending the response message, MTA1 must:  

1. Establish inbound RTP security based on its selected RTP ciphersuite, 
End-End Secret1 and Pad1, as described in section 7.6.2.3.3.1 of this 
specification. 

2. Establish outbound RTP security based on its selected RTP ciphersuite 
and End-End Secret0, as described in section 7.6.2.3.3.1 of this 
specification. If Pad0 was generated by MTA1, the outbound RTP security 
will also be based on Pad0. 

3. If connection mode allows, be ready to receive RTP packets, which may 
arrive from MTA0 any time after this message is sent. 
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If the list of ciphersuites for RTCP contains at least one non-NULL encryption or 
authentication algorithm, before sending the response message, MTA1 must:  

1. Establish inbound RTCP security based on its selected RTCP ciphersuite, 
End-End Secret1 and Pad1 as described in section 7.6.2.3.3.1 of this 
specification. 

2. Establish outbound RTCP security based on its selected RTCP ciphersuite 
and End-End Secret0, as described in section 7.6.2.3.3.1 of this 
specification. If Pad0 was generated by MTA1, the outbound RTCP 
security will also be based on Pad0.  

3. Be ready to receive RTCP messages, which may arrive from MTA0 any 
time after this message is sent. 

Any time after sending this response message to the CMS1, MTA1 may begin 
sending RTP and RTCP packets to MTA0. However, in the case that MTA1 
generated Pad0 or selected a different ciphersuite from the one preferred by 
MTA0, MTA0 will not be able to decrypt packets from MTA1, until MTA0 has 
received MTA1's SDP. 

(6) CMS1 -> CMS0 

CMS1 must forward the End-End Secret1, (if included) Pad0 (if included) and the 
selected ciphersuites sent from MTA1 to CMS0. Note that End-End Secret0 and 
Pad1 will not be included if the RTP and RTCP ciphersuites lists both contain 
only the NULL authentication and NULL encryption algorithm combination. 

(7) CMS0 -> MTA0 

CMS0 may send to MTA0 in the ModifyConnection command, inside the 
LocalConnectionOptions parameter, the lists of allowed RTP and RTCP 
ciphersuites. These ciphersuites should be what CMS0 policy allows. (The reason 
that CMS0 is not required to send the lists of ciphersuites is because it might have 
already sent them to MTA0 in a CreateConnection command. CMS0 would send 
the ciphersuites again for consistency 

In the event that MTA0 receives SDP in the RemoteConnectionDescriptor 
parameter without fields containing ciphersuites media attributes, MTA0 assumes 
that the RTP and RTCP ciphersuite lists supported by the remote endpoint are 
AUTH_NULL/RTP_ENCR_NULL for RTP and 
RTCP_AUTH_NULL/RTCP_ENCR_NULL for RTCP. 

In the event that CMS0 received SDP from MTA1, the 
RemoteConnectionDescriptor parameter must be included in this 
ModifyConnection command. If present, it must contain the RTP and RTCP 
ciphersuites (and alternatives) selected by MTA1. If ciphersuites are included in 
the LocalConnectionOptions parameter or a RemoteConnectionDescriptor 
parameter is included with the ModifyConnection command, MTA0 must perform 
ciphersuite negotiation as described above. 
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If the RemoteConnectionDescriptor is not sent in this MDCX command, MTA0 
will still be able to receive RTP and RTCP messages but will be unable to send 
anything to MTA1. 

After receiving this message, MTA0 must: 

1. If Pad0 was received, remove its inbound RTP keys and replace them with 
new ones, based on the keys that are generated from both End-End Secret0 and 
Pad0. Re-initialize the RTP timestamp for the new keys. The ciphersuites used 
for these inbound keys are taken from the RemoteConnectionDescriptor just 
received from CMS0.  

2. If Pad0 was received, remove its inbound RTCP keys and replace them with 
new ones, based on the keys that are generated from both End-End Secret0 and 
Pad0. Re-initialize RTCP sequence numbers for the new keys. The 
ciphersuites used for these inbound keys are taken from the 
RemoteConnectionDescriptor just received from CMS0.  

3. If the RemoteConnectionDescriptor was received without Pad0, check if the 
first RTP ciphersuite in the RemoteConnectionDescriptor differs from the one 
that MTA0 selected in step (2). If they differ, perform the following steps: 

a. Remove the inbound RTP key. 

b. If the new RTP ciphersuite is non NULL, generate new inbound RTP 
keys and RTP timestamp from the same End-End Secret0 as the last 
time, as specified in section 7.6.2.3.3.1. 

4. If the RemoteConnectionDescriptor parameter was received without Pad0, 
check if the first RTCP ciphersuite field in the RemoteConnectionDescriptor 
parameter differs from the one that MTA0 selected in step (2). If they differ, 
perform the following steps: 

a. Remove the inbound RTCP key. 

b. If the new RTCP ciphersuite is non NULL, generate a new key based 
on the key generated from the same End-End Secret0 as the last time, 
but for the new authentication and/or encryption algorithms. 

5. If the RemoteConnectionDescriptor parameter was received, establish 
outbound RTP keys, based on End-End Secret1 and Pad1. 

6. If the RemoteConnectionDescriptor parameter was received, establish 
outbound RTCP keys, based on End-End Secret1 and Pad1. 

7. Be ready to send and receive RTCP messages with MTA1. If connection mode 
allows, be ready to send and receive RTP messages with MTA1. 

For full syntax of the NCS messages, please refer to the NCS signaling specification [3]. 

7.6.2.3.2 Ciphersuite Format 
Each ciphersuite for both RTP security and RTCP security MUST be represented as 
follows:  
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Authentication Algorithm (1 byte) – 
represented by 2 ASCII hex characters 
(using characters 0-9, A-F).  

Encryption Transform ID (1 byte) – 
represented by 2 ASCII hex characters 
(using characters 0-9, A-F).  

 
For the list of available transforms and their values, refer to section 6.6 for RTP security 
and 6.7 for RTCP security. For the exact syntax of how the Authentication Algorithm and 
the Encryption Transform ID are included in the signaling messages, refer to [3] for NCS. 

7.6.2.3.3 Derivation of End-to-End Keys 

7.6.2.3.3.1 Initial Key Derivation 
The End-End Secrets MUST be 46 bytes long. The Pad parameters MUST be 46 bytes 
long.  

Keys are independently derived by each MTA from either just the End-End Secret or 
from the End-End Secret and Pad concatenated together. The Pad may or may not be 
available – see the call flow details specified in section 7.6.2.3.1. 

The keys derived from one End-End Secret (and possibly a Pad) MUST be used to secure 
RTP and RTCP messages directed to only one of the MTAs. There is a separate End-End 
Secret and a separate Pad value for each direction, negotiated through NCS signaling. 
The keys MUST be derived as follows, in the specified order:  

1. RTP (media stream security). Derive a set of the following keys with the derivation 
function F(S, “End-End RTP Security Association”). Here, S is concatenation of the 
following binary values, each in MSB-first order:  

a. End-End Secret  

b. Pad (optional, if it was negotiated through signaling)  

The string “End-End RTP Security Association” is taken without quotes and without 
a terminating null character. Function F (specified in section 9.7) is used to 
recursively generate enough random bytes to produce all of the keys and other 
parameters that are specified below, in the listed order: 

a. RTP privacy key.  

b. RTP Initial Timestamp (integer value, 4 octets, Big Endian byte order 

c. RTP Initialization Key (required when using a block cipher to encrypt the RTP 
payload). The length MUST be the same as the selected cipher’s block size. 
This value is used to derive the IV according to 7.6.2.1.2.2. The resulting IV is 
used for the block cipher in CBC mode (if applicable) and for the random pad 
used to calculate the MMH-MAC.  

d. RTP packet MAC key (if MAC option is selected). The requirements for the 
MMH MAC key can be found in section 7.6.2.1.2.1.1. 

2. RTCP security. Derive a set of the following keys in the specified order with the 
derivation function F(S, “End-End RTP Control Protocol Security Association”). 
Here, S is concatenation of the following binary values: 

a. End-End Secret 
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b. Pad (optional, if it was negotiated through signaling) 

Function F (specified in section 9.7) is used to recursively generate enough random 
bytes to produce all of the keys that are specified below, in the listed order: 

a. RTCP authentication key. 

b. RTCP encryption key. 

7.6.2.4 RTP-RTCP Summary Security Profile Matrix 

Table 31. Security Profile Matrix – RTP & RTCP 

 RTP (MTA – MTA,  
MTA – MG) 

RTCP (MTA – MTA,  
MTA – MG, MG – MG) 

authentication optional(indirect)24   optional (indirect) 
access control optional optional 
integrity optional optional 
confidentiality optional optional 
non-repudiation no no 
security 
mechanisms 

Application Layer Security via 
RTP PacketCable Security Profile 
End-to-End Secret distributed over 
secured MTA-CMS links. Final 
keys derived from this secret. 
AES-128 in CBC mode encryption 
algorithm 
Optional 2-byte or 4-byte MAC 
based on MMH algorithm 
RTP encryption and authentication 
can be optionally turned off with 
the selection of NULL encryption 
and NULL authentication 
algorithms. RTP security and 
RTCP security are disabled 
together. 
PacketCable requires support for 
ciphersuite negotiation. 

RTCP messages are secured by RTCP 
application layer security mechanisms 
specified in the profile. 
RTCP ciphersuites are negotiated 
separately from the RTP ciphersuites and 
include both encryption and message 
authentication algorithms. RTCP 
encryption can be optionally turned off 
with the selection of a null encryption 
algorithm. 
Both RTCP encryption and authentication 
can be optionally turned off with the 
selection of NULL encryption and NULL 
authentication algorithms. RTCP security 
and RTP security are disabled together. 
Keys are derived from the end-end secret 
using the same mechanism as used for 
RTP encryption 

 

7.7 Audio Server Services 

7.7.1 Reference Architecture 
The following diagram shows the network components and the various interfaces to be 
discussed in this section, see [30]. 

                                                 
4 MTAs do not authenticate directly. Authentication refers to the authentication of identity. 



PKT-SP-SEC-I07-021127 PacketCableTM 1.x Specifications 1.x 

11/27/02 CableLabs  169 

Media
Player
(MP)

Media
Player

Controller
(MPC)

Audio Server
(AS)

PSTN

Ann-4

Ann-4

Ann-3

Ann-1 Ann-3

Ann-2

Media
Gateway

(MG)

Media
Gateway
Controller

(MGC)

Ann-1

CMSMTA

 

Figure 23. Audio Server Components and Interfaces 

Figure 23 shows a network-based Media Player (MP). It has an optional TGCP interface 
(Ann-2) to the Media Player Controller (MPC), in the case that MPC and MP are not 
integrated into a single physical entity. Security on this interface is specified in this 
section. 

There is also an NCS signaling interface (Ann-1) between the MTA and CMS and 
between the Media Gateway Controller (MGC) and the Media Gateway (MG). Refer to 
section 7.4.1 for NCS signaling security. There is also a signaling interface (Ann-3) 
between the CMS and the MPC and the CMS and the MGC. This interface is proprietary 
for PacketCable, and thus the corresponding security interface is not specified (although 
this section lists recommended security services for Ann-3). 

Finally, there is a media stream (RTP and RTCP) interface (Ann-4) between the MTA 
and the MP. This is a standard media stream interface, for which security is defined in 
section 6.6 of this document. 

The Audio Server Architecture also allows local playout of announcements at the MTA. 
In those cases, an announcement is initiated with NCS signaling between the MTA and 
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the CMS (interface Ann-1). No other interfaces are needed for MTA-based 
announcement services. 

7.7.2 Security Services 

7.7.2.1 MTA-CMS NCS Signaling (Ann-1) 
Refer to the security services in the NCS signaling section 7.4.1.2 of this document. 

7.7.2.2 MPC-MP Signaling (Ann-2) 
Authentication: all signaling messages must be authenticated, in order to prevent a third 
party masquerading as either an authorized MPC or MP. A rogue MPC could configure 
the MP to play obscene or inappropriate messages. A rogue MP could likewise play 
obscene or inappropriate messages that the MPC did not intend it to play. If MP is unable 
to authenticate to the MPC, the MPC should not pass it the key for media packets, 
preventing unauthorized announcement playout. 

Confidentiality: if a snooper is able to monitor TGCP signaling messages on this 
interface, he or she might determine which services are used by a particular subscriber or 
which destinations a subscriber is communicating to. This information could then be sold 
for marketing purposes or simply used to spy on other subscribers. Thus, confidentiality 
is required on this interface. 

Message integrity: must be assured in order to prevent tampering with signaling 
messages. This could lead to playout of obscene or inappropriate messages – see 
authentication above. 

Access control: an MPC should keep a list of valid Media Players and which 
announcements each supports. Along with authentication, this insures that wrong 
announcements are not played out. 

7.7.2.3 MTA-MP (Ann-4) 
Security services on this media packet interface are listed in section 7.6.1. 

7.7.3 Cryptographic Mechanisms 

7.7.3.1 MTA-CMS NCS Signaling (Ann-1) 
Refer to the cryptographic mechanisms in the NCS signaling section 7.4.1.3 of this 
document. 

7.7.3.2 MPC-MP Signaling (Ann-2) 
IPsec ESP MUST be used to both authenticate and encrypt the messages from MPC to 
MP and vice versa. Refer to section 6.1.2 for details of how IPsec ESP is used within 
PacketCable and for the list of available ciphersuites.  

7.7.3.3 MTA-MP (Ann-4) 
Cryptographic mechanisms on this media packet interface are specified in section 7.6.2. 



PKT-SP-SEC-I07-021127 PacketCableTM 1.x Specifications 1.x 

11/27/02 CableLabs  171 

7.7.4 Key Management 

7.7.4.1 MTA-CMS NCS Signaling (Ann-1) 
Refer to the key management in the NCS signaling section 7.4.1.4.1. 

7.7.4.2 MPC-MP Signaling (Ann-2) 
The MPC and the MP negotiate a shared secret (MPC-MP Secret) using IKE or Kerberos 
(implementations MUST support IKE with pre-shared keys;  they MAY support IKE 
with X.509 certificates and they MAY support Kerberos using symmetric keys).  For 
more information on the PacketCable use of IKE, refer to section 6.2.2. For more 
information on the PacketCable use of Kerberos with symmetric keys, refer to sections 
6.4.3 and 6.5. 

The key management protocol MUST be running asynchronous to the signaling messages 
and will guarantee that there is always a valid, non-expired MPC-MP Secret.  

7.7.4.3 MTA-MP (Ann-4) 
Key Management on the media packet interface is specified in section 7.6.2.3. This case 
is very similar to the key management for the MTA-MG media interface. The flow of 
signaling messages and the syntax of carrying keys and ciphersuites MUST be the same, 
except that here MG is replaced with the MP and MGC (which delivers the key to MG) is 
replaced with MPC (which delivers the key to MP).  

7.7.5 MPC-MP Summary Security Profile Matrix 
The CMS to MPC protocol is not defined in PacketCable and thus is outside the scope of 
this document. The corresponding column in the following matrix provides only the 
security requirements on that interface. Security specifications on that interface will be 
added in future revisions of this document. 



PKT-SP-SEC-I07-021127 PacketCableTM 1.x Specifications 

172 CableLabs  11/27/02 

Table 32. Security Profile Matrix – Audio Server Services 

 Ann-1: NCS 
(MTA – CMS) 

& (MG – MGC) 

Ann-2: 
TGCP 
(MPC-

MP) 

Ann-3: 
unspecified 

(CMS-MPC) & 
(CMS – MGC) 

Interface 
Security 

Requirement 

Ann-4: RTP 
(MTA-MP) 

Ann-4: RTCP 
(MTA-MP) 

authentication yes yes yes yes (indirect) yes (indirect) 
access control yes yes yes optional optional 
Integrity yes yes yes optional yes 
confidentiality yes yes yes yes yes 
non-repudiation no no no no no 
security 
mechanisms 

IPsec ESP in 
transport mode, 
encryption and 
message 
integrity both 
enabled 
Kerberos with 
PKINIT key 
management for 
MTA – CMS 
interface 
IKE or 
Kerberos for 
MG – MGC 
interface 

IPsec 
IKE or 
Kerberos  

 Application 
Layer 
Security via 
RTP Packet 
Cable 
Security 
Profile keys 
distributed 
over secured 
MTA-CMS 
and MP-MPC 
links 
AES-128 
encryption 
algorithm 
Optional 2-
byte or 4-byte 
MAC based 
on MMH 
algorithm. 

RTCP messages 
are secured by 
RTCP application 
layer security 
mechanisms 
specified in the 
profile. 
Keys are derived 
from the end-end 
secret using the 
same mechanism 
as used for RTP 
encryption. 

 
*Although (CMS – MPC) is a proprietary interface, the following are security requirements for the CMS-MPC 
interface. 

7.8 Electronic Surveillance Interfaces 

7.8.1 Reference Architecture 
The PacketCable system for Electronic Surveillance (see [34]) consists of the following 
elements and interfaces: 
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Figure 24. Electronic Surveillance Security Interfaces 

The DF (Delivery Function) in this diagram is responsible for redirecting duplicated 
media packets to law enforcement, for the purpose of wiretapping. 

The event interface between the CMS or the MGC and the DF provides descriptions of 
calls, which is necessary to perform wiretapping That information includes the media 
stream encryption key and the corresponding encryption algorithm. This event interface 
uses RADIUS and is similar to the CMS-RKS interface. 

The COPS interface between the CMS and the CMTS is used to signal the CMTS to 
start/stop duplicating media packets to the DF for a particular call. This is the same COPS 
interface that is used for (DQoS) Gate Authorization messages. For the corresponding 
security services, refer to sections 7.2.1.2.2, 7.2.1.3.2 and 7.2.1.4.1. 

The TGCP signaling interface between the MGC and MG is used to signal the MG to 
start/stop duplicating media packets to the DF for a particular call. This is the same 
TGCP signaling interface that is used during call setup on the PSTN Gateway side. For 
the corresponding security services, refer to sections 7.8.2.1, 7.8.3.1 and 7.8.4.1. 

The event interface between the CMTS and DF is needed to tell the DF when the actual 
call begins and when it ends. In PacketCable, the start and end of the actual call is 
signaled with RADIUS event messages generated by the CMTS. 

The interface between the CMTS and DF for call content is where the CMTS 
encapsulates copies of the RTP media packets – including the original IP header –inside 
UDP and forwards them to the DF. Since the original media packets are already 
encrypted (and optionally authenticated), no additional security is defined on this 
interface. Similarly, there is no additional security applied to the call content interface 
between the MG and DF: the MG simply encapsulates copies of the encrypted RTP 
packets inside UDP and forwards them to the DF. 

The event interface between the two DFs is used to forward call information in the case 
where a wiretapped call is forwarded to another location that is wiretapped using a 
different DF. This interface utilizes the RADIUS protocol – the same as all other event 
message interfaces. 

The interface between the two DFs for call content is used to forward media packets 
(including the original IP header) in the case where a wiretapped call is forwarded to 
another location that is wiretapped using a different DF. Since the original media packets 
are already encrypted (and optionally authenticated), no additional security is defined on 
this interface. 
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7.8.2 Security Services 

7.8.2.1 Event Interfaces CMS-DF, MGC-DF, CMTS-DF and DF-DF 
Authentication, Access Control and Message Integrity: required to prevent service theft 
and denial-of-service attacks. Want to insure that the DF (law enforcement) has the right 
parameters for wiretapping (prevent denial-of-service). Also, want to authenticate the DF, 
to make sure that the copy of the media stream is directed to the right place (protect 
privacy). 

Confidentiality: required to protect subscriber information and communication patterns. 

7.8.2.2 Call Content Interfaces CMTS-DF, MG-DF, MG-DF and DF-DF 
Authentication and Access Control: already performed during the phase of key 
management for protection of event messages – see the above section. In order to protect 
privacy, a party that is not properly authorized should not receive the call content 
decryption key. 

Message Integrity: optional for voice packets, since it is generally hard to make 
undetected changes to voice packets. No additional security is required here – an optional 
integrity check would be placed into the media packets by the source (MTA or MG). 

Confidentiality: required to protect call content from unauthorized snooping. However, 
no additional security is required in this case – the packets had been previously encrypted 
by the source (MTA or MG). 

7.8.3 Cryptographic Mechanisms 

7.8.3.1 Interface between CMS and DF 
This interface MUST be protected with IPsec ESP in transport mode, where each packet 
is both encrypted and authenticated – identical to the security for the CMS–RKS interface 
specified in section 7.3.3.1.  

Also the same as with the CMS-RKS interface, the MAC value normally used to 
authenticate RADIUS messages is not used (message integrity is provided with IPsec). 
The key for this RADIUS MAC MUST always be hardcoded to 16 0-bytes.  

7.8.3.2 Interface between CMTS and DF for Event Messages 
This interface MUST be protected with IPsec ESP in transport mode, where each packet 
is both encrypted and authenticated – identical to the security for the CMTS–RKS 
interface specified in section 7.3.3.2.  

Also the same as with the CMTS-RKS interface, the MAC value normally used to 
authenticate RADIUS messages is not used (message integrity is provided with IPsec). 
The key for this RADIUS MAC MUST always be hardcoded to 16 0-bytes.  

7.8.3.3 Interface between DF and DF for Event Messages 
This interface MUST be protected with IPsec ESP in transport mode, where each packet 
is both encrypted and authenticated – identical to the security for the CMS–RKS interface 
specified in section 7.3.3.1.  
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Also the same as with the CMS-RKS interface, the MAC value normally used to 
authenticate RADIUS messages is not used (message integrity is provided with IPsec). 
The key for this RADIUS MAC MUST always be hardcoded to 16 0-bytes.  

7.8.3.4 Interface between MGC and DF 
This interface MUST be protected with IPsec ESP in transport mode, where each packet 
is both encrypted and authenticated – identical to the security for the MGC–RKS 
interface specified in section 7.3.3.3.  

As with the MGC-RKS interface, the MAC value normally used to authenticate RADIUS 
messages is not used (message integrity is provided by IPsec). The key for this RADIUS 
MAC MUST always be hardcoded to 16 octets with the value 0.  

7.8.4 Key Management 

7.8.4.1 Interface between CMS and DF 
The CMS and the DF MUST negotiate a pair of IPsec Security Associations (inbound 
and outbound) using IKE or Kerberos (implementations MUST support IKE with pre-
shared keys;  they MAY support IKE with X.509 certificates and they MAY support 
Kerberos using symmetric keys).  For more information on the PacketCable use of IKE, 
refer to section 6.2.2. For more information on the PacketCable use of Kerberos with 
symmetric keys, refer to sections 6.4.3 and 6.5. 

The key management protocol will be running asynchronous to the event message 
generation, and will guarantee that there is always a valid, non-expired pair of Security 
Associations. 

7.8.4.2 Interface between CMTS and DF 
The CMTS and the DF MUST negotiate a pair of Security Associations (inbound and 
outbound) using IKE or Kerberos (implementations MUST support IKE with pre-shared 
keys;  they MAY support IKE with X.509 certificates and they MAY support Kerberos 
using symmetric keys).  For more information on the PacketCable use of IKE, refer to 
section 6.2.2. For more information on the PacketCable use of Kerberos with symmetric 
keys, refer to sections 6.4.3 and 6.5. 

The key management protocol will be running asynchronous to the event message 
generation, and will guarantee that there is always a valid, non-expired pair of Security 
Associations.  

7.8.4.3 Interface between DF and DF 
The two DF hosts MUST negotiate a shared secret (DF-DF Secret) using IKE with 
certificates. The PacketCable profile for IKE with certificates is specified in section 
6.2.2.  IKE will be running asynchronous to the event message generation. In the case 
where an event message needs to be sent to a DF with which there is not a valid SA, the 
IPsec layer MUST automatically signal IKE to proceed with the key management 
exchanges and build a pair of IPsec SAs (inbound and outbound).  

Not all interfaces between the same pair of DFs will require IPsec. For example, the call 
content interface does not run over IPsec. In order for the IPsec SAs to be established 
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only for the DF-DF event message interface, each DF MUST allocate a set of UDP ports 
on which it will both send and receive DF-DF event messages. IPsec policy database for 
each DF MUST specify either an enumeration or a range of local UDP ports for which 
IPsec is enabled and which will be used exclusively for DF-DF event messages. If there 
are multiple calls that are simultaneously wiretapped and forwarded between the same 
pair of DFs (on different UDP ports) – they MUST all be protected with a single pair of 
IPsec SAs (inbound-outbound). Whenever a DF attempts to send on one of those UDP 
ports, it will either use an existing IPsec SA for a particular destination DF, or it will 
trigger IKE to establish a pair of SAs (inbound-outbound) for the specific target DF. 
When the CMS tells a DF to forward event messages to another DF, it specifies the 
destination DF with an IP address. This means that the DF identity that needs 
authentication during an IKE exchange is the IP address. An IKE certificate for a DF 
contains the IP address of that DF. This IP address in the certificate MUST be used by 
IKE to validate the DF’s IP address – to prevent IP address spoofing attacks.  

After a pair of DF-DF SAs has been idle for some period of time, a DF MAY decide to 
remove it. In this case, the DF MUST send an ISAKMP Delete message to the other DF – 
to notify the other side of the SA deletion. Upon receiving a Delete message, the other 
DF MUST also remove that pair of SAs.  

It will still be possible (with very small probability) that a DF uses a IPsec SA to send an 
event message to another DF; but when the event message arrives the target DF has 
already deleted the corresponding SA and has to drop the message. If there is still a 
problem after several timeouts and retries (e.g., ISAKMP Delete message was lost in 
transit), the sending DF MUST remove all of the corresponding IPsec SAs and re-run 
IKE to set up new SAs.  

7.8.4.4 INTERFACE BETWEEN MGC AND DF 
MGC and the DF MUST negotiate a pair of IPsec SAs (inbound and outbound) using 
IKE with pre-shared keys.  

IKE will be running asynchronous to the event message generation and will guarantee 
that there is always a valid, non-expired pair of SAs.  

At the DF, MGC Element IDs MUST somehow be associated with the corresponding IP 
addresses. One possibility is to associate each pre-shared key directly with the Element 
ID. IKE negotiations will use an ISAKMP identity payload of type ID_KEY_ID to 
identify the pre-shared key. The value in that identity payload will be the Element ID 
used in event messages.  

Later, when an event message arrives at the DF, it will be able to query the database of 
SAs and retrieve a source IP address, based on the Element ID. The DF will make sure 
that it is the same as the source IP address in the IP packet header. One way to query this 
database is through SNMP, using an IPsec MIB. 
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7.8.5 Electronic Surveillance Security Profile Matrix 

Table 33. Security Profile Matrix – Electronic Surveillance 

 CMS-DF Events, 
MGC-DF Events & 
CMTS-DF Events 

DF-DF Events CMTS-DF Content & 
MG-DF Content 

DF-DF Content 

Authentication yes yes yes (indirect) yes (indirect) 
Access control  yes yes optional optional 
Integrity yes yes optional optional 
Confidentiality yes yes yes yes 
Non-
repudiation 

no no no no 

Security 
mechanisms 

IPsec with 
encryption and 
message integrity 
enabled 
Key management 
is IKE or Kerberos 

IPsec with 
encryption and 
message integrity 
enabled 
Key management 
is IKE with 
certificates 

RTP packets are 
already encrypted 
and authenticated by 
the source (MTA or 
MG) 

RTP packets are 
already encrypted 
and authenticated 
by the source 
(MTA or MG) 

 

7.9 CMS Provisioning 

7.9.1 Reference Architecture 
Provisioning is defined as the operations necessary to provide a specified service to a 
customer.  PacketCable service provisioning can be viewed as two distinct operations: 
MTA provisioning and CMS subscriber provisioning.  CMS provisioning refers to the 
interface between the Provisioning Server and the CMS.   

7.9.2 Security Services 
Authentication: Provisioning Server needs to be authenticated to prevent a third party 
from masquerading as a provisioning server to enable services for unauthorized MTAs.  
CMS needs to be authenticated to prevent someone from impersonating the CMS to 
receiving provisioning messages, thereby compromising privacy and deny service to 
provisioned MTAs. 

Access Control: required along with authentication to prevent unauthorized access to 
provisioning data as well as denial-of-service. 

Integrity: must be assured to disallow tampering with provisioning messages, in order to 
prevent a class of denial-of-service attacks. 

Confidentiality: Provisioning messages contains private customer information, thus 
confidentiality is required. 
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7.9.3 Cryptographic Mechanisms 
IPsec ESP MUST be used to both authenticate and encrypt the messages from CMS to 
Provisioning Server and vice versa.  Refer to section 6.1.2 for details of how IPsec ESP is 
used within PacketCable and for the list of available ciphersuites. 

7.9.4 Key Management 
Key management for the CMS-Provisioning Server interface is either IKE or Kerberos. 
Implementations MUST support IKE with pre-shared keys.  Implementations MAY 
support IKE with X.509 certificates  and they MAY support Kerberos using symmetric 
keys. For more information on the PacketCable use of IKE, refer to section 6.2.2. For 
more information on the PacketCable use of Kerberos with symmetric keys, refer to 
sections 6.4.3 and 6.5. 

7.9.5 Provisioning Server-CMS Summary Security Profile Matrix 
Table 34. Security Profile Matrix – CMS Provisioning 

 CMS- Provisioning Server 

Authentication yes 
Access control yes 
Integrity yes 
Confidentiality yes 
Non-repudiation no 
Security Mechanisms IPsec 

IKE or Kerberos 
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8 PACKETCABLE CERTIFICATES 
PacketCable uses digital certificates, which comply with the X.509 specification [38] and 
the IETF PKIX specification [39].  

8.1 Generic Structure 

8.1.1 Version 
The Version of the certificates MUST be V3. All certificates MUST comply with [39] 
except where the non-compliance with the RFC is explicitly stated in this chapter of this 
document.  

8.1.2 Public Key Type 
RSA Public Keys are used throughout the hierarchy. The 
subjectPublicKeyInfo.algorithm.algorithm Object Identifier (OID) used MUST be 
1.2.840.113549.1.1.1 (rsaEncryption).  

The public exponent for all RSA PacketCable keys MUST be F4 - 65537.  

8.1.3 Extensions  
The following four extensions MUST be used as specified in the sections below. Any 
other certificate extensions MAY also be included but MUST be marked as non-critical.  

8.1.3.1 subjectKeyIdentifier 
The subjectKeyIdentifier extension included in all PacketCable CA certificates as 
required by [39] (e.g., all certificates except the device and ancillary certificates) MUST 
include the keyIdentifier value composed of the 160-bit SHA1 hash of the value of the 
BIT STRING subjectPublicKey (excluding the tag, length and number of unused bits 
from the ASN1 encoding) (see [39]).  

8.1.3.2 authorityKeyIdentifier  
The authorityKeyIdentifier extension MUST be included in all PacketCable certificates, 
with the exception of root certificates, and MUST include a keyIdentifier value that is 
identical to the subjectKeyIdentifier in the CA certificate. 

8.1.3.3 KeyUsage 
The KeyUsage extension MUST be used for all PacketCable CA certificates and MUST 
be marked as critical with a value of keyCertSign and cRLSign. A KeyUsage extension 
MAY be included in end-entity certificates and SHOULD be marked as critical if 
included as specified in [39].  

8.1.3.4 BasicConstraints 
The basicConstraints extension MUST be used for all PacketCable CA certificates and 
MUST be marked as critical. The values for each certificate for basicConstraints MUST 
be marked as specified in each of the certificate description tables below.  
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8.1.4 Signature Algorithm 
The signature mechanism used MUST be SHA-1 with RSA Encryption. The specific 
OID is 1.2.840.113549.1.1.5.  

8.1.5 SubjectName and IssuerName 
If a string cannot be encoded as a PrintableString it MUST be encoded as a UTF8String 
(tag [UNIVERSAL 12]).  

When encoding an X.500 Name: 

1. Each RelativeDistinguishedName (RDN) MUST contain only a single element in 
the set of X.500 attributes.  

2. The order of the RDNs in an X.500 name MUST be the same as the order in 
which they are presented in this specification.  

It should be noted that [39] and X.509 defines constraints (i.e. upper bounds) on the 
length of the attribute values. For example, the maximum length for common name (CN), 
organization name (O) and organizational unit (OU) name values is 64 characters. Where 
this specification mandates the inclusion of a static string in one of these values, (i.e. 
CN=<Company> PacketCable System Operator CA) companies MUST ensure that the 
addition of their identifying information does not cause the total length of the value to 
exceed the upper bound. In the case where a company’s name causes the length of the 
value to exceed the upper bound, the vendor MUST truncate or abbreviate their 
information to ensure the total length does not exceed the upper bound.   

8.1.6 Certificate Profile Notation 
The tables below use the following notation: 

• Extension details are specified by - [c:critical, n:non-critical; m:mandatory, 
o:optional].  

• Optional subject naming attributes are surrounded by square brackets (e.g., [L = 
<city>]).  

• Variable naming attribute values are surrounded by angle brackets. 
(e.g., CN = <Company Name> PacketCable CA). Values not surrounded by angle 
brackets are static and cannot be modified.  
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8.2 Certificate Trust Hierarchy 
There are three distinct certificate hierarchies used in PacketCable, the MTA Device 
Certificate Hierarchy, the CableLabs Service Provider Certificate Hierarchy, and the 
CableLabs CVC Hierarchy. 

 

MTA Root

MTA
Manufacturer

MTA

CableLabs
Service Provider

Root

Service Provider
CA

Local System
Operator CA

KDC DF

MTA Device
Hierarchy

CableLabs Service
Provider Hierarchy

Other

CableLabs
CVC Root

CableLabs
CVC CA

CableLabs
CVC

CableLabs CVC
Hierarchy

Service
Provider CVC

Manufacturer
CVC

 
Figure 25. PacketCable Certificate Hierarchy 

8.2.1 Certificate Validation 
Within PacketCable certificate validation in general involves validation of a whole chain 
of certificates. As an example, when the Provisioning Server validates an MTA Device 
certificate, the actual chain of three certificates is validated: 

MTA Root Certificate + MTA Manufacturer Certificate + MTA Device Certificate 

The signature on the MTA Manufacturer Certificate is verified with the MTA Root 
Certificate and the signature on the MTA Device Certificate is verified with the MTA 
Manufacturer Certificate. The MTA Root Certificate is self-signed and is known in 
advance to the Provisioning Server. The public key present in the MTA Root Certificate 
is used to validate the signature on this same certificate. 

Usually the first certificate in the chain is not explicitly included in the certificate chain 
that is sent over the wire. In the cases where the first certificate is explicitly included it 
MUST already be known to the verifying party ahead of time and MUST NOT contain 
any changes to the certificate with the possible exception of the certificate serial number, 
validity period and the value of the signature. If changes other than the certificate serial 
number, validity period and the value of the signature, exist in the CableLabs Service 
Provider Root certificate that was passed over the wire in comparison to the known 
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CableLabs Service Provider Root certificate, the device making the comparison MUST 
fail the certificate verification.  

The exact rules for certificate chain validation must fully comply with [39], where they 
are referred to as “Certificate Path Validation”. In general, X.509 certificates support a 
liberal set of rules for determining if the issuer name of a certificate matches the subject 
name of another. The rules are such that two name fields may be declared to match even 
though a binary comparison of the two name fields does not indicate a match. [39] 
recommends that certificate authorities restrict the encoding of name fields so that an 
implementation can declare a match or mismatch using simple binary comparison. 
PacketCable security follows this recommendation. Accordingly, the DER-encoded 
tbsCertificate.issuer field of a PacketCable certificate MUST be an exact match to the 
DER-encoded tbsCertificate.subject field of its issuer certificate. An implementation 
MAY compare an issuer name to a subject name by performing a binary comparison of 
the DER-encoded tbsCertificate.issuer and tbsCertificate.subject fields. 

The sections below specify the required certificate chain, which must be used to verify 
each certificate that appears at the leaf node (i.e., at the bottom) in the PacketCable 
certificate trust hierarchy illustrated in the above diagram.  

Validity period nesting is not checked and intentionally not enforced. Thus, the validity 
period of a certificate need not fall within the validity period of the certificate that issued 
it.  

8.2.2 MTA Device Certificate Hierarchy 
The device certificate hierarchy exactly mirrors that of the DOCSIS1.1/BPI+ hierarchy. It 
is rooted at a CableLabs issued PacketCable MTA Root certificate, which is used as the 
issuing certificate of a set of manufacturer’s certificates. The manufacturer’s certificates 
are used to sign the individual device certificates.  

The information contained in the following tables contains the PacketCable specific 
values for the required fields according to [39]. These PacketCable specific values MUST 
be followed according to the table below,  except that Validity Periods SHOULD be as 
given in the tables.   If a required field is not specifically listed for PacketCable then the 
guidelines in [39] MUST be followed.  

8.2.2.1 MTA Root Certificate 
This certificate MUST be verified as part of a certificate chain containing the MTA Root 
Certificate, MTA Manufacturer Certificate and the MTA Device Certificate.  
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Table 35. MTA Root Certificate 

MTA Root Certificate 
Subject Name Form C=US 

O=CableLabs 
OU=PacketCable 
CN=PacketCable Root Device Certificate Authority 

Intended Usage This certificate is used to sign MTA Manufacturer Certificates and is used 
by the KDC. This certificate is not used by the MTAs and thus does not 
appear in the MTA MIB. 

Signed By Self-Signed 
Validity Period 20+ Years. It is intended that the validity period is long enough that this 

certificate is never re-issued. 
Modulus Length 2048 
Extensions  keyUsage[c,m](keyCertSign, cRLSign) 

subjectKeyIdentifier[n,m] 
basicConstraints[c,m](cA=true, pathLenConstraint=1) 

8.2.2.2 MTA Manufacturer Certificate 
This certificate MUST be verified as part of a certificate chain containing the MTA Root 
Certificate, MTA Manufacturer Certificate and the MTA Device Certificate.  

The state/province, city and manufacturer’s facility are optional attributes. A 
manufacturer may have more than one manufacturer’s certificate, and there may exist one 
or more certificates per manufacturer. All Certificates for the same manufacturer may be 
provided to each MTA either at manufacture time or during a field update.  The MTA 
MUST select an appropriate certificate for its use by matching the issuer name in the 
MTA Device Certificate with the subject name in the MTA Manufacturer Certificate. If 
present, the authorityKeyIdentifier of the device certificate MUST be matched to the 
subjectKeyIdentifier of the manufacturer certificate as described in [39].  

The <CompanyName> field that is present in O and CN MAY be different in the two 
instances.  
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Table 36. MTA Manufacturer Certificate 

MTA Manufacturer Certificate 
Subject Name Form C=<country> 

O=<CompanyName> 
[ST=<state/province>] 
[L=<city>] 
OU=PacketCable 
[OU=<Manufacturer’s Facility>] 
CN=<CompanyName> PacketCable CA 

Intended Usage This certificate is issued to each MTA manufacturer and can be provided to 
each MTA as part of the secure code download as specified by the 
PacketCable Security Specification (either at manufacture time, or during a 
field update). This certificate appears as a read-only parameter in the MTA 
MIB. 
This certificate along with the MTA Device Certificate is used to 
authenticate the MTA device identity (MAC address) during authentication 
by the KDC. 

Signed By MTA Root Certificate CA 
Validity Period 20 Years 
Modulus Length 2048 
Extensions keyUsage[c,m](keyCertSign, cRLSign)  

subjectKeyIdentifier[n,m] 
authorityKeyIdentifier[n,m](keyIdentifier=<subjectKeyIdentifier value from 
CA certificate>) 
basicConstraints[c,m](cA=true, pathLenConstraint=0)  

8.2.2.3 MTA Device Certificate 
This certificate MUST be verified as part of a certificate chain containing the MTA Root 
Certificate, MTA Manufacturer Certificate and the MTA Device Certificate.  

The state/province, city and manufacturer’s facility are optional attributes. 

The MAC address MUST be expressed as six pairs of hexadecimal digits separated by 
colons, e.g., “00:60:21:A5:0A:23”. The Alpha HEX characters (A-F) MUST be 
expressed as uppercase letters.  

The MTA device certificate should not be replaced or renewed.
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Table 37. MTA Device Certificate  

MTA Device Certificate 
Subject Name Form C=<country>  

O=<Company Name> 
[ST=<state/province>] 
[L=<city>]  
OU=PacketCable  
[OU=<Product Name>]  
[OU=<Manufacturer’s Facility>]  
CN=<MAC Address> 

Intended Usage This certificate is issued by the MTA manufacturer and installed in the 
factory. The provisioning server cannot update this certificate. This 
certificate appears as a read-only parameter in the MTA MIB. 
This certificate is used to authenticate the MTA device identity (MAC 
address) during provisioning. 

Signed By MTA Manufacturer Certificate CA 
Validity Period At least 20 years 
Modulus Length 1024, 1536 or 2048 
Extensions keyUsage[c,o](digitalSignature, keyEncipherment)  

authorityKeyIdentifier[n,m](keyIdentifier=<subjectKeyIdentifier value from 
CA certificate>) 

8.2.2.4 MTA Manufacturer Code Verification Certificate 
Code Verification Certificate (CVC) specification for embedded MTAs MUST be 
identical to the DOCSIS 1.1 CVC, specified in [12].  

8.2.3 CableLabs Service Provider Certificate Hierarchy 
The Service Provider Certificate Hierarchy is rooted at a CableLabs issued CableLabs 
Service Provider Root certificate. That certificate is used as the issuing certificate of a set 
of service provider’s certificates. The service provider’s certificates are used to sign an 
optional local system certificate. If the local system certificate exists then that is used to 
sign the ancillary equipment certificates, otherwise the ancillary certificates are signed by 
the Service Provider’s CA.  

The information contained in the following table contains the specific values for the 
required fields according to [39]. These specific values MUST be followed according to 
the table below,  except that Validity Periods SHOULD be as given in the tables.    If a 
required field is not specifically listed then the guidelines in [39] MUST be followed.  

8.2.3.1 CableLabs Service Provider Root Certificate 
Before any Kerberos key management can be performed, an MTA and a KDC need to 
perform mutual authentication using the PKINIT extension to the Kerberos protocol. An 
MTA authenticates a KDC after it receives a PKINIT Reply message containing a KDC 
certificate chain. In authenticating the KDC, the MTA verifies the KDC certificate chain, 
including KDC’s Service Provider Certificate signed by the CableLabs Service Provider 
Root CA. 



PKT-SP-SEC-I07-021127 PacketCableTM 1.x Specifications 

186 CableLabs  11/27/02 

Table 38. CableLabs Service Provider Root Certificate 

CableLabs Service Provider Root Certificate 
Subject Name Form C=US  

O=CableLabs  
CN=CableLabs Service Provider Root CA 

Intended Usage This certificate is used to sign Service Provider CA certificates. This 
certificate is installed into each MTA at the time of manufacture or with a 
secure code download as specified by the PacketCable Security Specification 
and cannot be updated by the Provisioning Server. 
Neither this root certificate nor the corresponding public key appears in the 
MTA MIB. 

Signed By Self-signed 
Validity Period 20+. It is intended that the validity period is long enough that this certificate is 

never re-issued. 
Modulus Length 2048 
Extensions keyUsage[c,m](keyCertSign, cRLSign)  

subjectKeyIdentifier[n,m]  
basicConstraints[c,m](cA=true) 

 

8.2.3.2 Service Provider CA Certificate 
This is the certificate held by the service provider, signed by the CableLabs Service 
Provider Root CA. It is verified as part of a certificate chain that includes the CableLabs 
Service Provider Root Certificate, Telephony Service Provider Certificate, optional Local 
System Certificate and an end-entity server certificate. The authenticating entities 
normally already possess the CableLabs Service Provider Root Certificate and it is not 
transmitted with the rest of the certificate chain. 

The fact that a Service Provider CA Certificate is always explicitly included in the 
certificate chain allows a Service Provider the flexibility to change its certificate without 
requiring re-configuration of each entity that validates this certificate chain (e.g., MTA 
validating a PKINIT Reply). Each time the Service Provider CA Certificate changes, its 
signature MUST be verified with the CableLabs Service Provider Root Certificate. 
However, new certificate for the same Service Provider MUST preserve the same value 
of the OrganizationName attribute in the SubjectName.  

The <Company> field that is present in O and CN MAY be different in the two 
instances.  
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Table 39. Service Provider CA Certificate 

Service Provider CA Certificate 
Subject Name Form C=<Country> 

O=<Company> 
CN=<Company> CableLabs Service Provider CA 

Intended Usage This certificate corresponds to a top-level Certification Authority within a 
domain of a single Service Provider. In order to make it easy to update this 
certificate, each network element is configured with the OrganizationName 
attribute of the Service Provider Certificate SubjectName. This is the only 
attribute in the certificate that must remain constant. 
In the case of an MTA, there is a read-write parameter in the MIB that 
identifies the OrganizationName attribute for each Kerberos realm (that may 
be shared among multiple MTA endpoints). The MTA does not accept 
Service Provider certificates that do not match this value of the 
OrganizationName attribute in the SubjectName. 
An MTA needs to perform the first PKINIT exchange with the MSO KDC 
right after a reboot, at which time its MIB tables are not yet configured. At 
that time, the MTA MUST accept any Service Provider OrganizationName 
attribute, but it MUST later check that the value added into the MIB for this 
realm is the same as the one in the initial PKINIT Reply.  

Signed By Signed by CableLabs Service Provider Certificate 
Validity Period 20 years 
Modulus Length 2048 
Extensions keyUsage[c,m](keyCertSign, cRLSign)  

subjectKeyIdentifier[n,m] 
authorityKeyIdentifier[n,m](keyIdentifier=<subjectKeyIdentifier value from 
CA certificate>) 
basicConstraints[c,m](cA=true, pathLenConstraint=1) 

 

8.2.3.3 Local System CA Certificate 
This is the certificate held by the local system. The existence of this certificate is 
optional, as the Service Provider CA may be used to directly sign all network server end-
entity certificates. A certificate chain with a Local System CA Certificate MUST consist 
of the CableLabs Service Provider Root Certificate, Service Provider CA Certificate, 
Local System CA Certificate and an end-entity certificate.  

The <Company> field that is present in O and CN MAY be different in the two 
instances.  
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Table 40. Local System CA Certificate 

Local System CA Certificate 
Subject Name Form C=<Country> 

O=<Company> 
OU=<Local System Name> 
CN=<Company> CableLabs Local System CA 

Intended Usage A Service Provider CA may delegate the issuance of certificates to a regional 
Certification Authority called Local System CA (with the corresponding 
Local System Certificate). 
Network servers are allowed to move freely between regional Certification 
Authorities of the same Service Provider. Therefore, the MTA MIB does not 
contain any information regarding a Local System Certificate (which might 
restrict an MTA to KDCs within a particular region).  

Signed By Service Provider CA Certificate 
Validity Period 20 years. 
Modulus Length 1024, 1536, 2048 
Extensions keyUsage[c,m](keyCertSign, cRLSign)  

subjectKeyIdentifier[n,m] 
authorityKeyIdentifier[n,m](keyIdentifier=<subjectKeyIdentifier value from 
CA certificate>) 
basicConstraints[c,m](cA=true, pathLenConstraint=0) 

8.2.3.4 Operational Ancillary Certificates 
All of these are signed by the either the Local System CA or by the Service Provider CA. 
Other ancillary certificates may be added to this standard at a later time. 

8.2.3.4.1 Key Distribution Center Certificate 
This certificate MUST be verified as part of a certificate chain containing the CableLabs 
Service Provider Root Certificate, Service Provider CA Certificate and the Ancillary 
Device Certificates.  

The PKINIT specification in Appendix C requires the KDC certificate to include the 
subjectAltName v.3 certificate extension, the value of which must be the Kerberos 
principal name of the KDC. 
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Table 41. Key Distribution Center Certificate 

Key Distribution Center Certificate 
Subject Name Form C=<Country>  

O=<Company>  
[OU=<Local System Name>]  
OU= CableLabs Key Distribution Center  
CN=<DNS Name> 

Intended Usage To authenticate the identity of the KDC server to the MTA during PKINIT 
exchanges. This certificate is passed to the MTA inside the PKINIT replies 
and is therefore not included in the MTA MIB and cannot be updated or 
queried by the Provisioning Server. 

Signed By Service Provider CA Certificate or Local System Certificate 
Validity Period 20 years. 
Modulus Length 1024, 1536 or 2048 
Extensions keyUsage[c,o](digitalSignature)  

authorityKeyIdentifier[n,m](keyIdentifier=<subjectKeyIdentifier value from 
CA certificate>) 
subjectAltName[n,m](See Appendix C) 

 

8.2.3.4.2 Delivery Function (DF) 
This certificate MUST be verified as part of a certificate chain containing the CableLabs 
Service Provider Root Certificate, Service Provider CA Certificate and the Ancillary 
Device Certificates.  

This certificate is used to sign phase 1 IKE intra-domain exchanges between DFs (which 
are used in Electronic Surveillance). Although Local System Name is optional, it is 
REQUIRED when the Local System CA signs this certificate. The IP address MUST be 
specified in standard dotted-quad notation, e.g., 245.120.75.22.  
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Table 42. DF Certificate 

DF Certificate 
Subject Name Form C=<Country>  

O=<Company>  
[OU=<Local System Name>]  
OU=PacketCable Electronic Surveillance  
CN=<IP address> 

Intended Usage To authenticate IKE key management, used to establish IPsec Security 
Associations between pairs of DFs. These Security Associations are used 
when a subject that is being legally wiretapped forwards the call and event 
messages containing call info have to be forwarded to a new wiretap server 
(DF).  

Signed By Service Provider CA Certificate or Local System CA Certificate 
Validity Period 20 years 
Modulus Length 2048 

Extensions keyUsage[c,o](digitalSignature)  
authorityKeyIdentifier[n,m](keyIdentifier=<subjectKeyIdentifier value from 
CA certificate>) 
subjectAltName[n,m](dNSName=<DNSName>) 

 

8.2.3.4.3 PacketCable Server Certificates 
These certificates MUST be verified as part of a certificate chain containing the 
CableLabs Service Provider Root Certificate, Service Provider Certificate, Local System 
Operator Certificate (if used) and the Ancillary Device Certificates.  

These certificates are used to identify various servers in the PacketCable system. For 
example, they may be used to sign phase 1 IKE exchanges or to authenticate a PKINIT 
exchange. Although the Local System Name is optional, it is REQUIRED when the 
Local System CA signs this certificate. 2IP address values MUST be specified in 
standard dotted decimal notation: e.g., 245.120.75.22. DNS Name values MUST be 
specified as a fully qualified domain name (FQDN): e.g., device.packetcable.com.  
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Table 43. PacketCable Server Certificates 

PacketCable Server Certificates 
Subject Name Form C=<Country> 

O=<Company> 
OU=PacketCable 
OU=[<Local System Name>] 
OU=<Sub-System Name> 
CN=<Server Identifier[:<Element ID>]>  
 
The value of <Server Identifier> MUST be the server’s FQDN or its IP 
address, optionally followed by a colon (:) and an Element ID with no white 
space either before or after the colon.   
<Element ID> is the identifier that appears in billing event messages and it 
MUST be included in a certificate of every server that is capable of 
generating event messages. This includes a CMS, CMTS and MGC.  
[8] defines the Element ID as an 5-octet right-justified, space-padded ASCII-
encoded numerical string. When converting the Element ID for use in a 
certificate, any spaces MUST be converted to ASCII zeroes (0x48).  
For example, a CMTS that has the Element ID “  311” and an IP address 
123.210.234.12 will have a common name “123.210.234.12: 00311”. 
The value of <Sub-System Name> MUST be one of the following: 

• For Border Proxy: bp 
• For Cable Modem Termination System: cmts  
• For Call Management Server: cms 
• For Media Gateway: mg 
• For Media Gateway Controller: mgc 
• For Media Player: mp 
• For Media Player Controller: mpc 
• For Provisioning Server: ps 
• For Record Keeping Server: rks 
• For Signaling Gateway: sg  

 
Intended Usage These certificates are used to identify various servers in the PacketCable 

system. For example they may be used to sign phase 1 IKE exchanges or to 
authenticate a device in a PKINIT exchange.  

Signed By Telephony Service Provider Certificate or Local System Certificate 
Validity Period Set by MSO policy 
Modulus Length 2048 

Extensions keyUsage[c,o](digitalSignature, keyEncipherment)  
authorityKeyIdentifier[n,m](keyIdentifier=<subjectKeyIdentifier value from 
CA cert>) 
subjectAltName[n,m](dNSName=<DNSName> | iPAddress=<IP Address 
Name>) 
The keyUsage tag is optional. When it is used it MUST be marked as critical. 
Unless otherwise described below, the subjectAltName extension MUST 
include the corresponding name value as specified in the CN field of the 
subject.  

8.2.3.4.3.1 CMS Certificates 
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The CN attribute value for CMS certificates MUST be the Element ID. The 
subjectAltName extension MUST include either the IP Address or the FDQN of the 
CMS.  

8.2.3.4.3.2 CMTS Certificates 
The CN attribute value for CMTS certificates MUST be the Element ID. The 
subjectAltName extension MUST include either the IP Address or the FDQN of the 
CMTS.  

8.2.3.4.3.3 Media Gateway Controller Certificates 
The CN attribute value for MGC certificates MUST be the Element ID. The 
subjectAltName extension MUST include either the IP Address or the FDQN of the 
MGC.  

8.2.4 Certificate Revocation 
Out of scope for PacketCable at this time. 

8.2.5 Code Verification Certificate Hierarchy 
Figure 25 illustrates the CableLabs Code Verification Certificate (CVC) PKI.  This PKI 
is generic in nature and applicable to all CableLabs projects needing CVCs. This means 
the basic infrastructure can be re-used for every CableLabs project. There may be 
differences in the end-entity certificates required for each project, but in the cases where 
end-entity certificates overlap, one end-entity certificate could be used to support the 
overlap.  

The CableLabs CVC hierarchy does not apply to E-MTAs.  Refer to section 11 for more 
information. 

8.2.5.1 Common CVC Requirements 
The following requirements apply to all Code Verification Certificates: 

• Certificates MUST be DER encoded  

• Certificates MUST be version 3  

• Certificates MUST include the extensions that are specified in the following 
tables and MUST NOT include any additional extensions  

• The public exponent MUST be F4 (65537 decimal).  

8.2.5.2 CableLabs Code Verification Root CA Certificate 
This certificate MUST be validated as part of the certificate chain containing the 
CableLabs Code Verification Root CA Certificate, the CableLabs Code Verification CA, 
and the Code Verification Certificates. Refer to section 8.2.1 for more information on 
how to validate certificates. 
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Table 44: CableLabs Code Verification Root CA Certificate 

CableLabs Code Verification Root CA Certificate 

Subject Name Form C=US 
O=CableLabs 
CN=CableLabs CVC Root CA 

Intended Usage This certificate is used to sign Code Verification CA Certificates.  This 
certificate MUST be included in the S-MTAs non-volatile memory at 
manufacture time.  

Signed By Self-signed 
Validity Period 20+ years 
Modulus Length 2048 
Extensions KeyUsage [c,m] (keyCertSign, cRL Sign) 

subjectkeyidentifier [n,m] 
basicConstraints [c,m](cA=true) 

8.2.5.3 CableLabs Code Verification CA Certificate 
The CableLabs Code Verification CA Certificate MUST be validated as part of a 
certificate chain containing the CableLabs Code Verification Root CA Certificate, 
CableLabs Code Verification CA Certificate and the Code Verification Certificate. Refer 
to section 8.2.1 for more information on how to validate certificates. There MAY be 
more than one CableLabs Code Verification CA.  A S-MTA MUST support one 
CableLabs CVC CA at a time. 

Table 45: CableLabs Code Verification CA Certificate 

CableLabs Code Verification CA Certificate 

Subject Name Form C=US 
O=CableLabs 
CN=CableLabs CVC CA 

Intended Usage This certificate is issued to CableLabs by the CableLabs Code 
Verification Root CA. 
This certificate issues Code Verification Certificates.  This certificate 
MUST be included in the S-MTAs non-volatile memory at 
manufacture time.  

Signed By CableLabs Code Verification Root CA 
Validity Period Set by CableLabs policy 
Modulus Length 2048 
Extensions KeyUsage [c,m] (keyCertSign, cRL Sign) 

subjectKeyIdentifier [n,m] 
authorityKeyIdentifier [n,m] 
basicConstraints [c,m](cA=true, pathLenConstraint=0) 

 

8.2.5.4 Manufacturer Code Verification Certificate 
This certificate MUST be validated as part of the certificate chain containing the 
CableLabs Code Verification Root CA Certificate, the CableLabs Code Verification CA 
Certificate, and the Manufacturer Code Verification Certificate.  Refer to section 8.2.1 for 
more information on how to validate certificates. 
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Table 46: Manufacturer Code Verification Certificate 

Manufacturer Code Verification Certificate 

Subject Name Form C=<country> 
O=<Company Name> 
[ST=<state/province>] 
[L=<city>] 
CN=<Company Name> Mfg CVC 

Intended Usage The CableLabs Code Verification CA issues this certificate to each 
authorized Manufacturer. It is used in the policy set by the cable 
operator for secure software download. 

Signed By CableLabs Code Verification CA 
Validity Period Set by CableLabs policy 
Modulus Length 1024, 1536, 2048 
Extensions extendedKeyUsage [c,m] (id-kp-codeSigning) 

authorityKeyIdentifier [n,m] 
 
The Company Name in the Organization MAY be different than the Company Name in 
the Common Name.  

8.2.5.5 CableLabs Code Verification Certificate 
The CableLabs Code Verification Certificate MUST be validated as part of a certificate 
chain containing the CableLabs Code Verification Root CA Certificate, the CableLabs 
Code Verification CA Certificate, and the CableLabs Code Verification Certificate.  
Refer to section 8.2.1 for more information on how to validate certificates. 

Table 47: CableLabs Code Verification Certificate 

CableLabs Code Verification Certificate 

Subject Name Form C=US 
O=CableLabs 
CN=CableLabs CVC 

Intended Usage The CableLabs Code Verification CA issues this certificate. It is used 
to authenticate CableLabs certified code. It is used in the policy set by 
the cable operator for secure software download. 

Signed By CableLabs Code Verification Root CA 
Validity Period Set by CableLabs policy 
Modulus Length 1024, 1536, 2048 
Extensions extendedKeyUsage [c,m] (id-kp-codeSigning) 

authorityKeyIdentifier [n,m] 
 

8.2.5.6 Service Provider Code Verification Certificate 
The Service Provider Code Verification Certificate MUST be validated as part of a 
certificate chain containing the CableLabs Code Verification Root CA Certificate, the 
CableLabs Code Verification CA Certificate, and the Service Provider Code Verification 
Certificate.  Refer to section 8.2.1 for more information on how to validate certificates. 



PKT-SP-SEC-I07-021127 PacketCableTM 1.x Specifications 1.x 

11/27/02 CableLabs  195 

Table 48: Service Provider Code Verification Certificate 

Service Provider Code Verification Certificate 

Subject Name Form C=<country> 
O=<Company Name> 
[ST=<state/province>] 
[L=<city>] 
CN=<Company Name> Service Provider CVC 

Intended Usage The CableLabs Code Verification CA issues this certificate to each 
authorized Service Provider. It is used in the policy set by the cable 
operator for secure software download. 

Signed By CableLabs Code Verification Root CA 
Validity Period Set by CableLabs policy 
Modulus Length 1024, 1536, 2048 
Extensions extendedKeyUsage [c,m] (id-kp-codeSigning) 

authorityKeyIdentifier [n,m]  
 
The Company Name in the Organization MAY be different than the Company Name in 
the Common Name.  

8.2.5.7  Certificate Revocation Lists for CVCs 
The S-MTA is not required to support Certificate Revocation Lists (CRLs) for CVCs. 
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9 CRYPTOGRAPHIC ALGORITHMS 
This section describes the cryptographic algorithms used in the PacketCable security 
specification. When a particular algorithm is used, the algorithm MUST follow the 
corresponding specification.  

9.1 AES 
AES-128 is a 128-bit block cipher that MUST be implemented according to the AES 
(Advanced Encryption Standard) proposed submission specified in [40]. AES-128 is used 
in CBC mode with a 128-bit block size in PacketCable. AES-128 requires 10 rounds of 
cryptographic operations in encryption or decryption. The Initialization Vector for CBC 
mode is specified for each use of AES in PacketCable. 

In 1997, the National Institute of Standards and Technology (NIST) initiated a process to 
select a symmetric-key encryption algorithm to be used to protect sensitive (unclassified) 
Federal information in furtherance of NIST's statutory responsibilities. In 1998, NIST 
announced the acceptance of fifteen candidate algorithms and requested the assistance of 
the cryptographic research community in analyzing the candidates. This analysis included 
an initial examination of the security and efficiency characteristics for each algorithm. 
NIST reviewed the results of this preliminary research and selected MARS, RC6(tm), 
Rijndael, Serpent and Twofish as finalists. Having reviewed further public analysis of the 
finalists, NIST has decided to propose Rijndael as the Advanced Encryption Standard. 

9.2 DES 
The Data Encryption Standard (DES) is specified in [35] For Media Stream encryption, 
PacketCable does not require error checking on the DES key, and the full 64-bits of key 
provided to the DES algorithm will be generated according to section 7.6.2.3.3.1. 

9.2.1 XDESX 
An option for the encryption of RTP packets is DESX-XEX, XDESX, or DESX, has 
been proven as a viable method for overcoming the weaknesses in DES while not greatly 
adding to the implementation complexity. The strength of DESX against key search 
attacks is presented in Informative Reference [3]. The CBC mode of DESX-XEX is 
shown a figure below, where DESX-XEX is executed within the block called “block 
cipher.” Inside the block, DESX-XEX is performed as shown in a figure below using a 
192-bit key. K1 is the first 8-bytes of the key, and K2 represents the second 8-bytes of 
key; and K3 the third 8-bytes of key. 

9.2.2 DES-CBC-PAD 
This variant of DES is also based on the analysis of DESX presented in Informative 
Reference [3]. When using DESX in CBC mode, an optimized architecture is possible. It 
can be described in terms of the DES-CBC configuration plus the application of a random 
pad on the final DES-CBC output blocks. This configuration uses 128-bits of keying 
material, where 64-bits are applied to the DES block according to [35], and an additional 
64-bits of keying material is applied as the random pad on the final DES-CBC output 
blocks. 
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In this case, the same IV used to initialize the CBC mode is used as keying material for 
the random pad. Each block of DES-CBC encrypted output is XOR-ed with the 64-bit 
Initialization Vector that was used to start the CBC operation. If a short block results 
from using Residual Block Termination (see section 9.3), the left-most-bits of the IV are 
used in the final XOR padding operation. This mode of DES-CBC is shown a figure 
below, where DES is executed in the block called “block cipher.” A 64-bit key value is 
used. 

9.2.3 3DES-EDE 
Another option for the encryption of RTP packets for PacketCable, is 3DES-EDE-CBC. 
The CBC mode of 3DES-EDE is shown in a figure below, where 3DES-EDE is executed 
within the block called “block cipher.” Inside the block, 3DES-EDE is performed as 
shown in a figure below using a 128-bit key. K1 is the first 8-bytes of the key, and K2 
represents the second 8-bytes of key; and K3=K1. 

9.3 Block Termination 
If block ciphers are supported, a short block (n bits < block size depending on the cipher 
algorithms) MUST be terminated by residual block termination as shown in the figure 
below. Residual block termination (RBT) is executed as follows: 

Given a final block having n bits, where n is less than block size, the n bits are padded up 
to a block by appending (block size – n) bites of arbitrary value to the right of the n-bits. 
The resulting block is encrypted using B-bit CFB mode, with the next-to-last ciphertext 
block serving as the initialization vector for the CFB operation (see Informative 
Reference [1], B. Schneier's Applied Cryptography). Here, B stands for the cipher-
specific block size. The leftmost n bits of the resulting ciphertext are used as the short 
cipher block. In the special case where the complete payload is less than the cipher block 
size, the procedure is the same as for a short final block, with the provided initialization 
vector serving as the initialization vector for the operation. Residual block termination is 
illustrated in the figure below for both encryption and decryption operations. 
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Figure 26. CBC Mode 
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Figure 27. CBC Pad Mode 
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Figure 28. DESX-XEX as Block Cipher 
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Figure 29. 3DES-EDE as Block Cipher 
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Figure 30. CBC with Residual Block Termination 
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9.4 RC4 
RC4 [1] is a very efficient symmetric cipher. RC4 is used in section 7.6.2.3 to encrypt 
media flows. Key management is described in section 7.6.2.2. The algorithm uses 
variable length keys. For PacketCable the key length MUST be set to 128 bits. The 
generation of this 128-bit key from the session key is described in Appendix G. RC4 is a 
pseudo-random number generator in output feedback mode. A stream is generated from 
the key and XORed with the plaintext. There are no integrity protections on the data. 
RC4 uses a 256-entry substitution box (Sbox), which must be initialized. The entries in 
the Sbox are represented as bytes S0, S1, …, S255. To initialize the Sbox, it is first filled 
with each entry matching its index. So, 

 S0 = 0, S1 = 1, … S255 = 255 

Another 256-byte array is filled with the key, repeating as necessary to fill the array, K0, 
K1, … , K255. An index, j, is set to 0. Then, the Sbox is filled as follows: 

 for i = 0 to 255 
 j = (j + Si + Ki) mod 256 
 6swap Si and Sj 
 

After the loop completes, the Sbox is initialized. The Sbox is dependent on the key, so a 
new one must be initialized for each key. The Sbox can now be used to generate a 
pseudo-random stream. i and j are initialized to 0, and a random byte is produced as 
follows: 

 i = (i + 1) mod 256 
 j = (j +Si) mod 256 
 swap Si and Sj 
 t = (Si + Sj) mod 256 
 random_byte = St 

 
To generate more bytes, the process is repeated using the values for i and j that result 
from the previous iteration.  

9.5 RSA Signature 
All public key signatures for PacketCable MUST be generated and verified using the 
RSA signature algorithm described in [19] The format for all PacketCable signatures 
MUST be compliant with the Cryptographic Message Syntax [15]  

9.6 HMAC-SHA1 
The keyed hash employed by the HMAC-Digest Attribute MUST use the HMAC 
message authentication method [14] with the SHA-1 hash algorithm [18].  

9.7 Key Derivation 
Key derivation sections in this document refer to a function F(S, seed), where S is a 
shared secret from which keying material is derived, and seed is a constant string of 
bytes. Below is the specification of F(S, seed), borrowed from TLS [20]: 
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F(S, seed) =  HMAC_SHA-1(S, A(1) + seed) + 
HMAC_SHA-1(S, A(2) + seed) + 
HMAC_SHA-1(S, A(3) + seed) + … 

where + indicates concatenation.  

A() is defined as: A(0) = seed 

A(i) = HMAC_SHA-1(S, A(i-1)) 

F(S, seed) is iterated as many times as is necessary to produce required quantity of 
data. Unused bytes at the end of the last iteration will be discarded. 

9.8 The MMH-MAC 
In this section the MMH Function and the MMH Message Authentication Code (MAC) 
are described. The MMH-MAC is the message authentication code option for the media 
flows. As discussed in section 7.6.2, the MMH-MAC is computed over the RTP header 
and the payload is generated by the codec. The MMH Function will be described next, 
followed by a description of the MMH-MAC. 

9.8.1 The MMH Function 
The Multilinear Modular Hash (MMH) Function described below is a variant of the 
MMH Function described in [21]. Some of the computations described below use signed 
arithmetic whereas the computations in [21] use unsigned arithmetic. The signed 
arithmetic variant described here was selected for its computational efficiency when 
implemented on DSPs. All of the properties shown for the MMH function in [21] 
continue to hold for the signed variant. 

The MMH Function has three parameters: the word size, the number of words of input, 
and the number of words of output. MMH[ω,s,t] specifies the hash function with word 
size ω, s input words and t output words. For PacketCable the word size is fixed to 16 
bits: ω =16. The number of output words will be either 1 or 2: t ∈ {1,2}. The MMH Hash 
Function will first be described for t=1, i.e., one output word. 

9.8.1.1 MMH[16,s,1] 
For the remainder of this section 9.8, MMH[16,s,1] is denoted by H. In addition to s 
words of input, H also takes as input a key of s words. When H is used in computing the 
MMH-MAC, the key is randomly generated and remains fixed for several inputs as 
described in section 9.8.2. The key is denoted by k and the ith word of the key by ki: 
k=k1,k2,…,ks. Likewise the input message is denoted by m and the ith word of the input 
message by mi: m = m1, m2,…, ms. 

To describe H, the following definitions are needed. For any even positive integer n, Sn is 
defined to be the following set of n integers: {-n/2,…,0,…,(n/2)-1}. For example, 162

S  = 
{-215,…,0,…,215-1} is the set of signed 16 bit integers. For any integer z, z smod n is the 
unique element ω of Sn such that z ≡ ω (mod n). For example, if z is a 32 bit signed 
integer in 32 bit twos complement representation, then z smod 216 can be computed by 
taking the 16 least significant bits of z and interpreting those bits in 16 bit twos 
complement representation. 
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For any positive integer q, Zq denotes the following set of q integers: {0, 1, …, q-1}. 

As described above H takes as input a key of s words. Each of the s words is interpreted 
as a 16 bit signed integer, i.e., an element of 162

S . H also takes as input a message of s 
words. Each of the s words is interpreted as a 16 bit signed integer, i.e., an element of 

162
S . The output of H is an unsigned 16-bit integer, i.e., an element of 162

Z . Alternatively, 

the range of H is ss SS 1616 22
×  and the domain is 162

Z .  

H is defined by a series of steps. For k,m ∈  sS 162
, 

1. Define H1 as H1(k,m) = 32
1 2modsmk ii

s
i ⋅∑ = . 

2. Define H2 as H2(k,m) = H1(k,m) mod p where p is the prime number p = 216+1. 
3. Define H as H(k,m) = H2(k,m) mod 216. 

 
Equivalently, 

 1632

1
2modmod2mod),( 





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



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Each step is discussed in detail below. 

Step1. H1(k,m) is the inner product of two vectors each of s 16 bit signed integers. 
The result of the inner product is taken smod 232 to yield an element of 322

S .5 That is, 
if the inner product is in twos complement representation of 32 or more bits, the 32 
least significant bits are retained and the resulting integer is interpreted in 32 bit twos 
complement representation. 

Step 2. This step consists of taking an element x of 322
S  and reducing it mod p to 

yield an element of Zp. If x is represented in 32 bit twos complement notation then 
this reduction can be accomplished very simply as follows. Let a be the unsigned 
integer given by the 16 most significant bits of x. Let b be the unsigned integer given 
by the 16 least significant bits of x. There are two cases depending upon whether x is 
negative. 

Case 1. If x is non-negative then x = a216+b where a ∈ {0,…,215-1} and b ∈  
{0,…,216-1}. From the modular equation 

  a216+b ≡ a216 + b – a(216+1) (mod (216 + 1)) 

it follows that x ≡ b – a(mod p). The quantity b-a is in the range {-215+1,…,216-1}. 
Therefore if b-a is non-negative then x mod p = b-a. If b-a is negative then x mod p 
= b-a+p. 

Case 2. If x is negative then x = a216 + b - 232 where a ∈ {215,…,216-1} 
and b ∈ {0,…,216 - 1}. From the modular equation 

a216 + b - 232 ≡ b + a216 – a(216+1) - 232 +216(216 + 1) (mod (216+1)) 
                                                 

5 The entire sum need not be computed before performing the smod 232 operation. The smod 232 operation can be 
computed on partial sums since (x + y) smod 232 = (x smod 232 + y smod 232) smod 232. 



PKT-SP-SEC-I07-021127 PacketCableTM 1.x Specifications 

206 CableLabs  11/27/02 

it follows that x ≡ b – a + 216(mod p). The range of the quantity b – a + 216 is given 
by: 

1 ≤ b – a + 216 ≤ 217 – 215  - 1 ≤ 2p – 1   

Therefore, if b - a + 216 < p then x mod p = b- a+ 216. If b – a + 216 ≥ p  
then x mod p = b – a + 216 – p. 

Step 3. This step takes an element of Zp and reduces it mod 216. This is equivalent to 
taking the 16 least significant bits. 

9.8.1.2 MMH[16,s,2] 
This section describes the MMH Function with an output length of two words, which in 
this case is 32 bits. For convenience, let H’ = MMH[16,s,2]. H’ takes a key of s+1 words. 
Let k = k1,…,ks+1. Furthermore, define k(1) to be the s words of k starting with k1, i.e., k(1) 
=k1,…,ks. Define k(2) to be the s words of k, starting with k2, i.e., k(2)=k2,…,ks+1. For any 

1
216

+∈ sSk  and any sSm 162
∈ m, H’(k,m) is computed by first computing H(k(1),m) and then 

H(k(2),m) and concatenating the results. That is, H’(k,m) = H(k(1),m) ° H(k(2),m). 

9.8.2 The MMH-MAC 
This section describes the MMH-MAC. The MMH-MAC has three parameters; the word 
size, the number of words of input, and the number of words of output. MMH-
MAC[ω,s,t] specifies the message authentication code with word size ω, s input words 
and t output words. For PacketCable the wordsize is fixed to 16 bits: ω = 16. The number 
of output words will be either 1 or 2: t ∈ {1,2}. 

For convenience, let M = MMH-MAC[16,s,t]. When using M, a sender and receiver share 
a key k of s + t -1 words. In addition, they share a sequence of key streams of t words 
each, one one-time pad for each message sent. Let r(i) be the key stream used for the ith 
message sent and received. For the ith message, m(i) , the message authentication code is 
computed as: 

  M(k, r(i) , m(i) ) = H(k, m(i) ) + r(i) .  

Here H = MMH[16,s,t], r(i) is in 162
Z  and addition is mod 216 

9.8.2.1 MMH-MAC When Using RC-4 
When calculating the MMH-MAC for use with RC4, the sequence of key streams is 
generated by an RC4 key stream as described in section 7.6.2. The 2(s + t – 1)-byte key 
for MMH-MAC[16,s,t] are randomly generated as described in section 7.6.2 from a 
session key for the media flows that is generated by the key agreement protocol give in 
section 7.6.2.2. 

9.8.2.2 MMH-MAC When Using a Block Cipher 
When calculating the MMH-MAC when encryption is performed by one of the available 
block ciphers, the block cipher is used to calculate the t words of r (i) key stream (pad) as 
defined in section 7.6.2.1.2.2.3. 
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9.8.2.3 Handling Variable-Size Data 
In order to handle data of all possible sizes up to a maximum value, the following rules 
MUST be followed for computing an MMH function:  

• If the data is not a multiple of the word size, pad the data up to a multiple of the word 
size (16-bits) with zero-bytes. In other words, if the length of message m is not a 
multiple of word size w, but rather of length b octets, b = n * w + r with n >= 0 and 
0 < r < w, then pad message m at the end with w–r zero-bytes before passing it as the 
input to M.  

• It the key is larger than what is needed for a particular message, truncate the key. In 
other words, if a message m is not of length s words, but rather of length v < s words, 
then truncate the value of the key k to v+t-1 words before it is used to calculate the 
MMH hash. (For MMH hash with 1 word output, t=1 and k is truncated to v words. 
For 2 word output, t=2 and k is truncated to v+1 words.)  

9.9 Random Number Generation 
Good random number generation is vital to most cryptographic mechanisms. 
Implementations SHOULD do their best to produce true-random seeds; they should also 
use cryptographically strong pseudo-random number generation algorithms. RFC 1750 
(See Informative Reference [2]) gives some suggestions; other possibilities include use of 
a per-MTA secret installed at manufacture time and used in the random number 
generation process.  



PKT-SP-SEC-I07-021127 PacketCableTM 1.x Specifications 

208 CableLabs  11/27/02 

10 PHYSICAL SECURITY 

10.1 Protection for MTA Key Storage 
An MTA MUST maintain in permanent write-once memory an RSA key pair.  An MTA 
SHOULD deter unauthorized physical access to this keying material.  

The level of physical protection of keying material required by the PacketCable security 
specification for an MTA is specified in terms of the security levels defined in the FIPS 
PUBS 140-2, Security Requirements for Cryptographic Modules, standard. An MTA 
SHOULD, at a minimum meet FIPS PUBS 140-2 Security Level 1 requirements.  

The PacketCable Security specification’s minimal physical security requirements for an 
MTA will not, in normal practice, jeopardize a customer’s data privacy. Assuming the 
subscriber controls the access to the MTA with the same diligence they would protect a 
cellular phone, physical attacks on that MTA to extract keying data are likely to be 
detected by the subscriber. 

An MTA’s weak physical security requirements, however, could undermine the 
cryptographic protocol’s ability to meet its main security objective: to provide a service 
operator with strong protection from theft of high value networks.  

The PacketCable Security specification requirements protect against unauthorized access 
to these network services by enforcing an end-to-end message integrity and encryption of 
signaling flows across the network and by employing an authenticated key management 
protocol. If an attacker is able to legitimately subscribe to a set of services and also gain 
physical access to an MTA containing keying material, then in the absence of strong 
physical protection of this information, the attacker can extract keying material from the 
MTA, and redistribute the keys to other users running modified illegitimate MTA’s, 
effectively allowing theft of network services. 

There are two distinct variations of “active attacks” involving the extraction and 
redistribution of cryptographic keys. These include the following: 

1. An “RSA active clone” would actively participate in PacketCable key 
exchanges. An attacker must have some means by which to remove the 
cryptographic keys that enable services, from the clone master, and install 
these keys into a clone MTA. An active clone would work in conjunction with 
an active clone master to passively obtain the clone master’s keying material 
and then actively impersonate the clone master. A single active clone may 
have numerous active clone master identities from which to select to obtain 
access to network services. This attack allows, for example, the theft of non-
local voice communications. 

2. An DH active clone would also actively participate in the PacketCable key 
exchanges and like the RSA active clone, would require an attacker to extract 
the cryptographic keys that enable the service from the clone master and 
install these keys into a clone MTA. However, unlike the RSA active clone, 
the DH active clone must obtain the clone masters random number through 
alternate means or perform the key exchange and risk detection. Like an RSA 
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active clone, an DH active clone may have numerous clone master identities 
from which to select to obtain access to the network services. 

3. An “active black box” MTA, holding another MTA’s session or IPsec keys, 
would use the keys to obtain access to network-based services or traffic flows 
similar to the RSA active clone. Since both session keys and IPsec keys 
change frequently, such clones have to be periodically updated with the new 
keying material, using some out-of-band means. 

An active RSA clone, for example, could operate on a cable access network 
within whatever geographic region the cloned parent MTA was authorized to 
operate in. Depending upon the degree to which a service operator’s 
subscriber authorization system restricted the location from which the MTA 
could operate, the clone’s scope of operation could extend well beyond a 
single DOCSIS MAC domain. 

An active clone attack may be detectable by implementing the appropriate 
network controls in the system infrastructure. Depending on the access fraud 
detection methods that are in place, a service operator has a good probability 
of detecting a clone’s operation should it attempt to operate within the 
network. The service operator could then take defensive measures against the 
detected clone. For example, in the case of an active RSA clone, it could 
block the device’s future network access by including the device certificate on 
the certificate hot list. Also the service operator’s subscriber authorization 
system could limit the geographic region over which a subscriber, identified 
by its cryptographic credentials, could operate. Additionally the edge router 
functionality in the CMTS could limit any access based upon IP address. 
These methods would limit the region over which an active RSA clone could 
operate and reduce the financial incentive for such an attack. 

The architectural guidelines for PacketCable security are determined by 
balancing the revenues that could be lost due to the classes of active attacks 
against the cost of the methods to prevent the attack. At the extreme side of 
preventive methods available to thwart attacks, both physical security 
equivalent to FIPS PUB 140-2 Level 3 and network based fraud detection 
methods could be used to limit the access fraud that allows theft of network 
based services. The network based intrusion detection of active attacks allows 
operators to consider operational defenses as an alternative to increased 
physical security. If the revenues threatened by the active attacks increase 
significantly to the point where additional protective mechanisms are 
necessary, the long term costs of operational defenses would need to be 
compared with the costs of migrating to MTAs with stronger physical 
security. The inclusion of physical security should be an implementation and 
product differentiation specific decision. 

Although the scope of the current PacketCable specifications do not 
specifically define requirements for MTAs to support any requirements other 
than voice communications, the goal of the PacketCable effort is to provide 
for the eventual inclusion of integrated services. Part of these integrated 
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services may include the “multicast” of high value content or extremely 
secure multicast corporate videoconference sessions. 

Two additional attacks enabling a compromise of these types of services are defined: 

1. An “RSA passive clone” passively monitors the parent MTA’s key exchanges 
and, having a copy of the parent MTA’s RSA private key, is able to obtain the 
same traffic keying material the parent MTA has access to. The clone then 
uses the keying material to decrypt downstream traffic flows it receives across 
the shared medium. This attack is limited in that it only allows snooping, but 
if the traffic were of high value, the attack could facilitate the theft of high 
value multicast traffic. 

2. A “Passive black box” MTA, holding another MTA’s short-term (relative to 
the RSA key) keys, uses the keying material to gain access to encrypted traffic 
flows similar to the RSA passive clone. 

The passive attacks, unlike the active attacks, are not detectable using network 
based intrusion detection techniques since these units never make themselves 
known to the network while performing the attack. However, this type of 
service theft has unlimited scale since the passive clones and black boxes, 
even though they operate on different cable access networks (sometimes 
referred to as the same DOCSIS MAC domain) as the parent MTA from 
whom the keys were extracted, gain access to the protected data the parent 
MTA is currently receiving since the encryption of the data most likely 
occurred at the source. (These are general IP multicast services, not to be 
confused with the specific DOCSIS 1.1 / BPI+ multicast implementation, 
where passive clones would be restricted to a single downstream CMTS 
segment.) The snooping of the point-to-point data is limited to the DOCSIS 
MAC domain of the parent MTA. Passive attacks may be prevented by 
ensuring that the cryptographic keys that are used to enable the services 
cannot be tampered with in any manner. 

In setting goals and guidelines for the PacketCable security architecture, an 
assessment has to be made of the value of the services and content that can be 
stolen or monitored by key extraction and redistribution to passive MTAs. The 
cost of the solution should not be greater that the lost revenue due to theft of 
the service or subscribers terminating the service due to lack of privacy. 
However at this time, there is no clear cost that can be attributed to either the 
lost revenue from high value multicast services or the loss of subscribers due 
to privacy issues unique to this type of network. Therefore, it was concluded 
that passive key extraction and redistribution attacks would pose an 
indeterminate financial risk to service operators; and that the cost of 
protection (i.e., incorporation of stronger physical security into the MTA) 
should be balanced against the value of the risk. As with the active attacks, the 
decision to include additional functionality to implement physical security in 
the MTA should be left as an implementation and product differentiation issue 
and not be mandated as a requirement of the PacketCable security 
specification. 
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10.2 MTA Key Encapsulation 
As stated in the previous section, FIPS PUB 140-2 Security Level 1 specifies very little 
actual physical security and that an MTA MUST deter unauthorized “physical” access to 
its keying material. This restricted access also includes any ability to directly read the 
keying material using any of the MTA interfaces.  

One of the (many) requirements of FIPS PUB 140-2 Security Level 3 is that “the entry or 
output of plaintext Critical Security Parameters (CSPs) be performed using ports that are 
physically separated from other ports, or interfaces that are logically separated using a 
trusted path from other interfaces. Plaintext CSPs may be entered into or output from the 
cryptographic module in encrypted form (in which case they may travel through 
enclosing or intervening systems)”. As also mentioned in the previous section, the 
PacketCable security specification is not requiring compliance with any of the FIPS PUB 
140-2 Security Level 3 requirements.  

However, it is strongly recommended that any persistent keying material SHOULD be 
encapsulated such that there is no way to extract the keying material from the MTA using 
any of the MTA interfaces (either required in the PacketCable specifications or 
proprietary provided by the vendor) without modifications to the MTA.  

In particular, an MTA subscriber may also be connected to the Internet via a Cable 
Modem (which may be embedded in the same MTA). In that case, hackers may 
potentially exploit any weakness in the configuration of the subscriber’s local network 
and steal MTA’s secret and private keys over the network. If instead, the MTA subscriber 
is connected to a company Intranet, the same threat still exists, although from a smaller 
group of people. 
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11 SECURE SOFTWARE DOWNLOAD 
PacketCable includes both Embedded MTAs and Standalone MTAs. E-MTAs are 
embedded with DOCSIS 1.1 cable modems (including BPI+). E-MTAs MUST have their 
software upgraded by the Cable Modem according to the DOCSIS 1.1 requirements as 
specified in [11] and [12].  

S-MTAs, which do not include a DOCSIS 1.1 cable modem, MUST implement the 
following mechanism for secure software download.   

11.1 MIBs 
The S-MTA MUST support the following MIB objects defined in [43] for software 
download:  

• docsDevSwAdminStatus – If set to upgradeFromMgt(1), the device will initiate a 
TFTP software image download using docsDevSwFilename.  

• docsDevSwFilename – The file name of the software image to be loaded into the 
device.  

• docsDevSwCurrentVers – The software version currently operating in the device.  

• docsDevSwServer – The address of the TFTP server used for software upgrades.  

• docsDevSwOperStatus – Status of software download.  

The S-MTA MUST support the following MIB objects defined in [44] for software 
download: 

• docsBpi2CodeDownloadGroup – Collection of objects that provide authenticated 
software download support. The docsBpi2CodeDownloadGroup includes:  

- docsBpi2CodeDownloadStatusCode – Indicates the result of the latest 
configuration file CVC verification, SNMP CVC verification, or code file 
verification.  

- docsBpi2CodeDownloadStatusString – Additional information to the 
status code.  

- docsBpi2CodeMfgOrgName – The device manufacturer's 
organizationName.  

- docsBpi2CodeMfgCodeAccessStart – The device manufacturer's current 
codeAccessStart value referenced to Greenwich Mean Time (GMT).  

- docsBpi2CodeMfgCvcAccessStart – The device manufacturer's current 
cvcAccessStart value referenced to Greenwich Mean Time (GMT).  

- docsBpi2CodeCoSignerOrgName – The Co-Signer's organizationName.  

- docsBpi2CodeCoSignerCodeAccessStart – The co-signer's current 
codeAccessStart value referenced to Greenwich Mean Time (GMT).  

- docsBpi2CodeCoSignerCvcAccessStart – The co-signer's current 
cvcAccessStart value referenced to Greenwich Mean Time (GMT).  
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- docsBpi2CodeCvcUpdate – Triggers the device to verify the CVC and 
update the cvcAccessStart value.  

11.2 Initialization 
In support of code verification, the S-MTA Configuration File is used as an authenticated 
means in which to initialize the code verification process. In the configuration file, the S-
MTA receives configuration settings relevant to code upgrade verification. 

11.2.1 CVC Delivery 
The configuration file SHOULD always include the most up-to-date CVC applicable for 
the destination S-MTA.   When the configuration file is used to initiate a code upgrade, it 
MUST include a CVC to initialize the S-MTA for accepting code files.  Regardless of 
whether a code upgrade is required, a CVC in the configuration file MUST be processed 
by the S-MTA.  A configuration file MAY contain:  

• No CVC  – The S-MTA MUST NOT accept a code file  

• A Manufacturer’s CVC only  – The S-MTA MUST verify that the manufacturer’s 
CVC chains up to the CableLabs CVC Root before accepting a code file.   When 
the S-MTA’s configuration file only contains a valid Manufacturer’s CVC, then 
the S-MTA will only require a manufacturer signature on the code files.  In this 
case, the S-MTA MUST NOT accept code files that have been co-signed.  

• A Co-Signer’s (Service Provider or CableLabs) CVC only  – The S-MTA MUST 
verify that the Co-Signer CVC chains up to the CableLabs CVC Root before 
accepting a code file.   When the S-MTA’s configuration file contains a valid co-
signer’s CVC, it is used to initialize the device with a co-signer.  Once validated, 
the name of the CVC’s subject organizationName will become the code co-signer 
assigned to the S-MTA.  In order for an S-MTA to subsequently accept a code 
image, the co-signer in addition to the S-MTA manufacturer MUST have signed 
the code file.  

• Both a Manufacturer’s CVC and a Co-Signer’s CVC  – The S-MTA MUST verify 
that both CVCs chain up to the CableLabs CVC Root before accepting a code 
file.  

11.2.1.1 CVC Processing 
To expedite the delivery of an updated CVC without requiring the S-MTA to process a 
code upgrade, the CVC MAY be delivered in either the configuration file or an SNMP 
MIB.  The format of the CVC is the same whether it is in a code file, configuration file, 
or SNMP MIB. 

11.2.1.1.1 Processing the Configuration File CVC 
When a CVC is included in the configuration file, the S-MTA MUST verify the CVC 
before accepting any of the code upgrade settings it contains.  At receipt of the CVC in 
the configuration file, the S-MTA must perform the following validation and procedural 
steps. If any of the following verification checks fail, the S-MTA MUST immediately 
halt the CVC verification process and log the error if applicable.  If the S-MTA 
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configuration file does not include a CVC that validates properly, the S-MTA MUST 
NOT download upgrade code files whether triggered by the configuration file or via an 
SNMP MIB.  In addition, if the S-MTA configuration files does not include a CVC that 
validates properly, the S-MTA is not required to process CVC's subsequently delivered 
via an SNMP MIB, and MUST NOT accept information from a CVC subsequently 
delivered via an SNMP MIB.  

At receipt of the CVC in a configuration file, the S-MTA MUST:  

1. Verify that the extendedKeyUsage extension is in the CVC as defined in Section 
6.5.2.  

2. Check the CVC subject organization name.  

a. If the CVC is a Manufacturer's CVC (Type 32) then: 

i. If, the organizationName is identical to the S-MTA's manufacturer 
name, then this is the manufacturer's CVC. In this case, the S-MTA 
MUST verify that the manufacturer's CVC validity start time is 
greater-than or equal-to the manufacturer's cvcAccessStart value 
currently held in the S-MTA.  

ii. If, the organizationName is not identical to the S-MTA's manufacturer 
name, then this CVC MUST be rejected and the error logged.  

b. If the CVC is a Co-signer's CVC (Type 33) then: 

i. If, the organizationName is identical to the S-MTA's current code co-
signer, then this is the current co-signer's CVC and the S-MTA MUST 
verify that the validity start time is greater-than or equal-to the co-
signer's cvcAccessStart value currently held in the S-MTA.  

ii. If, the organizationName is not identical to the current code co-signer 
name, then after the CVC has been validated (and registration is 
complete) this subject organization name will become the S-MTA's 
new code co-signer. The S-MTA MUST NOT accept a code file unless 
it has been signed by the manufacturer, and co-signed by this code co-
signer.  

3. Validate the CVC issuer signature using the CL CVC CA Public Key held by the S-
MTA.  

4. Update the S-MTA's current value of cvcAccessStart corresponding to the CVC's 
subject organizationName (i.e., manufacturer or co-signer) with the validity start time 
value from the validated CVC.  If the validity start time value is greater than the S-
MTA's current value of codeAccessStart, update the S-MTA's codeAccessStart value 
with the validity start time value.  The S-MTA SHOULD discard any remnants of the 
CVC.  

11.2.1.1.2 Processing the SNMP CVC 

The S-MTA MUST process SNMP delivered CVC's when enabled to upgrade code files; 
otherwise, all CVC's delivered via SNMP MUST be rejected.  When validating the CVC 
delivered via SNMP, the S-MTA MUST perform the following validation and procedural 
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steps.  If any of the following verification checks fail, the S-MTA MUST immediately 
halt the CVC verification process, log the error if applicable, and remove all remnants of 
the process to that step.  

At receipt of the CVC via SNMP, the S-MTA MUST:  

1. Verify that the extendedKeyUsage extension is in the CVC as defined in Section 
6.5.2.  

2. Check the CVC subject organization name.  

a. If, the organizationName is identical to the S-MTA's manufacturer name, then 
this is the manufacturer's CVC. In this case, the S-MTA MUST verify that the 
manufacturer's CVC validity start time is greater-than the manufacturer's 
cvcAccessStart value currently held in the S-MTA.  

b. If, the organizationName is identical to the S-MTA's current code co-signer, 
then this is a current co-signer's CVC and the validity start time MUST be 
greater-than the co-signer's cvcAccessStart value currently held in the S-
MTA.  

c. If, the organizationName is not identical to S-MTA's manufacturer or current 
co-signer's name, then the S-MTA MUST immediately reject this CVC.  

3. Validate the CVC issuer signature using the CL CVC CA Public Key held by the S-
MTA.  

4. Update the current value of the subject's cvcAccessStart values with the validated 
CVC's validity start time value.  If the validity start time value is greater than the S-
MTA's current value of codeAccessStart, update the S-MTA's codeAccessStart value 
with the validity start value.  All certificate parameters EXCEPT for the validity start 
time are no longer needed and SHOULD be discarded.  

11.2.2 Time Varying Controls 
To mitigate the possibility of an S-MTA receiving a previous code file via a replay 
attack, the code files include a signing-time value in the PKCS#7 structure that can be 
used to indicate the time the code image was signed. The S-MTA MUST keep two UTC 
time values associated with each code-signing agent.  One set MUST always be stored 
and maintained for the S-MTA's manufacturer.  Additionally, if the code file is co-signed, 
the S-MTA MUST also store and maintain a separate set of time values for the co-signer.  

These values are used to control code file access to the S-MTA by individually 
controlling the validity of the CVS and the CVC. These values are:  

• CodeAccessStart – a 12-byte UTC time value references to Greenwich Mean 
Time (GMT) 

• CvcAccessStart – a 12-byte UTC time value references to GMT 

UTCTime values in the CVC MUST be expressed as GMT and MUST include seconds.  
That is, they MUST be expressed in the following form: YYMMDDhhmmssZ.  The year 
field (YY) MUST be interpreted as follows: 

• Where YY is greater than or equal to 50, the year shall be interpreted as 19YY 
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• Where YY is less than 50, the year shall be interpreted as 20YY  

These values will always be referenced to Greenwich Mean Time, so the final ASCII 
character (Z) can be removed when stored by the S-MTA as codeAccessStart and 
cvcAccessStart. 

The S-MTA MUST maintain each of these time values in a format that contains 
equivalent time information and accuracy to the 12-character UTC format (i.e., 
YYMMDDhhmmss).  

The values of codeAccessStart and cvcAccessStart corresponding to the S-MTA's 
manufacturer MUST NOT decrease.  The value of codeAccessStart and cvcAccessStart 
corresponding to the co-signer MUST NOT decrease as long as the co-signer does not 
change and the S-MTA maintains that co-signer's time-varying control values.  

11.3 Transport 
 The S-MTA MUST support TFTP transport for software download.  The S-MTA will be 
provided with the URL-encoded TFTP server address and configuration filename.  

The S-MTA MAY support HTTP transport for software download.   The device will be 
provided with the URL-encoded HTTP server address and configuration filename. 

11.4 Trigger Mechanism 
The download can be initiated through either SNMP or through the configuration file. 

11.4.1 Configuration File Initiated Download 
Configuration file initiated download MUST be supported.  

The Configuration-file-initiated software download is initiated by sending the Software 
Upgrade File Name in the configuration file. If the Software Upgrade File Name in the 
configuration file does not match the current software image of the S-MTA, the S-MTA 
MUST request the specified file via TFTP from the Software Server.  

Note: The Software Server IP Address is a separate parameter. If present, the S-MTA 
MUST attempt to download the specified file from this server.  If not present, the S-MTA 
MUST attempt to download the specified file from the configuration file server.  

In case where the S-MTA reaches the maximum number of retries (max retries = 3) 
resulting from multiple losses of power or multiple resets during a configuration-file-
initiated upgrade, the S-MTA's status MUST adhere to the following requirements after it 
is provisioned:  

• docsDevSwAdminStatus MUST be allowProvisioningUpgrade{2}  

• docsDevSwFilename MUST be the filename of the software that failed the 
upgrade process  

• docsDevSwServer MUST be the address of the TFTP server containing the 
software that failed the upgrade process  

• docsDevSwOperStatus MUST be other{5}  
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• docsDevSwCurrentVer MUST be the current version of software that is operating 
on the S-MTA  

If the S-MTA exhausts required number of TFTP retries by issuing a total of 16 
consecutive retries, it MUST fall back to last known working image and proceed to an 
operational state and adhere to the following requirements:  

• docsDevSwAdminStatus MUST be allowProvisioningUpgrade{2}  

• docsDevSwFilename MUST be the filename of the software that failed the 
upgrade process  

• docsDevSwServer MUST be the address of the TFTP server containing the 
software that failed the upgrade process  

• docsDevSwOperStatus MUST be failed{4}  

• docsDevSwCurrentVer MUST be the current version of the software that is 
operating on the S-MTA  

After the S-MTA has completed the configuration-file-initiated secure software upgrade, 
the S-MTA MUST reboot and become operational with the correct software image. After 
the S-MTA is provisioned the:  

• docsDevSwAdminStatus MUST be allowProvisioningUpgrade{2}  

• docsDevSwFilename MAY be the filename of the software currently operating on 
the S-MTA device  

• docsDevSwServer MAY be the address of the TFTP server containing the 
software that is currently operating on the S-MTA  

• docsDevSwOperStatus MUST be completeFromProvisioning{2}  

• docsDevSwCurrentVer MUST be the current version of the software that is 
operating on the S-MTA  

11.4.2 SNMP Initiated Download 
SNMP initiated download MUST be supported.  

From the provisioning server:  

• Set docsDevSwServer to the address of the TFTP server for software upgrades  

• Set docsDevSwFilename to the file pathname of the software upgrade image  

• Set docsDevSwAdminStatus to Upgrade-from-mgt.   docsDevSwAdminStatus 
MUST persist across resets/reboots until over-written from an SNMP manager or 
via the configuration file.  

The default state of docsDevSwAdminStatus MUST be allowProvisioningUpgrade{2} 
until it is over-written by ignoreProvisioningUpgrade{3} following a successful SNMP-
initiated software upgrade or otherwise altered by the management station.  
docsDevSwOperStatus MUST persist across resets to report the outcome of the last 
software upgrade attempt.  
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If a S-MTA suffers a loss of power or resets during SNMP-initiated upgrade, the S-MTA 
MUST resume the upgrade without requiring manual intervention and when the S-MTA 
resumes the upgrade process:  

• docsDevSwAdminStatus MUST be Upgrade-from-mgt{1}  

• docsDevSwFilename MUST be the filename of the software image to be upgrade  

• docsDevSwServer MUST be the address of the TFTP server containing the 
software upgrade image to be upgraded  

• docsDevSwOperStatus MUST be inProgress{1}  

• docsDevSwCurrentVers MUST be the current version of the software that is 
operating on the S-MTA  

In case where the S-MTA reaches the maximum number of retries (max retries = 3) 
resulting from multiple loss of powers or resets during an SNMP-initiated upgrade, the S-
MTA's status MUST adhere to the following requirements after it is registered:  

• docsDevSwAdminStatus MUST be allowProvisioningUpgrade{2}  

• docsDevSwFilename MUST be the filename of the software that failed the 
upgrade process  

• docsDevSwServer MUST be the address of the TFTP server containing the 
software that failed the upgrade process  

• docsDevSwOperStatus MUST be other{5}  

• docsDevSwCurrentVer MUST be the same version of the software that is 
operating on the S-MTA  

If the S-MTA exhausts the required number of TFTP retries by issuing a total of 16 
consecutive retries, the S-MTA MUST fall back to the last known working image and 
proceed to an operational state and adhere to the following requirements:  

• docsDevSwAdminStatus MUST be allowProvisioningUpgrade{2}  

• docsDevSwFilename MUST be the filename of the software that failed the 
upgrade process  

• docsDevSwServer MUST be the address of the TFTP server containing the 
software that failed the upgrade process  

• docsDevSwOperStatus MUST be failed{4}  

• docsDevSwCurrentVer MUST be the current version of software that is operating 
on the S-MTA  

After the S-MTA has completed the SNMP-initiated secure software upgrade, the S-
MTA MUST reboot and become operational with the correct software image.  After the 
device is operational, it MUST adhere to the following requirements:  

1. Set its docsDevSwAdminStatus to ignoreProvisioningUpgrade{3}  

2. Set its docsDevOperStatus to completeFromMgt{3}  
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3. Reboot  

The S-MTA MUST properly use ignoreProvisioningUpgrade status to ignore software 
upgrade values that may be included in the configuration file and become operational 
with the correct software image.  After the device is operational, it MUST adhere to the 
following requirements:  

• docsDevSwAdminStatus MUST be ignoreProvisioningUpgrade{3}  

• docsDevSwFilename MAY be the filename of the software currently operating on 
the S-MTA  

• docsDevSwServer MAY be the address of the TFTP server containing the 
software that is currently operating on the S-MTA  

• docsDevSwOperStatus MUST be completeFromMgt{3}  

• docsDevSwCurrentVer MUST be the current version of the software that is 
operating on the S-MTA  

In the case where the S-MTA successfully downloads (or detects during download) an 
image that is not intended for the S-MTA, the S-MTA MUST adhere to the following 
requirements:  

• docsDevSwAdminStatus MUST be allowProvisioningUpgrade{2}  

• docsDevSwFilename MUST be the filename of the software that failed the 
upgrade  

• docsDevSwServer MUST be the address of the TFTP server containing the 
software that failed the upgrade process  

• docsDevSwOperStatus MUST be other{5}  

• docsDevSwCurrentVer MUST be the current version of the software that is 
operating on the S-MTA  

In the case where the S-MTA determines that the download image is damaged or 
corrupted, it MUST reject the image. The S-MTA MAY re-attempt to download if the 
MAX number of TFTP sequence retries has not been reached. If the S-MTA chooses not 
to retry and the MAX number of TFTP sequence retry has not been reached,  the S-MTA 
MUST fall back to the last known working image and proceed to an operational state, 
generate appropriate event notification as specified in Section 11.7, and adhere to the 
following requirements:  

• docsDevSwAdminStatus MUST be allowProvisioningUpgrade{2}  

• docsDevSwFilename MUST be the filename of the software that failed the 
upgrade  

• docsDevSwServer MUST be the address of the TFTP server containing the 
software that failed the upgrade process  

• docsDevSwOperStatus MUST be other{5}  
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• docsDevSwCurrentVer MUST be the current version of software that is operating 
on the S-MTA  

In the case where the S-MTA determines that the image is damaged or corrupted, it 
MUST reject the image.  The S-MTA MAY re-attempt to download the new image if the 
MAX number of TFTP sequence retry has not been reached.  On the 16th consecutive 
failed software download attempt, the S-MTA MUST fall back to the last known working 
image and proceed to an operational state.  In this case, the S-MTA is required to send 
two notifications, one to notify that the MAX TFTP retry limit has been reached, and 
another to notify that the image is damaged. Immediately after the S-MTA reaches the 
operational state it MUST adhere to the following requirements:  

• docsDevSwAdminStatus MUST be allowProvisioningUpgrade{2}  

• docsDevSwFilename MUST be the filename of the software that failed the 
upgrade  

• docsDevSwServer MUST be the address of the TFTP server containing the 
software that failed the upgrade process  

• docsDevSwOperStatus MUST be other{5}  

• docsDevSwCurrentVer MUST be the current version of software that is operating 
on the S-MTA  

11.5 Image File Structure 
For secure software download, the code download file is a file built using a PKCS#7 
compliant structure that has been defined in a specific format for use with S-MTAs. The 
code file MUST comply with [45] and MUST be DER encoded.  The code file MUST 
match the structure shown in Table 49.  

When downloading the CA Certificates (e.g., CableLabs Service Provider Root CA 
certificate, CableLabs CVC Root CA certificate, CableLabs CVC CA certificate, 
Manufacturer CA certificate) as a part of the Code File, the certificates MAY be 
contained in the fields specified in Table 49, separated from the actual code image 
contained in the CodeImage field.  
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Table 49: Code File Structure 

Code File Description 
PKCS#7 Digital Signature {  

ContentInfo  
ContentType SignedData 
SignedData () EXPLICIT signed-data content value: includes CVS and X.509 compliant 

CVCs 
} end PKCS#7 Digital Signature  
SignedContent {  

DownloadParameters { Mandatory TLV format (Type 28). (Length is zero if there is no sub-TLVs.) 
  
MfgCACerts () Optional TLV for one or more DER-encoded MTA Manufacturer CA 

Certificate(s) each formatted according to Manufacturer CA-Certificate TLV 
format (Type 17) 
.  Refer to section 11.5.2.1. 

clabServProvRootCACert () Optional TLV for one DER-encoded certificate formatted according to the 
CableLabs Service Provider Root CA-Certificate TLV format (Type 50).  
Refer to section 11.5.2.2. 
 

clabCVCRootCACert() Optional TLV for one DER-encoded certificate formatted according to the 
CableLabs CVC Root CA CA-Certificate TLV format (Type 51).  Refer to 
section 11.5.2.3. 

clabCVCCACertificate () Optional TLV for one DER-encoded certificate formatted according to the 
CableLabs CVC CA-Certificate TLV format (Type 52).  Refer to section 
11.5.2.4. 
 

}  
CodeImage () Upgrade code image. 

} end SignedContent  
 

11.5.1 Signed Data 
The code download file will contain the information in a PKCS#7 Signed Data content 
type as shown below in 
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Table 50. Though maintaining compliance to [45] the structure used has been restricted in 
format to ease the processing performed by the  S-MTA to validate the signature. The 
PKCS#7 SignedData MUST be DER encoded and exactly match the structure shown 
below except for any change required for DER encoding (e.g., the ordering of SET OF 
attributes). The S-MTA SHOULD reject the PKCS#7 signature if the PKCS#7 Signed 
Data does not match the DER encoded structure.  
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Table 50: PKCS#7 Signed Data 

PKCS#7 Field Description 
SignedData {  

Version version = 1 
DigestAlgorithmIdentifiers SHA-1 
ContentInfo  

ContentType data (SignedContent is concatenated at the end of the PKCS#7 
structure) 

certificates { CableLabs Code Verification Certificates 
MfgCVC (REQUIRED for all code files) 
Co-signerCVC (OPTIONAL; required for co-signatures) 

} end certificates  
SignerInfo {  

MfgSignerInfo { (REQUIRED for all code images) 
Version version = 1 
IssuerAndSerialNumber  

IssuerName  
CountryName US 
OrganizationName CableLabs 
CommonName CableLabs CVC Root CA 

CertificateSerialNumber <Mfg CVC serial number> 
DigestAlgorithm SHA-1 
AuthenticatedAttributes  

ContentType data (contentType of signedContent) 
SigningTime UTC Time (GMT), YYMMDDhhmmssZ 
MessageDigest Digest of the content as defined in PKCS#7 

DigestEncryptionAlgorithm RsaEncryption 
EncryptedDigest  
} end mfg signer info  

CoSignerInfo { (OPTIONAL; required for co-signatures) 
Version version = 1 
IssuerAndSerialNumber  

IssuerName  
CountryName US 
OrganizationName CableLabs 
CommonName Cablelabs CVC Root CA 

CertificateSerialNumber <CoSigner CVC serial number> 
DigestAlgorithm SHA-1 
AuthenticatedAttributes  

ContentType data (contentType of signedContent) 
SigningTime UTC Time (GMT), YYMMDDhhmmssZ 
MessageDigest Digest of the content as defined in PKCS#7 

DigestEncryptionAlgorithm RsaEncryption 
EncryptedDigest  
} end CoSignerInfo  

} end SignerInfo  
} end SignedData  

11.5.2 Signed Content 
The signed content field of the code file contains the code image and the download 
parameters field, which possibly contains additional optional items - CA Certificates 
(e.g., CableLabs Service Provider Root CA certificate, CableLabs CVC Root CA 
certificate, CableLabs CVC CA certificate, Manufacturer CA certificate). 

The final code image is in a format compatible with the destination S-MTA. In support of 
the PKCS#7 signature requirements, the code content is typed as data; i.e., a simple octet 
string. The format of the final code image is not specified here and will be defined by 
each manufacturer according to their requirements. 

Each manufacturer SHOULD build their code with additional mechanisms that verify an 
upgrade code image is compatible with the destination S-MTA.  
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If included in the signed content field, the certificate fields are intended to replace the 
MTA Manufacturer,  CableLabs Service Provider Root CA , CableLabs CVC Root CA, 
or  the CableLabs CVC CA Certificate(s) currently stored in the S-MTA. If the code 
download and installation is successful, the MTA MUST update its currently stored 
certificates with the ones contained in the  MfgCACerts, clabServProvRootCACert, 
clabCVCRootCACert and clabCVCCACertificate fields of the signed content field in the 
new Code File.  

11.5.2.1 Manufacturer CA-Certificate TLV Format 
The attribute is a string attribute containing an X.509 CA Certificate, as defined in [39]. 

Type Length Value 

17 Variable X.509 MTA Manufacturer CA Certificate (DER-encoded ASN.1) 

11.5.2.2 Service Provider Root CA-Certificate TLV Format 
The attribute is a string attribute containing an X.509 CA Certificate, as defined in [39]. 

Type Length Value 

50 Variable X.509 CableLabs Service Provider Root CA Certificate (DER-encoded 
ASN.1) 

11.5.2.3 CVC Root CA CA-Certificate TLV Format 
The attribute is a string attribute containing an X.509 CA Certificate, as defined in [39]. 

Type Length Value 

51 Variable X.509 CableLabs CVC Root CA Certificate (DER-encoded ASN.1) 

11.5.2.4 CVC CA-Certificate TLV Format 
The attribute is a string attribute containing an X.509 CA Certificate, as defined in [39]. 

Type Length Value 

52 Variable X.509 CableLabs CVC CA Certificate (DER-encoded ASN.1) 

11.5.3 Code Signing Keys 
The PKCS#7 digital signature uses the RSA Encryption Algorithm [19] with SHA-1 [46]. 
The S-MTA MUST be able to verify code file signatures. 

11.6 Image Validation 
The S-MTA MUST perform the verification checks presented in this section.  If any of 
the verification checks fail, or if any portion of the code file is rejected due to invalid 
formatting, the S-MTA MUST immediately halt the download process, log the error if 
applicable, remove all remnants of the process to that step, and continue to operate with 
its existing code. The verification checks can be made in any order, as long as all of the 
applicable checks presented in this section are made. 

1. The S-MTA MUST validate the manufacturer's signature information by verifying 
that the PKCS#7 signingTime value is:  
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a. equal-to or greater-than the manufacturer's codeAccessStart value currently 
held in the S-MTA.  

b. equal-to or greater-than the manufacturer's CVC validity start time.  

c. ss-than or equal-to the manufacturer's CVC validity end time.  

2. The S-MTA MUST validate the manufacturer's CVC by verifying that the:  

a. CVC subject organizationName is identical to the manufacturer name 
currently stored in the S-MTA's memory.  

b. CVC validity start time is equal-to or greater-than the manufacturer's 
cvcAccessStart value currently held in the S-MTA.  

c. extendedKeyUsage extension is in the CVC as defined in 6.5.2.  

3. The S-MTA MUST validate the certificate signature using the CL CVC CA Public 
Key held by the S-MTA.  Verification of the signature will authenticate the source of 
the public code verification key (CVK) and confirm trust in the key. Once trust has 
been established in the manufacturer's CVK, the remaining certificate parameters 
except for the validity start time are no longer needed and SHOULD be discarded.  

4. The S-MTA MUST verify the manufacturer's code file signature.  

a. The S-MTA MUST perform a new SHA-1 hash over the SignedContent.  If 
the value of the messageDigest doesn't match the new hash, the S-MTA 
MUST consider the signature on the code file as invalid.  

b. If the signature does not verify, all components of the code file (including the 
code image), and any values derived from the verification process MUST be 
rejected  and SHOULD be immediately discarded.  

5. If the manufacturer signature verifies and a co-signing agent signature is required: 

a. The S-MTA MUST validate the co-signer's signature information by verifying 
that the:  

i. co-signer's signature information is included in the code file.  

ii. PKCS#7 signingTime value is equal-to or greater-than the 
corresponding codeAccessStart value currently held in the S-MTA.  

iii. PKCS#7 signingTime value is equal-to or greater-than the 
corresponding CVC validity start time.  

iv. PKCS#7 signingTime value is less-than or equal-to the corresponding 
CVC validity end time. 

b. The S-MTA MUST validate the co-signer's CVC, by verifying that the:  

i. CVC subject organizationName is identical to the co-signer's 
organization name currently stored in the S-MTA's memory. 

ii. CVC validity start time is equal-to or greater-than the cvcAccessStart 
value currently held in the S-MTA for the corresponding subject 
organizationName.  
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iii. extendedKeyUsage extension is in the CVC as defined in Section 
6.5.2.  

c. The S-MTA MUST validate the certificate signature using the CL CVC CA 
cert held by the S-MTA. Verification of the signature will authenticate the 
source of the co- signer's public code verification key (CVK) and confirm 
trust in the key.  Once trust has been established in the co-signer's CVK, the 
remaining certificate parameters except for the validity start time are no 
longer needed and SHOULD be discarded.  

d. The S-MTA MUST verify the co-signer's code file signature.  

e. The S-MTA MUST perform a new SHA-1 hash over the SignedContent.  If 
the value of the messageDigest doesn't match the new hash, the S-MTA 
MUST consider the signature on the code file as invalid.  

f. If the signature does not verify, all components of the code file (including the 
code image), and any values derived from the verification process MUST be 
rejected  and SHOULD be immediately discarded.  

6. The S-MTA MUST verify that the downloaded software image is appropriate for 
itself.  

7. If the manufacturer's, and optionally the co-signer's, signature has verified, the code 
image can be trusted and installation may proceed. Before installing the code image, 
all other components of the code file and any values derived from the verification 
process except the PKCS#7 signingTime values and the CVC validity start values 
SHOULD be immediately discarded.  

8. If the code installation is unsuccessful, the S-MTA MUST reject the PKCS#7 
signingTime values and CVC validity start values it just received in the code file.   

9. When the code installation is successful, the S-MTA MUST update the 
manufacturer's time varying controls with the values from the manufacturer's 
signature information and CVC:  

a. Update the current value of codeAcessStart with the PKCS#7 signingTime 
value  

b. Update the current value cvcAccessStart with the CVC validity start value  

10. hen the code installation is successful, if the code file was co-signed, the S-MTA 
MUST update the co- signer's time-varying controls with the values from the co-
signer's signature information and CVC:  

a. Update the current value of codeAccessStart with the PKCS#7 signingTime 
value  

b. Update the current value of cvcAccessStart with the CVC validity start value  
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11.7 Error Codes 
Error codes are defined to reflect the failure states possible during the secure software 
download code verification process. 

1. Improper code file controls 

a. CVC subject organizationName for manufacturer does not match the S-MTA's 
manufacturer name. 

b. CVC subject organizationName for code co-signing agent does not match the S-
MTA's current code co-signing agent. 

c. The manufacturer's PKCS#7 signingTime value is less-than the codeAccessStart 
value currently held in the S-MTA. 

d. The manufacturer's PKCS#7 validity start time value is less-than the 
cvcAccessStart value currently held in the S-MTA. 

e. The manufacturer's CVC validity start time is less-than the cvcAccessStart value 
currently held in the S-MTA. 

f. The manufacturer's PKCS#7 signingTime value is less-than the CVC validity 
start time. 

g. Missing or improper extendedKeyUsage extension in the manufacturer CVC. 

h. The co-signer's PKCS#7 signingTime value is less-than the codeAccessStart 
value currently held in the S-MTA. 

i. The co-signer's PKCS#7 validity start time value is less-than the cvcAccessStart 
value currently held in the S-MTA. 

j. The co-signer's CVC validity start time is less-than the cvcAccessStart value 
currently held in the S-MTA. 

k. The co-signer's PKCS#7 signingTime value is less-than the CVC validity start 
time. 

l. Missing or improper extended key-usage extension in the co-signer's CVC. 

2. Code file manufacturer CVC validation failure. 

3. Code file manufacturer CVS validation failure. 

4. Code file co-signer CVC validation failure. 

5. Code file co-signer CVS validation failure. 

6. Improper Configuration File CVC format (e.g., Missing or improper key usage 
attribute) 

7. Configuration File CVC validation failure. 

8. Improper SNMP CVC format 

a. CVC subject organizationName for manufacturer does not match the S-MTA's 
manufacturer name. 
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b. CVC subject organizationName for code co-signing agent does not match the S-
MTA's current code co-signing agent. 

c. The CVC validity start time is less-than or equal-to the corresponding subject's 
cvcAccessStart value currently held in the S-MTA. 

d. Missing or improper key usage attribute. 

9. SNMP CVC validation failure. 
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Appendix A. PacketCable Admin Guidelines & Best 
Practices (Informative) 

This section describes various administration guidelines and best practices recommended 
by PacketCable. These are included to help facilitate network administration and/or 
strengthen overall security in the PacketCable network.  

A.1 Routine CMS Service Key Refresh 
PacketCable recommends that the CMS service keys be routinely changed (refreshed) at 
least once every 90 days in order to reduce the risk of key compromises. The refresh 
period should be a provisioned parameter that can be use in one the following ways: 

In the case of manual key changes, an administrator is prompted or reminded to manually 
change a CMS service key. 

In the case of autonomous key changes (using Kerberos Set/Change Password) it will 
define the refresh period. 

Note that in the case of autonomous key refreshes, whereby administrative overhead and 
scalability are not an issue, it may be desirable to use a refresh period that is less than 90 
days (but at least the maximum ticket lifetime). This may further reduce the risk of key 
compromise. 
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Appendix B. Kerberos Network Authentication Service 
(Normative) 

The Kerberos Network Authentication Service specification is currently still an IETF 
draft. This document complies only with the version of the draft that is included in this 
section. The PacketCable security team will continue to track progress of the Kerberos 
Network Authentication Service draft through the IETF. 

 
The Kerberos Network Authentication Service

INTERNET-DRAFT Clifford Neuman
John Kohl

Theodore Ts'o
November 24, 2000

Expires May 24, 2001

The Kerberos Network Authentication Service (V5)

draft-ietf-cat-kerberos-revisions-07.txt.

STATUS OF THIS MEMO

This document is an Internet-Draft and is in full conformance with all
provisions of Section 10 of RFC 2026. Internet-Drafts are working documents
of the Internet Engineering Task Force (IETF), its areas, and its working
groups. Note that other groups may also distribute working documents as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and
may be updated, replaced, or obsoleted by other documents at any time. It is
inappropriate to use Internet-Drafts as reference material or to cite them
other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

To learn the current status of any Internet-Draft, please check the
"1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
Directories on ftp.ietf.org (US East Coast), nic.nordu.net (Europe),
ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific Rim).

The distribution of this memo is unlimited. It is filed as
draft-ietf-cat-kerberos-revisions-07.txt, and expires May 24, 2001.
Please send comments to: ietf-krb-wg@anl.gov

ABSTRACT

This document provides an overview and specification of Version 5 of the
Kerberos protocol, and updates RFC1510 to clarify aspects of the protocol
and its intended use that require more detailed or clearer explanation than
was provided in RFC1510. This document is intended to provide a detailed
description of the protocol, suitable for implementation, together with
descriptions of the appropriate use of protocol messages and fields within
those messages.
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This document is not intended to describe Kerberos to the end user, system
administrator, or application developer. Higher level papers describing
Version 5 of the Kerberos system [NT94] and documenting version 4 [SNS88],
are available elsewhere.

OVERVIEW

This INTERNET-DRAFT describes the concepts and model upon which the Kerberos
network authentication system is based. It also specifies Version 5 of the
Kerberos protocol.

The motivations, goals, assumptions, and rationale behind most design
decisions are treated cursorily; they are more fully described in a paper
available in IEEE communications [NT94] and earlier in the Kerberos portion
of the Athena Technical Plan [MNSS87]. The protocols have been a proposed
standard and are being considered for advancement for draft standard through
the IETF standard process. Comments are encouraged on the presentation, but
only minor refinements to the protocol as implemented or extensions that fit
within current protocol framework will be considered at this time.

Requests for addition to an electronic mailing list for discussion of
Kerberos, kerberos@MIT.EDU, may be addressed to kerberos-request@MIT.EDU.
This mailing list is gatewayed onto the Usenet as the group
comp.protocols.kerberos. Requests for further information, including
documents and code availability, may be sent to info-kerberos@MIT.EDU.

BACKGROUND

The Kerberos model is based in part on Needham and Schroeder's trusted
third-party authentication protocol [NS78] and on modifications suggested by
Denning and Sacco [DS81]. The original design and implementation of Kerberos
Versions 1 through 4 was the work of two former Project Athena staff
members, Steve Miller of Digital Equipment Corporation and Clifford Neuman
(now at the Information Sciences Institute of the University of Southern
California), along with Jerome Saltzer, Technical Director of Project
Athena, and Jeffrey Schiller, MIT Campus Network Manager. Many other members
of Project Athena have also contributed to the work on Kerberos.

Version 5 of the Kerberos protocol (described in this document) has evolved
from Version 4 based on new requirements and desires for features not
available in Version 4. The design of Version 5 of the Kerberos protocol was
led by Clifford Neuman and John Kohl with much input from the community. The
development of the MIT reference implementation was led at MIT by John Kohl
and Theodore T'so, with help and contributed code from many others. Since
RFC1510 was issued, extensions and revisions to the protocol have been
proposed by many individuals. Some of these proposals are reflected in this
document. Where such changes involved significant effort, the document cites
the contribution of the proposer.

Reference implementations of both version 4 and version 5 of Kerberos are
publicly available and commercial implementations have been developed and
are widely used. Details on the differences between Kerberos Versions 4 and
5 can be found in [KNT92].

1. Introduction

Kerberos provides a means of verifying the identities of principals, (e.g. a
workstation user or a network server) on an open (unprotected) network. This
is accomplished without relying on assertions by the host operating system,
without basing trust on host addresses, without requiring physical security
of all the hosts on the network, and under the assumption that packets
traveling along the network can be read, modified, and inserted at
will[1.1]. Kerberos performs authentication under these conditions as a
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trusted third-party authentication service by using conventional (shared
secret key [1.2]) cryptography. Kerberos extensions described in [PKINIT
reference as RFC] provide for the use of public key cryptography during
certain phases of the authentication protocol. These extensions allow
authentication of users registered with public key certification
authorities, and provide certain benefits of public key cryptography in
situations where they are needed.

The basic Kerberos authentication process proceeds as follows: A client
sends a request to the authentication server (AS) requesting 'credentials'
for a given server. The AS responds with these credentials, encrypted in the
client's key. The credentials consist of 1) a 'ticket' for the server and 2)
a temporary encryption key (often called a "session key"). The client
transmits the ticket (which contains the client's identity and a copy of the
session key, all encrypted in the server's key) to the server. The session
key (now shared by the client and server) is used to authenticate the
client, and may optionally be used to authenticate the server. It may also
be used to encrypt further communication between the two parties or to
exchange a separate sub-session key to be used to encrypt further
communication.

Implementation of the basic protocol consists of one or more authentication
servers running on physically secure hosts. The authentication servers
maintain a database of principals (i.e., users and servers) and their secret
keys. Code libraries provide encryption and implement the Kerberos protocol.
In order to add authentication to its transactions, a typical network
application adds one or two calls to the Kerberos library directly or
through the Generic Security Services Application Programming Interface,
GSSAPI, described in separate document [ref to GSSAPI RFC]. These calls
result in the transmission of the necessary messages to achieve
authentication.

The Kerberos protocol consists of several sub-protocols (or exchanges).
There are two basic methods by which a client can ask a Kerberos server for
credentials. In the first approach, the client sends a cleartext request for
a ticket for the desired server to the AS. The reply is sent encrypted in
the client's secret key. Usually this request is for a ticket-granting
ticket (TGT) which can later be used with the ticket-granting server (TGS).
In the second method, the client sends a request to the TGS. The client uses
the TGT to authenticate itself to the TGS in the same manner as if it were
contacting any other application server that requires Kerberos
authentication. The reply is encrypted in the session key from the TGT.
Though the protocol specification describes the AS and the TGS as separate
servers, they are implemented in practice as different protocol entry points
within a single Kerberos server.

Once obtained, credentials may be used to verify the identity of the
principals in a transaction, to ensure the integrity of messages exchanged
between them, or to preserve privacy of the messages. The application is
free to choose whatever protection may be necessary.

To verify the identities of the principals in a transaction, the client
transmits the ticket to the application server. Since the ticket is sent "in
the clear" (parts of it are encrypted, but this encryption doesn't thwart
replay) and might be intercepted and reused by an attacker, additional
information is sent to prove that the message originated with the principal
to whom the ticket was issued. This information (called the authenticator)
is encrypted in the session key, and includes a timestamp. The timestamp
proves that the message was recently generated and is not a replay.
Encrypting the authenticator in the session key proves that it was generated
by a party possessing the session key. Since no one except the requesting
principal and the server know the session key (it is never sent over the
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network in the clear) this guarantees the identity of the client.

The integrity of the messages exchanged between principals can also be
guaranteed using the session key (passed in the ticket and contained in the
credentials). This approach provides detection of both replay attacks and
message stream modification attacks. It is accomplished by generating and
transmitting a collision-proof checksum (elsewhere called a hash or digest
function) of the client's message, keyed with the session key. Privacy and
integrity of the messages exchanged between principals can be secured by
encrypting the data to be passed using the session key contained in the
ticket or the sub-session key found in the authenticator.

The authentication exchanges mentioned above require read-only access to the
Kerberos database. Sometimes, however, the entries in the database must be
modified, such as when adding new principals or changing a principal's key.
This is done using a protocol between a client and a third Kerberos server,
the Kerberos Administration Server (KADM). There is also a protocol for
maintaining multiple copies of the Kerberos database. Neither of these
protocols are described in this document.

1.1. Cross-realm operation

The Kerberos protocol is designed to operate across organizational
boundaries. A client in one organization can be authenticated to a server in
another. Each organization wishing to run a Kerberos server establishes its
own 'realm'. The name of the realm in which a client is registered is part
of the client's name, and can be used by the end-service to decide whether
to honor a request.

By establishing 'inter-realm' keys, the administrators of two realms can
allow a client authenticated in the local realm to prove its identity to
servers in other realms[1.3]. The exchange of inter-realm keys (a separate
key may be used for each direction) registers the ticket-granting service of
each realm as a principal in the other realm. A client is then able to
obtain a ticket-granting ticket for the remote realm's ticket-granting
service from its local realm. When that ticket-granting ticket is used, the
remote ticket-granting service uses the inter-realm key (which usually
differs from its own normal TGS key) to decrypt the ticket-granting ticket,
and is thus certain that it was issued by the client's own TGS. Tickets
issued by the remote ticket-granting service will indicate to the
end-service that the client was authenticated from another realm.

A realm is said to communicate with another realm if the two realms share an
inter-realm key, or if the local realm shares an inter-realm key with an
intermediate realm that communicates with the remote realm. An
authentication path is the sequence of intermediate realms that are
transited in communicating from one realm to another.

Realms are typically organized hierarchically. Each realm shares a key with
its parent and a different key with each child. If an inter-realm key is not
directly shared by two realms, the hierarchical organization allows an
authentication path to be easily constructed. If a hierarchical organization
is not used, it may be necessary to consult a database in order to construct
an authentication path between realms.

Although realms are typically hierarchical, intermediate realms may be
bypassed to achieve cross-realm authentication through alternate
authentication paths (these might be established to make communication
between two realms more efficient). It is important for the end-service to
know which realms were transited when deciding how much faith to place in
the authentication process. To facilitate this decision, a field in each
ticket contains the names of the realms that were involved in authenticating
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the client.

The application server is ultimately responsible for accepting or rejecting
authentication and should check the transited field. The application server
may choose to rely on the KDC for the application server's realm to check
the transited field. The application server's KDC will set the
TRANSITED-POLICY-CHECKED flag in this case. The KDC's for intermediate
realms may also check the transited field as they issue
ticket-granting-tickets for other realms, but they are encouraged not to do
so. A client may request that the KDC's not check the transited field by
setting the DISABLE-TRANSITED-CHECK flag. KDC's are encouraged but not
required to honor this flag.

1.2. Choosing a principal with which to communicate

The Kerberos protocol provides the means for verifying (subject to the
assumptions in 1.4) that the entity with which one communicates is the same
entity that was registered with the KDC using the claimed identity
(principal name). It is still necessary to determine whether that identity
corresponds to the entity with which one intends to communicate.

When appropriate data has been exchanged in advance, this determination may
be performed syntactically by the application based on the application
protocol specification, information provided by the user, and configuration
files. For example, the server principal name (including realm) for a telnet
server might be derived from the user specified host name (from the telnet
command line), the "host/" prefix specified in the application protocol
specification, and a mapping to a Kerberos realm derived syntactically from
the domain part of the specified hostname and information from the local
Kerberos realms database.

One can also rely on trusted third parties to make this determination, but
only when the data obtained from the third party is suitably integrity
protected wile resident on the third party server and when transmitted.
Thus, for example, one should not rely on an unprotected domain name system
record to map a host alias to the primary name of a server, accepting the
primary name as the party one intends to contact since an attacker can
modify the mapping and impersonate the party with which one intended to
communicate.

If a Kerberos server supports name canonicalization, it may be relied upon
as a third party to aid in this determination. When utilizing the name
canonicalization function provided by the Kerberos server, a client, having
already located the instance of a service it wishes to contact, makes a
request to the KDC using the server's name information as specified by the
user. The Kerberos server will attempt to locate a service principal in its
database that corresponds to the requested name and return a ticket for the
appropriate server principal to the client. If the KDC determines that the
correct server principal is registered in another realm, the KDC will
provide a referral to the Kerberos realm that is known to contain the
requested service principal. The name canonicalization function supports
identity mapping only, and it may not be used as a general name service to
locate service instances. There is no guarantee that the returned server
principal name (identity) will embed the name of the host on which the
server resides.

1.3. Authorization

As an authentication service, Kerberos provides a means of verifying the
identity of principals on a network. Authentication is usually useful
primarily as a first step in the process of authorization, determining
whether a client may use a service, which objects the client is allowed to
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access, and the type of access allowed for each. Kerberos does not, by
itself, provide authorization. Possession of a client ticket for a service
provides only for authentication of the client to that service, and in the
absence of a separate authorization procedure, it should not be considered
by an application as authorizing the use of that service.

Such separate authorization methods may be implemented as application
specific access control functions and may utilize files on the application
server, or on separately issued authorization credentials such as those
based on proxies [Neu93], or on other authorization services. Separately
authenticated authorization credentials may be embedded in a tickets
authorization data when encapsulated by the kdc-issued authorization data
element.

Applications should not accept the mere issuance of a service ticket by the
Kerberos server (even by a modified Kerberos server) as granting authority
to use the service, since such applications may become vulnerable to the
bypass of this authorization check in an environment if they interoperate
with other KDCs or where other options for application authentication (e.g.
the PKTAPP proposal) are provided.

1.4. Environmental assumptions

Kerberos imposes a few assumptions on the environment in which it can
properly function:

* 'Denial of service' attacks are not solved with Kerberos. There are
places in the protocols where an intruder can prevent an application
from participating in the proper authentication steps. Detection and
solution of such attacks (some of which can appear to be not-uncommon
'normal' failure modes for the system) is usually best left to the
human administrators and users.

* Principals must keep their secret keys secret. If an intruder somehow
steals a principal's key, it will be able to masquerade as that
principal or impersonate any server to the legitimate principal.

* 'Password guessing' attacks are not solved by Kerberos. If a user
chooses a poor password, it is possible for an attacker to successfully
mount an offline dictionary attack by repeatedly attempting to decrypt,
with successive entries from a dictionary, messages obtained which are
encrypted under a key derived from the user's password.

* Each host on the network must have a clock which is 'loosely
synchronized' to the time of the other hosts; this synchronization is
used to reduce the bookkeeping needs of application servers when they
do replay detection. The degree of "looseness" can be configured on a
per-server basis, but is typically on the order of 5 minutes. If the
clocks are synchronized over the network, the clock synchronization
protocol must itself be secured from network attackers.

* Principal identifiers are not recycled on a short-term basis. A typical
mode of access control will use access control lists (ACLs) to grant
permissions to particular principals. If a stale ACL entry remains for
a deleted principal and the principal identifier is reused, the new
principal will inherit rights specified in the stale ACL entry. By not
re-using principal identifiers, the danger of inadvertent access is
removed.

1.5. Glossary of terms

Below is a list of terms used throughout this document.

Authentication
Verifying the claimed identity of a principal.
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Authentication header
A record containing a Ticket and an Authenticator to be presented to a
server as part of the authentication process.

Authentication path
A sequence of intermediate realms transited in the authentication
process when communicating from one realm to another.

Authenticator
A record containing information that can be shown to have been recently
generated using the session key known only by the client and server.

Authorization
The process of determining whether a client may use a service, which
objects the client is allowed to access, and the type of access allowed
for each.

Capability
A token that grants the bearer permission to access an object or
service. In Kerberos, this might be a ticket whose use is restricted by
the contents of the authorization data field, but which lists no
network addresses, together with the session key necessary to use the
ticket.

Ciphertext
The output of an encryption function. Encryption transforms plaintext
into ciphertext.

Client
A process that makes use of a network service on behalf of a user. Note
that in some cases a Server may itself be a client of some other server
(e.g. a print server may be a client of a file server).

Credentials
A ticket plus the secret session key necessary to successfully use that
ticket in an authentication exchange.

KDC
Key Distribution Center, a network service that supplies tickets and
temporary session keys; or an instance of that service or the host on
which it runs. The KDC services both initial ticket and ticket-granting
ticket requests. The initial ticket portion is sometimes referred to as
the Authentication Server (or service). The ticket-granting ticket
portion is sometimes referred to as the ticket-granting server (or
service).

Kerberos
Aside from the 3-headed dog guarding Hades, the name given to Project
Athena's authentication service, the protocol used by that service, or
the code used to implement the authentication service.

Plaintext
The input to an encryption function or the output of a decryption
function. Decryption transforms ciphertext into plaintext.

Principal
A named client or server entity that participates in a network
communication, with one name that is considered canonical.

Principal identifier
The canonical name used to uniquely identify each different principal.

Seal
To encipher a record containing several fields in such a way that the
fields cannot be individually replaced without either knowledge of the
encryption key or leaving evidence of tampering.

Secret key
An encryption key shared by a principal and the KDC, distributed
outside the bounds of the system, with a long lifetime. In the case of
a human user's principal, the secret key may be derived from a
password.

Server
A particular Principal which provides a resource to network clients.
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The server is sometimes referred to as the Application Server.
Service

A resource provided to network clients; often provided by more than one
server (for example, remote file service).

Session key
A temporary encryption key used between two principals, with a lifetime
limited to the duration of a single login "session".

Sub-session key
A temporary encryption key used between two principals, selected and
exchanged by the principals using the session key, and with a lifetime
limited to the duration of a single association.

Ticket
A record that helps a client authenticate itself to a server; it
contains the client's identity, a session key, a timestamp, and other
information, all sealed using the server's secret key. It only serves
to authenticate a client when presented along with a fresh
Authenticator.

2. Ticket flag uses and requests

Each Kerberos ticket contains a set of flags which are used to indicate
attributes of that ticket. Most flags may be requested by a client when the
ticket is obtained; some are automatically turned on and off by a Kerberos
server as required. The following sections explain what the various flags
mean, and gives examples of reasons to use such a flag.

2.1. Initial, pre-authenticated, and hardware authenticated tickets

The INITIAL flag indicates that a ticket was issued using the AS protocol
and not issued based on a ticket-granting ticket. Application servers that
want to require the demonstrated knowledge of a client's secret key (e.g. a
password-changing program) can insist that this flag be set in any tickets
they accept, and thus be assured that the client's key was recently
presented to the application client.

The PRE-AUTHENT and HW-AUTHENT flags provide additional information about
the initial authentication, regardless of whether the current ticket was
issued directly (in which case INITIAL will also be set) or issued on the
basis of a ticket-granting ticket (in which case the INITIAL flag is clear,
but the PRE-AUTHENT and HW-AUTHENT flags are carried forward from the
ticket-granting ticket).

2.2. Invalid tickets

The INVALID flag indicates that a ticket is invalid. Application servers
must reject tickets which have this flag set. A postdated ticket will
usually be issued in this form. Invalid tickets must be validated by the KDC
before use, by presenting them to the KDC in a TGS request with the VALIDATE
option specified. The KDC will only validate tickets after their starttime
has passed. The validation is required so that postdated tickets which have
been stolen before their starttime can be rendered permanently invalid
(through a hot-list mechanism) (see section 3.3.3.1).

2.3. Renewable tickets

Applications may desire to hold tickets which can be valid for long periods
of time. However, this can expose their credentials to potential theft for
equally long periods, and those stolen credentials would be valid until the
expiration time of the ticket(s). Simply using short-lived tickets and
obtaining new ones periodically would require the client to have long-term
access to its secret key, an even greater risk. Renewable tickets can be
used to mitigate the consequences of theft. Renewable tickets have two
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"expiration times": the first is when the current instance of the ticket
expires, and the second is the latest permissible value for an individual
expiration time. An application client must periodically (i.e. before it
expires) present a renewable ticket to the KDC, with the RENEW option set in
the KDC request. The KDC will issue a new ticket with a new session key and
a later expiration time. All other fields of the ticket are left unmodified
by the renewal process. When the latest permissible expiration time arrives,
the ticket expires permanently. At each renewal, the KDC may consult a
hot-list to determine if the ticket had been reported stolen since its last
renewal; it will refuse to renew such stolen tickets, and thus the usable
lifetime of stolen tickets is reduced.

The RENEWABLE flag in a ticket is normally only interpreted by the
ticket-granting service (discussed below in section 3.3). It can usually be
ignored by application servers. However, some particularly careful
application servers may wish to disallow renewable tickets.

If a renewable ticket is not renewed by its expiration time, the KDC will
not renew the ticket. The RENEWABLE flag is reset by default, but a client
may request it be set by setting the RENEWABLE option in the KRB_AS_REQ
message. If it is set, then the renew-till field in the ticket contains the
time after which the ticket may not be renewed.

2.4. Postdated tickets

Applications may occasionally need to obtain tickets for use much later,
e.g. a batch submission system would need tickets to be valid at the time
the batch job is serviced. However, it is dangerous to hold valid tickets in
a batch queue, since they will be on-line longer and more prone to theft.
Postdated tickets provide a way to obtain these tickets from the KDC at job
submission time, but to leave them "dormant" until they are activated and
validated by a further request of the KDC. If a ticket theft were reported
in the interim, the KDC would refuse to validate the ticket, and the thief
would be foiled.

The MAY-POSTDATE flag in a ticket is normally only interpreted by the
ticket-granting service. It can be ignored by application servers. This flag
must be set in a ticket-granting ticket in order to issue a postdated ticket
based on the presented ticket. It is reset by default; it may be requested
by a client by setting the ALLOW-POSTDATE option in the KRB_AS_REQ message.
This flag does not allow a client to obtain a postdated ticket-granting
ticket; postdated ticket-granting tickets can only by obtained by requesting
the postdating in the KRB_AS_REQ message. The life (endtime-starttime) of a
postdated ticket will be the remaining life of the ticket-granting ticket at
the time of the request, unless the RENEWABLE option is also set, in which
case it can be the full life (endtime-starttime) of the ticket-granting
ticket. The KDC may limit how far in the future a ticket may be postdated.

The POSTDATED flag indicates that a ticket has been postdated. The
application server can check the authtime field in the ticket to see when
the original authentication occurred. Some services may choose to reject
postdated tickets, or they may only accept them within a certain period
after the original authentication. When the KDC issues a POSTDATED ticket,
it will also be marked as INVALID, so that the application client must
present the ticket to the KDC to be validated before use.

2.5. Proxiable and proxy tickets

At times it may be necessary for a principal to allow a service to perform
an operation on its behalf. The service must be able to take on the identity
of the client, but only for a particular purpose. A principal can allow a
service to take on the principal's identity for a particular purpose by
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granting it a proxy.

The process of granting a proxy using the proxy and proxiable flags is used
to provide credentials for use with specific services. Though conceptually
also a proxy, user's wishing to delegate their identity for ANY purpose must
use the ticket forwarding mechanism described in the next section to forward
a ticket granting ticket.

The PROXIABLE flag in a ticket is normally only interpreted by the
ticket-granting service. It can be ignored by application servers. When set,
this flag tells the ticket-granting server that it is OK to issue a new
ticket (but not a ticket-granting ticket) with a different network address
based on this ticket. This flag is set if requested by the client on initial
authentication. By default, the client will request that it be set when
requesting a ticket granting ticket, and reset when requesting any other
ticket.

This flag allows a client to pass a proxy to a server to perform a remote
request on its behalf, e.g. a print service client can give the print server
a proxy to access the client's files on a particular file server in order to
satisfy a print request.

In order to complicate the use of stolen credentials, Kerberos tickets are
usually valid from only those network addresses specifically included in the
ticket[2.1]. When granting a proxy, the client must specify the new network
address from which the proxy is to be used, or indicate that the proxy is to
be issued for use from any address.

The PROXY flag is set in a ticket by the TGS when it issues a proxy ticket.
Application servers may check this flag and at their option they may require
additional authentication from the agent presenting the proxy in order to
provide an audit trail.

2.6. Forwardable tickets

Authentication forwarding is an instance of a proxy where the service
granted is complete use of the client's identity. An example where it might
be used is when a user logs in to a remote system and wants authentication
to work from that system as if the login were local.

The FORWARDABLE flag in a ticket is normally only interpreted by the
ticket-granting service. It can be ignored by application servers. The
FORWARDABLE flag has an interpretation similar to that of the PROXIABLE
flag, except ticket-granting tickets may also be issued with different
network addresses. This flag is reset by default, but users may request that
it be set by setting the FORWARDABLE option in the AS request when they
request their initial ticket-granting ticket.

This flag allows for authentication forwarding without requiring the user to
enter a password again. If the flag is not set, then authentication
forwarding is not permitted, but the same result can still be achieved if
the user engages in the AS exchange specifying the requested network
addresses and supplies a password.

The FORWARDED flag is set by the TGS when a client presents a ticket with
the FORWARDABLE flag set and requests a forwarded ticket by specifying the
FORWARDED KDC option and supplying a set of addresses for the new ticket. It
is also set in all tickets issued based on tickets with the FORWARDED flag
set. Application servers may choose to process FORWARDED tickets differently
than non-FORWARDED tickets.

2.7 Transited Policy Checking
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While the application server is ultimately responsible for accepting or
rejecting authentication and should check the transited field, a KDC may
apply a realm specific policy for validating the transited field and
accepting credentials for cross-realm authentication. When the KDC applies
such checks and accepts such cross-realm authentication it will set the
TRANSITED-POLICY-CHECKED flag in the service tickets it issues based on the
cross-realm TGT. A client may request that the KDC's not check the transited
field by setting the DISABLE-TRANSITED-CHECK flag. KDC's are encouraged but
not required to honor this flag.

2.8 Anonymous Tickets

When policy allows, a KDC may issue anonymous tickets for the purpose of
enabling encrypted communication between a client and server without
identifying the client to the server. Such anonymous tickets are issued with
a generic principal name configured on the KDC (e.g. "anonymous@") and will
have the ANONYMOUS flag set. A server accepting such a ticket may assume
that subsequent requests using the same ticket and session key originate
from the same user. Requests with the same username but different tickets
are likely to originate from different users. Users request anonymous ticket
by setting the REQUEST-ANONYMOUS option in an AS or TGS request.

2.9. Other KDC options

There are three additional options which may be set in a client's request of
the KDC.

2.9.1 Name canonicalization [JBrezak]

The NAME-CANONICALIZATION option allows the KDC to replace the name of the
client or server requested by the client with the canonical form of the
principal's name, if known, or to refer the client to a KDC for the realm
with which the requested principal is registered.

Where name canonicalization is supported a client who can identify a
principal but does not know the full principal name can request that the
Kerberos server attempt to lookup the name in its database and use the
canonical name of the requested principal or return a referral to a realm
that has the requested principal in its namespace. Use of name
canonicalization supports the case where a principal has multiple common
names (names typed by a user[2.2]), all of which are known to the KDC, but
only one Kerberos identity (the canonical name is the Kerberos principal
name). Name canonicalization is intended solely to provide a secure mapping
from the name known by a user to its principal identifier. It is not
intended for use as a general purpose nameserver or to identify instances of
a service.

The CANONICALIZE flag in a ticket request is used to indicate to the
Kerberos server that the client will accept an alternative name to the
principal in the request or a referral to another realm. When name
canonicalization is supported in a realm, all instances of the AS and TGS
for the realm must be able to interpret requests with this flag. In realms
where name canonicalization is not supported, this flag may be ignored. By
using this flag, the client can avoid extensive configuration needed to map
specific host names to a particular realm.

2.9.2 Renewable-OK

The RENEWABLE-OK option indicates that the client will accept a renewable
ticket if a ticket with the requested life cannot otherwise be provided. If
a ticket with the requested life cannot be provided, then the KDC may issue
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a renewable ticket with a renew-till equal to the requested endtime. The
value of the renew-till field may still be adjusted by site-determined
limits or limits imposed by the individual principal or server.

2.9.3 ENC-TKT-IN-SKEY

The ENC-TKT-IN-SKEY option supports user-to-user authentication. It allows
the KDC to issue a service ticket encrypted using the session key from a
ticket granting ticket issued to another user. This is needed to support
peer-to-peer authentication since the long term key of the user does not
remain on the workstation after initial login. The ENC-TKT-IN-SKEY option is
honored only by the ticket-granting service. It indicates that the ticket to
be issued for the end server is to be encrypted in the session key from the
additional second ticket-granting ticket provided with the request. See
section 3.3.3 for specific details.

3. Message Exchanges

The following sections describe the interactions between network clients and
servers and the messages involved in those exchanges.

3.1. The Authentication Service Exchange

Summary
Message direction Message type Section
1. Client to Kerberos KRB_AS_REQ 5.4.1
2. Kerberos to client KRB_AS_REP or 5.4.2

KRB_ERROR 5.9.1

The Authentication Service (AS) Exchange between the client and the Kerberos
Authentication Server is initiated by a client when it wishes to obtain
authentication credentials for a given server but currently holds no
credentials. In its basic form, the client's secret key is used for
encryption and decryption. This exchange is typically used at the initiation
of a login session to obtain credentials for a Ticket-Granting Server which
will subsequently be used to obtain credentials for other servers (see
section 3.3) without requiring further use of the client's secret key. This
exchange is also used to request credentials for services which must not be
mediated through the Ticket-Granting Service, but rather require a
principal's secret key, such as the password-changing service[3.1]. This
exchange does not by itself provide any assurance of the identity of the
user[3.2].

The exchange consists of two messages: KRB_AS_REQ from the client to
Kerberos, and KRB_AS_REP or KRB_ERROR in reply. The formats for these
messages are described in sections 5.4.1, 5.4.2, and 5.9.1.

In the request, the client sends (in cleartext) its own identity and the
identity of the server for which it is requesting credentials. The response,
KRB_AS_REP, contains a ticket for the client to present to the server, and a
session key that will be shared by the client and the server. The session
key and additional information are encrypted in the client's secret key. The
KRB_AS_REP message contains information which can be used to detect replays,
and to associate it with the message to which it replies.

Without pre-authentication, the authentication server does not know whether
the client is actually the principal named in the request. It simply sends a
reply without knowing or caring whether they are the same. This is
acceptable because nobody but the principal whose identity was given in the
request will be able to use the reply. Its critical information is encrypted
in that principal's key. The initial request supports an optional field that
can be used to pass additional information that might be needed for the
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initial exchange. This field may be used for pre-authentication as described
in section 3.1.1.

Various errors can occur; these are indicated by an error response
(KRB_ERROR) instead of the KRB_AS_REP response. The error message is not
encrypted. The KRB_ERROR message contains information which can be used to
associate it with the message to which it replies. If suitable
preauthentication has occurred, an optional checksum may be included in the
KRB_ERROR message to prevent fabrication or modification of the KRB_ERROR
message. When a checksum is not present, the lack of integrity protection
precludes the ability to detect replays, fabrications, or modifications of
the message, and the client must not depend on information in the KRB_ERROR
message for security critical operations.

3.1.1. Generation of KRB_AS_REQ message

The client may specify a number of options in the initial request. Among
these options are whether pre-authentication is to be performed; whether the
requested ticket is to be renewable, proxiable, or forwardable; whether it
should be postdated or allow postdating of derivative tickets; whether the
client requests name-canonicalization or an anonymous ticket; and whether a
renewable ticket will be accepted in lieu of a non-renewable ticket if the
requested ticket expiration date cannot be satisfied by a non-renewable
ticket (due to configuration constraints; see section 4). See section A.1
for pseudocode.

The client prepares the KRB_AS_REQ message and sends it to the KDC.

3.1.2. Receipt of KRB_AS_REQ message

If all goes well, processing the KRB_AS_REQ message will result in the
creation of a ticket for the client to present to the server. The format for
the ticket is described in section 5.3.1. The contents of the ticket are
determined as follows.

3.1.3. Generation of KRB_AS_REP message

The authentication server looks up the client and server principals named in
the KRB_AS_REQ in its database, extracting their respective keys. If the
requested client principal named in the request is not known because it
doesn't exist in the KDC's principal database and if an acceptable canonical
name of the client is not known, then an error message with a
KDC_ERR_C_PRINCIPAL_UNKNOWN is returned.

If the request had the CANONICALIZE option set and if the AS finds the
canonical name for the client and it is in another realm, then an error
message with a KDC_ERR_WRONG_REALM error code and the cname and crealm in
the error message will contain the true client principal name and realm. In
this case, since no key is shared with the client, the response from the KDC
is not integrity protected and the referral can only be considered a hint;
the validity of the referral is validated upon successful completion of
initial authentication with the correct AS using the appropriate user key.

If required, the server pre-authenticates the request, and if the
pre-authentication check fails, an error message with the code
KDC_ERR_PREAUTH_FAILED is returned. If pre-authentication is required, but
was not present in the request, an error message with the code
KDC_ERR_PREAUTH_FAILED is returned and the PA-ETYPE-INFO pre-authentication
field will be included in the KRB-ERROR message. If the server cannot
accommodate an encryption type requested by the client, an error message
with code KDC_ERR_ETYPE_NOSUPP is returned. Otherwise the KDC generates a
'random' session key[3.3].
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When responding to an AS request, if there are multiple encryption keys
registered for a client in the Kerberos database (or if the key registered
supports multiple encryption types; e.g. DES3-CBC-SHA1 and
DES3-CBC-SHA1-KD), then the etype field from the AS request is used by the
KDC to select the encryption method to be used to protect the encrypted part
of the KRB_AS_REP message which is sent to the client. If there is more than
one supported strong encryption type in the etype list, the first valid
etype for which an encryption key is available is used. The encryption
method used to protect the encrypted part of the KRB_TGS_REP message is the
keytype of the session key found in the ticket granting ticket presented in
the KRB_TGS_REQ.

If the user's key was generated using an alternate string to key function
than that used by the selected encryption type, information needed by the
string to key function will be returned to the client in the padata field of
the KRB_AS_REP message using the PA-PW-SALT, PA-AFS3-SALT, or similar
pre-authentication typed values. This does not affect the encryption
performed by the KDC since the key stored in the principal database already
has the string to key transformation applied.

When the etype field is present in a KDC request, whether an AS or TGS
request, the KDC will attempt to assign the type of the random session key
from the list of methods in the etype field. The KDC will select the
appropriate type using the list of methods provided together with
information from the Kerberos database indicating acceptable encryption
methods for the application server. The KDC will not issue tickets with a
weak session key encryption type.

If the requested start time is absent, indicates a time in the past, or is
within the window of acceptable clock skew for the KDC and the POSTDATE
option has not been specified, then the start time of the ticket is set to
the authentication server's current time. If it indicates a time in the
future beyond the acceptable clock skew, but the POSTDATED option has not
been specified then the error KDC_ERR_CANNOT_POSTDATE is returned. Otherwise
the requested start time is checked against the policy of the local realm
(the administrator might decide to prohibit certain types or ranges of
postdated tickets), and if acceptable, the ticket's start time is set as
requested and the INVALID flag is set in the new ticket. The postdated
ticket must be validated before use by presenting it to the KDC after the
start time has been reached.

The expiration time of the ticket will be set to the earlier of the
requested endtime and a time determined by local policy, possibly determined
using realm or principal specific factors. For example, the expiration time
may be set to the minimum of the following:

* The expiration time (endtime) requested in the KRB_AS_REQ message.
* The ticket's start time plus the maximum allowable lifetime associated

with the client principal from the authentication server's database
(see section 4).

* The ticket's start time plus the maximum allowable lifetime associated
with the server principal.

* The ticket's start time plus the maximum lifetime set by the policy of
the local realm.

If the requested expiration time minus the start time (as determined above)
is less than a site-determined minimum lifetime, an error message with code
KDC_ERR_NEVER_VALID is returned. If the requested expiration time for the
ticket exceeds what was determined as above, and if the 'RENEWABLE-OK'
option was requested, then the 'RENEWABLE' flag is set in the new ticket,
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and the renew-till value is set as if the 'RENEWABLE' option were requested
(the field and option names are described fully in section 5.4.1).

If the RENEWABLE option has been requested or if the RENEWABLE-OK option has
been set and a renewable ticket is to be issued, then the renew-till field
is set to the minimum of:

* Its requested value.
* The start time of the ticket plus the minimum of the two maximum

renewable lifetimes associated with the principals' database entries.
* The start time of the ticket plus the maximum renewable lifetime set by

the policy of the local realm.

The flags field of the new ticket will have the following options set if
they have been requested and if the policy of the local realm allows:
FORWARDABLE, MAY-POSTDATE, POSTDATED, PROXIABLE, RENEWABLE, ANONYMOUS. If
the new ticket is post-dated (the start time is in the future), its INVALID
flag will also be set.

If all of the above succeed, the server will encrypt ciphertext part of the
ticket using the encryption key extracted from the server principal's record
in the Kerberos database using the encryption type associated with the
server principal's key (this choice is NOT affected by the etype field in
the request). It then formats a KRB_AS_REP message (see section 5.4.2),
copying the addresses in the request into the caddr of the response, placing
any required pre-authentication data into the padata of the response, and
encrypts the ciphertext part in the client's key using an acceptable
encryption method requested in the etype field of the request, and sends the
message to the client. See section A.2 for pseudocode.

3.1.4. Generation of KRB_ERROR message

Several errors can occur, and the Authentication Server responds by
returning an error message, KRB_ERROR, to the client, with the error-code,
e-text, and optional e-cksum fields set to appropriate values. The error
message contents and details are described in Section 5.9.1.

3.1.5. Receipt of KRB_AS_REP message

If the reply message type is KRB_AS_REP, then the client verifies that the
cname and crealm fields in the cleartext portion of the reply match what it
requested. If any padata fields are present, they may be used to derive the
proper secret key to decrypt the message. The client decrypts the encrypted
part of the response using its secret key, verifies that the nonce in the
encrypted part matches the nonce it supplied in its request (to detect
replays). It also verifies that the sname and srealm in the response match
those in the request (or are otherwise expected values), and that the host
address field is also correct. It then stores the ticket, session key, start
and expiration times, and other information for later use. The
key-expiration field from the encrypted part of the response may be checked
to notify the user of impending key expiration (the client program could
then suggest remedial action, such as a password change). See section A.3
for pseudocode.

Proper decryption of the KRB_AS_REP message is not sufficient for the host
to verify the identity of the user; the user and an attacker could cooperate
to generate a KRB_AS_REP format message which decrypts properly but is not
from the proper KDC. If the host wishes to verify the identity of the user,
it must require the user to present application credentials which can be
verified using a securely-stored secret key for the host. If those
credentials can be verified, then the identity of the user can be assured.
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3.1.6. Receipt of KRB_ERROR message

If the reply message type is KRB_ERROR, then the client interprets it as an
error and performs whatever application-specific tasks are necessary to
recover. If the client set the CANONICALIZE option and a KDC_ERR_WRONG_REALM
error was returned, the AS request should be retried to the realm and client
principal name specified in the error message crealm and cname field
respectively.

3.2. The Client/Server Authentication Exchange

Summary
Message direction Message type Section
Client to Application server KRB_AP_REQ 5.5.1
[optional] Application server to client KRB_AP_REP or 5.5.2

KRB_ERROR 5.9.1

The client/server authentication (CS) exchange is used by network
applications to authenticate the client to the server and vice versa. The
client must have already acquired credentials for the server using the AS or
TGS exchange.

3.2.1. The KRB_AP_REQ message

The KRB_AP_REQ contains authentication information which should be part of
the first message in an authenticated transaction. It contains a ticket, an
authenticator, and some additional bookkeeping information (see section
5.5.1 for the exact format). The ticket by itself is insufficient to
authenticate a client, since tickets are passed across the network in
cleartext[3.4], so the authenticator is used to prevent invalid replay of
tickets by proving to the server that the client knows the session key of
the ticket and thus is entitled to use the ticket. The KRB_AP_REQ message is
referred to elsewhere as the 'authentication header.'

3.2.2. Generation of a KRB_AP_REQ message

When a client wishes to initiate authentication to a server, it obtains
(either through a credentials cache, the AS exchange, or the TGS exchange) a
ticket and session key for the desired service. The client may re-use any
tickets it holds until they expire. To use a ticket the client constructs a
new Authenticator from the system time, its name, and optionally an
application specific checksum, an initial sequence number to be used in
KRB_SAFE or KRB_PRIV messages, and/or a session subkey to be used in
negotiations for a session key unique to this particular session.
Authenticators may not be re-used and will be rejected if replayed to a
server[3.5]. If a sequence number is to be included, it should be randomly
chosen so that even after many messages have been exchanged it is not likely
to collide with other sequence numbers in use.

The client may indicate a requirement of mutual authentication or the use of
a session-key based ticket by setting the appropriate flag(s) in the
ap-options field of the message.

The Authenticator is encrypted in the session key and combined with the
ticket to form the KRB_AP_REQ message which is then sent to the end server
along with any additional application-specific information. See section A.9
for pseudocode.

3.2.3. Receipt of KRB_AP_REQ message

Authentication is based on the server's current time of day (clocks must be
loosely synchronized), the authenticator, and the ticket. Several errors are
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possible. If an error occurs, the server is expected to reply to the client
with a KRB_ERROR message. This message may be encapsulated in the
application protocol if its 'raw' form is not acceptable to the protocol.
The format of error messages is described in section 5.9.1.

The algorithm for verifying authentication information is as follows. If the
message type is not KRB_AP_REQ, the server returns the KRB_AP_ERR_MSG_TYPE
error. If the key version indicated by the Ticket in the KRB_AP_REQ is not
one the server can use (e.g., it indicates an old key, and the server no
longer possesses a copy of the old key), the KRB_AP_ERR_BADKEYVER error is
returned. If the USE-SESSION-KEY flag is set in the ap-options field, it
indicates to the server that the ticket is encrypted in the session key from
the server's ticket-granting ticket rather than its secret key [3.6].

Since it is possible for the server to be registered in multiple realms,
with different keys in each, the srealm field in the unencrypted portion of
the ticket in the KRB_AP_REQ is used to specify which secret key the server
should use to decrypt that ticket. The KRB_AP_ERR_NOKEY error code is
returned if the server doesn't have the proper key to decipher the ticket.

The ticket is decrypted using the version of the server's key specified by
the ticket. If the decryption routines detect a modification of the ticket
(each encryption system must provide safeguards to detect modified
ciphertext; see section 6), the KRB_AP_ERR_BAD_INTEGRITY error is returned
(chances are good that different keys were used to encrypt and decrypt).

The authenticator is decrypted using the session key extracted from the
decrypted ticket. If decryption shows it to have been modified, the
KRB_AP_ERR_BAD_INTEGRITY error is returned. The name and realm of the client
from the ticket are compared against the same fields in the authenticator.
If they don't match, the KRB_AP_ERR_BADMATCH error is returned (they might
not match, for example, if the wrong session key was used to encrypt the
authenticator). The addresses in the ticket (if any) are then searched for
an address matching the operating-system reported address of the client. If
no match is found or the server insists on ticket addresses but none are
present in the ticket, the KRB_AP_ERR_BADADDR error is returned. If the
local (server) time and the client time in the authenticator differ by more
than the allowable clock skew (e.g., 5 minutes), the KRB_AP_ERR_SKEW error
is returned.

Unless the application server provides its own suitable means to protect
against replay (for example, a challenge-response sequence initiated by the
server after authentication, or use of a server-generated encryption
subkey), the server must utilize a replay cache to remember any
authenticator presented within the allowable clock skew. Careful analysis of
the application protocol and implementation is recommended before
eliminating this cache. The replay cache will store the server name, along
with the client name, time and microsecond fields from the recently-seen
authenticators and if a matching tuple is found, the KRB_AP_ERR_REPEAT error
is returned [3.7]. If a server loses track of authenticators presented
within the allowable clock skew, it must reject all requests until the clock
skew interval has passed, providing assurance that any lost or re-played
authenticators will fall outside the allowable clock skew and can no longer
be successfully replayed[3.8].

If a sequence number is provided in the authenticator, the server saves it
for later use in processing KRB_SAFE and/or KRB_PRIV messages. If a subkey
is present, the server either saves it for later use or uses it to help
generate its own choice for a subkey to be returned in a KRB_AP_REP message.

If multiple servers (for example, different services on one machine, or a
single service implemented on multiple machines) share a service principal
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(a practice we do not recommend in general, but acknowledge will be used in
some cases), they should also share this replay cache, or the application
protocol should be designed so as to eliminate the need for it. Note that
this applies to all of the services, if any of the application protocols
does not have replay protection built in; an authenticator used with such a
service could later be replayed to a different service with the same service
principal but no replay protection, if the former doesn't record the
authenticator information in the common replay cache.

The server computes the age of the ticket: local (server) time minus the
start time inside the Ticket. If the start time is later than the current
time by more than the allowable clock skew or if the INVALID flag is set in
the ticket, the KRB_AP_ERR_TKT_NYV error is returned. Otherwise, if the
current time is later than end time by more than the allowable clock skew,
the KRB_AP_ERR_TKT_EXPIRED error is returned.

If all these checks succeed without an error, the server is assured that the
client possesses the credentials of the principal named in the ticket and
thus, the client has been authenticated to the server. See section A.10 for
pseudocode.

Passing these checks provides only authentication of the named principal; it
does not imply authorization to use the named service. Applications must
make a separate authorization decisions based upon the authenticated name of
the user, the requested operation, local access control information such as
that contained in a .k5login or .k5users file, and possibly a separate
distributed authorization service.

3.2.4. Generation of a KRB_AP_REP message

Typically, a client's request will include both the authentication
information and its initial request in the same message, and the server need
not explicitly reply to the KRB_AP_REQ. However, if mutual authentication
(not only authenticating the client to the server, but also the server to
the client) is being performed, the KRB_AP_REQ message will have
MUTUAL-REQUIRED set in its ap-options field, and a KRB_AP_REP message is
required in response. As with the error message, this message may be
encapsulated in the application protocol if its "raw" form is not acceptable
to the application's protocol. The timestamp and microsecond field used in
the reply must be the client's timestamp and microsecond field (as provided
in the authenticator)[3.9]. If a sequence number is to be included, it
should be randomly chosen as described above for the authenticator. A subkey
may be included if the server desires to negotiate a different subkey. The
KRB_AP_REP message is encrypted in the session key extracted from the
ticket. See section A.11 for pseudocode.

3.2.5. Receipt of KRB_AP_REP message

If a KRB_AP_REP message is returned, the client uses the session key from
the credentials obtained for the server[3.10] to decrypt the message, and
verifies that the timestamp and microsecond fields match those in the
Authenticator it sent to the server. If they match, then the client is
assured that the server is genuine. The sequence number and subkey (if
present) are retained for later use. See section A.12 for pseudocode.

3.2.6. Using the encryption key

After the KRB_AP_REQ/KRB_AP_REP exchange has occurred, the client and server
share an encryption key which can be used by the application. In some cases,
the use of this session key will be implicit in the protocol; in others the
method of use must be chosen from several alternatives. The 'true session
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key' to be used for KRB_PRIV, KRB_SAFE, or other application-specific uses
may be chosen by the application based on the session key from the ticket
and subkeys in the KRB_AP_REP message and the authenticator[3.11]. To
mitigate the effect of failures in random number generation on the client it
is strongly encouraged that any key derived by an application for subsequent
use include the full key entropy derived from the KDC generated session key
carried in the ticket. We leave the protocol negotiations of how to use the
key (e.g. selecting an encryption or checksum type) to the application
programmer; the Kerberos protocol does not constrain the implementation
options, but an example of how this might be done follows.

One way that an application may choose to negotiate a key to be used for
subsequent integrity and privacy protection is for the client to propose a
key in the subkey field of the authenticator. The server can then choose a
key using the proposed key from the client as input, returning the new
subkey in the subkey field of the application reply. This key could then be
used for subsequent communication.

To make this example more concrete, if the communication patterns of an
application dictates the use of encryption modes of operation incompatible
with the encryption system used for the authenticator, then a key compatible
with the required encryption system may be generated by either the client,
the server, or collaboratively by both and exchanged using the subkey field.
This generation might involve the use of a random number as a pre-key,

initially generated by either party, which could then be encrypted using the
session key from the ticket, and the result exchanged and used for
subsequent encryption. By encrypting the pre-key with the session key from
the ticket, randomness from the KDC generated key is assured of being
present in the negotiated key. Application developers must be careful
however, to use a means of introducing this entropy that does not allow an
attacker to learn the session key from the ticket if it learns the key
generated and used for subsequent communication. The reader should note that
this is only an example, and that an analysis of the particular cryptosystem
to be used, must be made before deciding how to generate values for the
subkey fields, and the key to be used for subsequent communication.

With both the one-way and mutual authentication exchanges, the peers should
take care not to send sensitive information to each other without proper
assurances. In particular, applications that require privacy or integrity
should use the KRB_AP_REP response from the server to client to assure both
client and server of their peer's identity. If an application protocol
requires privacy of its messages, it can use the KRB_PRIV message (section
3.5). The KRB_SAFE message (section 3.4) can be used to assure integrity.

3.3. The Ticket-Granting Service (TGS) Exchange

Summary
Message direction Message type Section
1. Client to Kerberos KRB_TGS_REQ 5.4.1
2. Kerberos to client KRB_TGS_REP or 5.4.2

KRB_ERROR 5.9.1

The TGS exchange between a client and the Kerberos Ticket-Granting Server is
initiated by a client when it wishes to obtain authentication credentials
for a given server (which might be registered in a remote realm), when it
wishes to renew or validate an existing ticket, or when it wishes to obtain
a proxy ticket. In the first case, the client must already have acquired a
ticket for the Ticket-Granting Service using the AS exchange (the
ticket-granting ticket is usually obtained when a client initially
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authenticates to the system, such as when a user logs in). The message
format for the TGS exchange is almost identical to that for the AS exchange.
The primary difference is that encryption and decryption in the TGS exchange
does not take place under the client's key. Instead, the session key from
the ticket-granting ticket or renewable ticket, or sub-session key from an
Authenticator is used. As is the case for all application servers, expired
tickets are not accepted by the TGS, so once a renewable or ticket-granting
ticket expires, the client must use a separate exchange to obtain valid
tickets.

The TGS exchange consists of two messages: A request (KRB_TGS_REQ) from the
client to the Kerberos Ticket-Granting Server, and a reply (KRB_TGS_REP or
KRB_ERROR). The KRB_TGS_REQ message includes information authenticating the
client plus a request for credentials. The authentication information
consists of the authentication header (KRB_AP_REQ) which includes the
client's previously obtained ticket-granting, renewable, or invalid ticket.
In the ticket-granting ticket and proxy cases, the request may include one
or more of: a list of network addresses, a collection of typed authorization
data to be sealed in the ticket for authorization use by the application
server, or additional tickets (the use of which are described later). The

TGS reply (KRB_TGS_REP) contains the requested credentials, encrypted in the
session key from the ticket-granting ticket or renewable ticket, or if
present, in the sub-session key from the Authenticator (part of the
authentication header). The KRB_ERROR message contains an error code and
text explaining what went wrong. The KRB_ERROR message is not encrypted. The
KRB_TGS_REP message contains information which can be used to detect
replays, and to associate it with the message to which it replies. The
KRB_ERROR message also contains information which can be used to associate
it with the message to which it replies, but except when an optional
checksum is included in the KRB_ERROR message, it is not possible to detect
replays or fabrications of such messages.

3.3.1. Generation of KRB_TGS_REQ message

Before sending a request to the ticket-granting service, the client must
determine in which realm the application server is believed to be
registered[3.12]. If the client knows the service principal name and realm
and it does not already possess a ticket-granting ticket for the appropriate
realm, then one must be obtained. This is first attempted by requesting a
ticket-granting ticket for the destination realm from a Kerberos server for
which the client possesses a ticket-granting ticket (using the KRB_TGS_REQ
message recursively). The Kerberos server may return a TGT for the desired
realm in which case one can proceed. Alternatively, the Kerberos server may
return a TGT for a realm which is 'closer' to the desired realm (further
along the standard hierarchical path between the client's realm and the
requested realm server's realm).

If the client does not know the realm of the service or the true service
principal name, then the CANONICALIZE option must be used in the request.
This will cause the TGS to locate the service principal based on the target
service name in the ticket and return the service principal name in the
response. This function allows the KDC to inform the user of the registered
Kerberos principal name and registered KDC for a server that may have more
than one host name or whose registered realm can not be determined from the
name of the host, but it is not to be used to locate the application server.

If the server name determined by a TGS supporting name canonicalization is
with a remote KDC, then the response will include the principal name
determined by the KDC, and will include a TGT for the remote realm or a
realm 'closer' to the realm with which the server principal is registered.
In this case, the canonicalization request must be repeated with a Kerberos
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server in the realm specified in the returned TGT. If neither are returned,
then the request may be retried with a Kerberos server for a realm higher in
the hierarchy. This request will itself require a ticket-granting ticket for
the higher realm which must be obtained by recursively applying these
directions.

Once the client obtains a ticket-granting ticket for the appropriate realm,
it determines which Kerberos servers serve that realm, and contacts one. The
list might be obtained through a configuration file or network service or it
may be generated from the name of the realm; as long as the secret keys
exchanged by realms are kept secret, only denial of service results from
using a false Kerberos server.

As in the AS exchange, the client may specify a number of options in the
KRB_TGS_REQ message. The client prepares the KRB_TGS_REQ message, providing
an authentication header as an element of the padata field, and including

the same fields as used in the KRB_AS_REQ message along with several
optional fields: the enc-authorization-data field for application server use
and additional tickets required by some options.

In preparing the authentication header, the client can select a sub-session
key under which the response from the Kerberos server will be
encrypted[3.13]. If the sub-session key is not specified, the session key
from the ticket-granting ticket will be used. If the enc-authorization-data
is present, it must be encrypted in the sub-session key, if present, from
the authenticator portion of the authentication header, or if not present,
using the session key from the ticket-granting ticket.

Once prepared, the message is sent to a Kerberos server for the destination
realm. See section A.5 for pseudocode.

3.3.2. Receipt of KRB_TGS_REQ message

The KRB_TGS_REQ message is processed in a manner similar to the KRB_AS_REQ
message, but there are many additional checks to be performed. First, the
Kerberos server must determine which server the accompanying ticket is for
and it must select the appropriate key to decrypt it. For a normal
KRB_TGS_REQ message, it will be for the ticket granting service, and the
TGS's key will be used. If the TGT was issued by another realm, then the
appropriate inter-realm key must be used. If the accompanying ticket is not
a ticket granting ticket for the current realm, but is for an application
server in the current realm, the RENEW, VALIDATE, or PROXY options are
specified in the request, and the server for which a ticket is requested is
the server named in the accompanying ticket, then the KDC will decrypt the
ticket in the authentication header using the key of the server for which it
was issued. If no ticket can be found in the padata field, the
KDC_ERR_PADATA_TYPE_NOSUPP error is returned.

Once the accompanying ticket has been decrypted, the user-supplied checksum
in the Authenticator must be verified against the contents of the request,
and the message rejected if the checksums do not match (with an error code
of KRB_AP_ERR_MODIFIED) or if the checksum is not keyed or not
collision-proof (with an error code of KRB_AP_ERR_INAPP_CKSUM). If the
checksum type is not supported, the KDC_ERR_SUMTYPE_NOSUPP error is
returned. If the authorization-data are present, they are decrypted using
the sub-session key from the Authenticator.

If any of the decryptions indicate failed integrity checks, the
KRB_AP_ERR_BAD_INTEGRITY error is returned. If the CANONICALIZE option is
set in the KRB_TGS_REQ, then the requested service name might not be the
true principal name or the service might not be in the TGS realm and the
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correct name must be determined.

3.3.3. Generation of KRB_TGS_REP message

The KRB_TGS_REP message shares its format with the KRB_AS_REP (KRB_KDC_REP),
but with its type field set to KRB_TGS_REP. The detailed specification is in
section 5.4.2.

The response will include a ticket for the requested server or for a ticket
granting server of an intermediate KDC to be contacted to obtain the
requested ticket. The Kerberos database is queried to retrieve the record
for the appropriate server (including the key with which the ticket will be
encrypted). If the request is for a ticket granting ticket for a remote
realm, and if no key is shared with the requested realm, then the Kerberos
server will select the realm 'closest' to the requested realm with which it
does share a key, and use that realm instead. If the CANONICALIZE option is
set, the TGS may return a ticket containing the server name of the true
service principal. If the requested server cannot be found in the TGS
database, then a TGT for another trusted realm may be returned instead of a
ticket for the service. This TGT is a referral mechanism to cause the client
to retry the request to the realm of the TGT. These are the only cases where
the response for the KDC will be for a different server than that requested
by the client.

By default, the address field, the client's name and realm, the list of
transited realms, the time of initial authentication, the expiration time,
and the authorization data of the newly-issued ticket will be copied from
the ticket-granting ticket (TGT) or renewable ticket. If the transited field
needs to be updated, but the transited type is not supported, the
KDC_ERR_TRTYPE_NOSUPP error is returned.

If the request specifies an endtime, then the endtime of the new ticket is
set to the minimum of (a) that request, (b) the endtime from the TGT, and
(c) the starttime of the TGT plus the minimum of the maximum life for the
application server and the maximum life for the local realm (the maximum
life for the requesting principal was already applied when the TGT was
issued). If the new ticket is to be a renewal, then the endtime above is
replaced by the minimum of (a) the value of the renew_till field of the
ticket and (b) the starttime for the new ticket plus the life
(endtime-starttime) of the old ticket.

If the FORWARDED option has been requested, then the resulting ticket will
contain the addresses specified by the client. This option will only be
honored if the FORWARDABLE flag is set in the TGT. The PROXY option is
similar; the resulting ticket will contain the addresses specified by the
client. It will be honored only if the PROXIABLE flag in the TGT is set. The
PROXY option will not be honored on requests for additional ticket-granting
tickets.

If the requested start time is absent, indicates a time in the past, or is
within the window of acceptable clock skew for the KDC and the POSTDATE
option has not been specified, then the start time of the ticket is set to
the authentication server's current time. If it indicates a time in the
future beyond the acceptable clock skew, but the POSTDATED option has not
been specified or the MAY-POSTDATE flag is not set in the TGT, then the
error KDC_ERR_CANNOT_POSTDATE is returned. Otherwise, if the ticket-granting
ticket has the MAY-POSTDATE flag set, then the resulting ticket will be
postdated and the requested starttime is checked against the policy of the
local realm. If acceptable, the ticket's start time is set as requested, and
the INVALID flag is set. The postdated ticket must be validated before use
by presenting it to the KDC after the starttime has been reached. However,
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in no case may the starttime, endtime, or renew-till time of a newly-issued
postdated ticket extend beyond the renew-till time of the ticket-granting
ticket.

If the ENC-TKT-IN-SKEY option has been specified and an additional ticket
has been included in the request, the KDC will decrypt the additional ticket
using the key for the server to which the additional ticket was issued and
verify that it is a ticket-granting ticket. If the name of the requested
server is missing from the request, the name of the client in the additional
ticket will be used. Otherwise the name of the requested server will be
compared to the name of the client in the additional ticket and if
different, the request will be rejected. If the request succeeds, the
session key from the additional ticket will be used to encrypt the new
ticket that is issued instead of using the key of the server for which the
new ticket will be used.

If the name of the server in the ticket that is presented to the KDC as part
of the authentication header is not that of the ticket-granting server
itself, the server is registered in the realm of the KDC, and the RENEW
option is requested, then the KDC will verify that the RENEWABLE flag is set
in the ticket, that the INVALID flag is not set in the ticket, and that the
renew_till time is still in the future. If the VALIDATE option is requested,
the KDC will check that the starttime has passed and the INVALID flag is
set. If the PROXY option is requested, then the KDC will check that the
PROXIABLE flag is set in the ticket. If the tests succeed, and the ticket
passes the hotlist check described in the next section, the KDC will issue
the appropriate new ticket.

The ciphertext part of the response in the KRB_TGS_REP message is encrypted
in the sub-session key from the Authenticator, if present, or the session
key from the ticket-granting ticket. It is not encrypted using the
client's secret key. Furthermore, the client's key's expiration date and the
key version number fields are left out since these values are stored along
with the client's database record, and that record is not needed to satisfy
a request based on a ticket-granting ticket. See section A.6 for pseudocode.

3.3.3.1. Checking for revoked tickets

Whenever a request is made to the ticket-granting server, the presented
ticket(s) is(are) checked against a hot-list of tickets which have been
canceled. This hot-list might be implemented by storing a range of issue
timestamps for 'suspect tickets'; if a presented ticket had an authtime in
that range, it would be rejected. In this way, a stolen ticket-granting
ticket or renewable ticket cannot be used to gain additional tickets
(renewals or otherwise) once the theft has been reported to the KDC for the
realm in which the server resides. Any normal ticket obtained before it was
reported stolen will still be valid (because they require no interaction
with the KDC), but only until their normal expiration time. If TGT's have
been issued for cross-realm authentication, use of the cross-realm TGT will
not be affected unless the hot-list is propagated to the KDC's for the
realms for which such cross-realm tickets were issued.

3.3.3.2. Encoding the transited field

If the identity of the server in the TGT that is presented to the KDC as
part of the authentication header is that of the ticket-granting service,
but the TGT was issued from another realm, the KDC will look up the
inter-realm key shared with that realm and use that key to decrypt the
ticket. If the ticket is valid, then the KDC will honor the request, subject
to the constraints outlined above in the section describing the AS exchange.
The realm part of the client's identity will be taken from the



PKT-SP-SEC-I07-021127 PacketCableTM 1.x Specifications 1.x 

11/27/02 CableLabs  253 

ticket-granting ticket. The name of the realm that issued the
ticket-granting ticket will be added to the transited field of the ticket to
be issued. This is accomplished by reading the transited field from the
ticket-granting ticket (which is treated as an unordered set of realm
names), adding the new realm to the set, then constructing and writing out
its encoded (shorthand) form (this may involve a rearrangement of the
existing encoding).

Note that the ticket-granting service does not add the name of its own
realm. Instead, its responsibility is to add the name of the previous realm.
This prevents a malicious Kerberos server from intentionally leaving out its
own name (it could, however, omit other realms' names).

The names of neither the local realm nor the principal's realm are to be
included in the transited field. They appear elsewhere in the ticket and
both are known to have taken part in authenticating the principal. Since the
endpoints are not included, both local and single-hop inter-realm
authentication result in a transited field that is empty.

Because the name of each realm transited is added to this field, it might
potentially be very long. To decrease the length of this field, its contents
are encoded. The initially supported encoding is optimized for the normal
case of inter-realm communication: a hierarchical arrangement of realms
using either domain or X.500 style realm names. This encoding (called
DOMAIN-X500-COMPRESS) is now described.

Realm names in the transited field are separated by a ",". The ",", "\",
trailing "."s, and leading spaces (" ") are special characters, and if they
are part of a realm name, they must be quoted in the transited field by
preceding them with a "\".

A realm name ending with a "." is interpreted as being prepended to the
previous realm. For example, we can encode traversal of EDU, MIT.EDU,
ATHENA.MIT.EDU, WASHINGTON.EDU, and CS.WASHINGTON.EDU as:

"EDU,MIT.,ATHENA.,WASHINGTON.EDU,CS.".

Note that if ATHENA.MIT.EDU, or CS.WASHINGTON.EDU were end-points, that they
would not be included in this field, and we would have:

"EDU,MIT.,WASHINGTON.EDU"

A realm name beginning with a "/" is interpreted as being appended to the
previous realm[18]. If it is to stand by itself, then it should be preceded
by a space (" "). For example, we can encode traversal of /COM/HP/APOLLO,
/COM/HP, /COM, and /COM/DEC as:

"/COM,/HP,/APOLLO, /COM/DEC".

Like the example above, if /COM/HP/APOLLO and /COM/DEC are endpoints, they
they would not be included in this field, and we would have:

"/COM,/HP"

A null subfield preceding or following a "," indicates that all realms
between the previous realm and the next realm have been traversed[19]. Thus,
"," means that all realms along the path between the client and the server

have been traversed. ",EDU, /COM," means that that all realms from the
client's realm up to EDU (in a domain style hierarchy) have been traversed,
and that everything from /COM down to the server's realm in an X.500 style
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has also been traversed. This could occur if the EDU realm in one hierarchy
shares an inter-realm key directly with the /COM realm in another hierarchy.

3.3.4. Receipt of KRB_TGS_REP message

When the KRB_TGS_REP is received by the client, it is processed in the same
manner as the KRB_AS_REP processing described above. The primary difference
is that the ciphertext part of the response must be decrypted using the
session key from the ticket-granting ticket rather than the client's secret
key. The server name returned in the reply is the true principal name of the
service. See section A.7 for pseudocode.

3.4. The KRB_SAFE Exchange

The KRB_SAFE message may be used by clients requiring the ability to detect
modifications of messages they exchange. It achieves this by including a
keyed collision-proof checksum of the user data and some control
information. The checksum is keyed with an encryption key (usually the last
key negotiated via subkeys, or the session key if no negotiation has
occurred).

3.4.1. Generation of a KRB_SAFE message

When an application wishes to send a KRB_SAFE message, it collects its data
and the appropriate control information and computes a checksum over them.
The checksum algorithm should be a keyed one-way hash function (such as the
RSA- MD5-DES checksum algorithm specified in section 6.4.5, or the DES MAC),
generated using the sub-session key if present, or the session key.
Different algorithms may be selected by changing the checksum type in the
message. Unkeyed or non-collision-proof checksums are not suitable for this
use.

The control information for the KRB_SAFE message includes both a timestamp
and a sequence number. The designer of an application using the KRB_SAFE
message must choose at least one of the two mechanisms. This choice should
be based on the needs of the application protocol.

Sequence numbers are useful when all messages sent will be received by one's
peer. Connection state is presently required to maintain the session key, so
maintaining the next sequence number should not present an additional
problem.

If the application protocol is expected to tolerate lost messages without
them being resent, the use of the timestamp is the appropriate replay
detection mechanism. Using timestamps is also the appropriate mechanism for
multi-cast protocols where all of one's peers share a common sub-session
key, but some messages will be sent to a subset of one's peers.

After computing the checksum, the client then transmits the information and
checksum to the recipient in the message format specified in section 5.6.1.

3.4.2. Receipt of KRB_SAFE message

When an application receives a KRB_SAFE message, it verifies it as follows.
If any error occurs, an error code is reported for use by the application.

The message is first checked by verifying that the protocol version and type
fields match the current version and KRB_SAFE, respectively. A mismatch
generates a KRB_AP_ERR_BADVERSION or KRB_AP_ERR_MSG_TYPE error. The
application verifies that the checksum used is a collision-proof keyed
checksum, and if it is not, a KRB_AP_ERR_INAPP_CKSUM error is generated. If
the sender's address was included in the control information, the recipient
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verifies that the operating system's report of the sender's address matches
the sender's address in the message, and (if a recipient address is
specified or the recipient requires an address) that one of the recipient's
addresses appears as the recipient's address in the message. A failed match
for either case generates a KRB_AP_ERR_BADADDR error. Then the timestamp and
usec and/or the sequence number fields are checked. If timestamp and usec
are expected and not present, or they are present but not current, the
KRB_AP_ERR_SKEW error is generated. If the server name, along with the
client name, time and microsecond fields from the Authenticator match any
recently-seen (sent or received[20] ) such tuples, the KRB_AP_ERR_REPEAT
error is generated. If an incorrect sequence number is included, or a
sequence number is expected but not present, the KRB_AP_ERR_BADORDER error
is generated. If neither a time-stamp and usec or a sequence number is
present, a KRB_AP_ERR_MODIFIED error is generated. Finally, the checksum is
computed over the data and control information, and if it doesn't match the
received checksum, a KRB_AP_ERR_MODIFIED error is generated.

If all the checks succeed, the application is assured that the message was
generated by its peer and was not modified in transit.

3.5. The KRB_PRIV Exchange

The KRB_PRIV message may be used by clients requiring confidentiality and
the ability to detect modifications of exchanged messages. It achieves this
by encrypting the messages and adding control information.

3.5.1. Generation of a KRB_PRIV message

When an application wishes to send a KRB_PRIV message, it collects its data
and the appropriate control information (specified in section 5.7.1) and
encrypts them under an encryption key (usually the last key negotiated via
subkeys, or the session key if no negotiation has occurred). As part of the
control information, the client must choose to use either a timestamp or a
sequence number (or both); see the discussion in section 3.4.1 for
guidelines on which to use. After the user data and control information are
encrypted, the client transmits the ciphertext and some 'envelope'
information to the recipient.

3.5.2. Receipt of KRB_PRIV message

When an application receives a KRB_PRIV message, it verifies it as follows.
If any error occurs, an error code is reported for use by the application.

The message is first checked by verifying that the protocol version and type
fields match the current version and KRB_PRIV, respectively. A mismatch
generates a KRB_AP_ERR_BADVERSION or KRB_AP_ERR_MSG_TYPE error. The

application then decrypts the ciphertext and processes the resultant
plaintext. If decryption shows the data to have been modified, a
KRB_AP_ERR_BAD_INTEGRITY error is generated. If the sender's address was
included in the control information, the recipient verifies that the
operating system's report of the sender's address matches the sender's
address in the message, and (if a recipient address is specified or the
recipient requires an address) that one of the recipient's addresses appears
as the recipient's address in the message. A failed match for either case
generates a KRB_AP_ERR_BADADDR error. Then the timestamp and usec and/or the
sequence number fields are checked. If timestamp and usec are expected and
not present, or they are present but not current, the KRB_AP_ERR_SKEW error
is generated. If the server name, along with the client name, time and
microsecond fields from the Authenticator match any recently-seen such
tuples, the KRB_AP_ERR_REPEAT error is generated. If an incorrect sequence
number is included, or a sequence number is expected but not present, the
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KRB_AP_ERR_BADORDER error is generated. If neither a time-stamp and usec or
a sequence number is present, a KRB_AP_ERR_MODIFIED error is generated.

If all the checks succeed, the application can assume the message was
generated by its peer, and was securely transmitted (without intruders able
to see the unencrypted contents).

3.6. The KRB_CRED Exchange

The KRB_CRED message may be used by clients requiring the ability to send
Kerberos credentials from one host to another. It achieves this by sending
the tickets together with encrypted data containing the session keys and
other information associated with the tickets.

3.6.1. Generation of a KRB_CRED message

When an application wishes to send a KRB_CRED message it first (using the
KRB_TGS exchange) obtains credentials to be sent to the remote host. It then
constructs a KRB_CRED message using the ticket or tickets so obtained,
placing the session key needed to use each ticket in the key field of the
corresponding KrbCredInfo sequence of the encrypted part of the KRB_CRED
message.

Other information associated with each ticket and obtained during the
KRB_TGS exchange is also placed in the corresponding KrbCredInfo sequence in
the encrypted part of the KRB_CRED message. The current time and, if
specifically required by the application the nonce, s-address, and r-address
fields, are placed in the encrypted part of the KRB_CRED message which is
then encrypted under an encryption key previously exchanged in the KRB_AP
exchange (usually the last key negotiated via subkeys, or the session key if
no negotiation has occurred).

3.6.2. Receipt of KRB_CRED message

When an application receives a KRB_CRED message, it verifies it. If any
error occurs, an error code is reported for use by the application. The
message is verified by checking that the protocol version and type fields
match the current version and KRB_CRED, respectively. A mismatch generates a
KRB_AP_ERR_BADVERSION or KRB_AP_ERR_MSG_TYPE error. The application then
decrypts the ciphertext and processes the resultant plaintext. If decryption
shows the data to have been modified, a KRB_AP_ERR_BAD_INTEGRITY error is
generated.

If present or required, the recipient verifies that the operating system's
report of the sender's address matches the sender's address in the message,
and that one of the recipient's addresses appears as the recipient's address
in the message. A failed match for either case generates a
KRB_AP_ERR_BADADDR error. The timestamp and usec fields (and the nonce field
if required) are checked next. If the timestamp and usec are not present, or
they are present but not current, the KRB_AP_ERR_SKEW error is generated.

If all the checks succeed, the application stores each of the new tickets in
its ticket cache together with the session key and other information in the
corresponding KrbCredInfo sequence from the encrypted part of the KRB_CRED
message.

4. The Kerberos Database

The Kerberos server must have access to a database containing the principal
identifiers and secret keys of any principals to be authenticated[4.1] using
such secret keys. The keying material in the database must be protected so
that they are only accessible to the Kerberos server and administrative
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functions specifically authorized to access such material. Specific
implementations may handle the storage of keying material separate from the
Kerberos database (e.g. in hardware) or by encrypting the keying material
before placing it in the Kerberos database. Some implementations might
provide a means for using long term secret keys, but not for retrieving them
from the Kerberos database.

4.1. Database contents

A database entry will typically contain the following fields, though in some
instances a KDC may obtain these values through other means:

Field Value

name Principal's identifier
key Principal's secret key
p_kvno Principal's key version
max_life Maximum lifetime for Tickets
max_renewable_life Maximum total lifetime for renewable Tickets

The name field is an encoding of the principal's identifier. The key field
contains an encryption key. This key is the principal's secret key. (The key
can be encrypted before storage under a Kerberos "master key" to protect it
in case the database is compromised but the master key is not. In that case,
an extra field must be added to indicate the master key version used, see
below.) The p_kvno field is the key version number of the principal's secret
key. The max_life field contains the maximum allowable lifetime (endtime -
starttime) for any Ticket issued for this principal. The max_renewable_life
field contains the maximum allowable total lifetime for any renewable Ticket
issued for this principal. (See section 3.1 for a description of how these
lifetimes are used in determining the lifetime of a given Ticket.)

A server may provide KDC service to several realms, as long as the database
representation provides a mechanism to distinguish between principal records
with identifiers which differ only in the realm name.

When an application server's key changes, if the change is routine (i.e. not
the result of disclosure of the old key), the old key should be retained by
the server until all tickets that had been issued using that key have
expired. Because of this, it is possible for several keys to be active for a
single principal. Ciphertext encrypted in a principal's key is always tagged
with the version of the key that was used for encryption, to help the
recipient find the proper key for decryption.

When more than one key is active for a particular principal, the principal
will have more than one record in the Kerberos database. The keys and key
version numbers will differ between the records (the rest of the fields may
or may not be the same). Whenever Kerberos issues a ticket, or responds to a
request for initial authentication, the most recent key (known by the
Kerberos server) will be used for encryption. This is the key with the
highest key version number.

4.2. Additional fields

Project Athena's KDC implementation uses additional fields in its database:

Field Value

K_kvno Kerberos' key version
expiration Expiration date for entry
attributes Bit field of attributes
mod_date Timestamp of last modification
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mod_name Modifying principal's identifier

The K_kvno field indicates the key version of the Kerberos master key under
which the principal's secret key is encrypted.

After an entry's expiration date has passed, the KDC will return an error to
any client attempting to gain tickets as or for the principal. (A database
may want to maintain two expiration dates: one for the principal, and one
for the principal's current key. This allows password aging to work
independently of the principal's expiration date. However, due to the
limited space in the responses, the KDC combines the key expiration and
principal expiration date into a single value called 'key_exp', which is
used as a hint to the user to take administrative action.)

The attributes field is a bitfield used to govern the operations involving
the principal. This field might be useful in conjunction with user
registration procedures, for site-specific policy implementations (Project
Athena currently uses it for their user registration process controlled by
the system-wide database service, Moira [LGDSR87]), to identify whether a
principal can play the role of a client or server or both, to note whether a
server is appropriately trusted to receive credentials delegated by a
client, or to identify the 'string to key' conversion algorithm used for a
principal's key[4.2]. Other bits are used to indicate that certain ticket
options should not be allowed in tickets encrypted under a principal's key
(one bit each): Disallow issuing postdated tickets, disallow issuing
forwardable tickets, disallow issuing tickets based on TGT authentication,
disallow issuing renewable tickets, disallow issuing proxiable tickets, and
disallow issuing tickets for which the principal is the server.

The mod_date field contains the time of last modification of the entry, and
the mod_name field contains the name of the principal which last modified
the entry.

4.3. Frequently Changing Fields

Some KDC implementations may wish to maintain the last time that a request
was made by a particular principal. Information that might be maintained
includes the time of the last request, the time of the last request for a
ticket-granting ticket, the time of the last use of a ticket-granting
ticket, or other times. This information can then be returned to the user in
the last-req field (see section 5.2).

Other frequently changing information that can be maintained is the latest
expiration time for any tickets that have been issued using each key. This
field would be used to indicate how long old keys must remain valid to allow
the continued use of outstanding tickets.

4.4. Site Constants

The KDC implementation should have the following configurable constants or
options, to allow an administrator to make and enforce policy decisions:

* The minimum supported lifetime (used to determine whether the
KDC_ERR_NEVER_VALID error should be returned). This constant should
reflect reasonable expectations of round-trip time to the KDC,
encryption/decryption time, and processing time by the client and
target server, and it should allow for a minimum 'useful' lifetime.

* The maximum allowable total (renewable) lifetime of a ticket
(renew_till - starttime).

* The maximum allowable lifetime of a ticket (endtime - starttime).
* Whether to allow the issue of tickets with empty address fields

(including the ability to specify that such tickets may only be issued
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if the request specifies some authorization_data).
* Whether proxiable, forwardable, renewable or post-datable tickets are

to be issued.

5. Message Specifications

This section (5) still has revisions that are pending based on comments by
Tom Yu. Please see http://www.isi.edu/people/bcn/krb-revisions for the
latest versions. There will be additional updates prior to the San Diego
IETF meeting.

The following sections describe the exact contents and encoding of protocol
messages and objects. The ASN.1 base definitions are presented in the first
subsection. The remaining subsections specify the protocol objects (tickets
and authenticators) and messages. Specification of encryption and checksum
techniques, and the fields related to them, appear in section 6.

Optional field in ASN.1 sequences

For optional integer value and date fields in ASN.1 sequences where a
default value has been specified, certain default values will not be allowed
in the encoding because these values will always be represented through
defaulting by the absence of the optional field. For example, one will not
send a microsecond zero value because one must make sure that there is only
one way to encode this value.

Additional fields in ASN.1 sequences

Implementations receiving Kerberos messages with additional fields present
in ASN.1 sequences should carry those fields through, unmodified, when the
message is forwarded. Implementations should not drop such fields if the
sequence is re-encoded.

5.1. ASN.1 Distinguished Encoding Representation

All uses of ASN.1 in Kerberos shall use the Distinguished Encoding
Representation of the data elements as described in the X.509 specification,
section 8.7 [X509-88].

5.2. ASN.1 Base Definitions

The following ASN.1 base definitions are used in the rest of this section.
Note that since the underscore character (_) is not permitted in ASN.1
names, the hyphen (-) is used in its place for the purposes of ASN.1 names.

Realm ::= GeneralString
PrincipalName ::= SEQUENCE {

name-type[0] INTEGER,
name-string[1] SEQUENCE OF GeneralString

}

Kerberos realms are encoded as GeneralStrings. Realms shall not contain a
character with the code 0 (the ASCII NUL). Most realms will usually consist
of several components separated by periods (.), in the style of Internet
Domain Names, or separated by slashes (/) in the style of X.500 names.
Acceptable forms for realm names are specified in section 7. A PrincipalName
is a typed sequence of components consisting of the following sub-fields:

name-type
This field specifies the type of name that follows. Pre-defined values
for this field are specified in section 7.2. The name-type should be
treated as a hint. Ignoring the name type, no two names can be the same
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(i.e. at least one of the components, or the realm, must be different).
This constraint may be eliminated in the future.

name-string
This field encodes a sequence of components that form a name, each
component encoded as a GeneralString. Taken together, a PrincipalName
and a Realm form a principal identifier. Most PrincipalNames will have
only a few components (typically one or two).

KerberosTime ::= GeneralizedTime
-- Specifying UTC time zone (Z)

The timestamps used in Kerberos are encoded as GeneralizedTimes. An encoding
shall specify the UTC time zone (Z) and shall not include any fractional
portions of the seconds. It further shall not include any separators.
Example: The only valid format for UTC time 6 minutes, 27 seconds after 9 pm
on 6 November 1985 is 19851106210627Z.

HostAddress ::= SEQUENCE {
addr-type[0] INTEGER,
address[1] OCTET STRING

}

HostAddresses ::= SEQUENCE OF HostAddress

The host address encodings consists of two fields:

addr-type
This field specifies the type of address that follows. Pre-defined
values for this field are specified in section 8.1.

address
This field encodes a single address of type addr-type.

The two forms differ slightly. HostAddress contains exactly one address;
HostAddresses contains a sequence of possibly many addresses.

AuthorizationData ::= SEQUENCE OF SEQUENCE {
ad-type[0] INTEGER,
ad-data[1] OCTET STRING

}

ad-data
This field contains authorization data to be interpreted according to
the value of the corresponding ad-type field.

ad-type
This field specifies the format for the ad-data subfield. All negative
values are reserved for local use. Non-negative values are reserved for
registered use.

Each sequence of type and data is referred to as an authorization element.
Elements may be application specific, however, there is a common set of
recursive elements that should be understood by all implementations. These
elements contain other elements embedded within them, and the interpretation
of the encapsulating element determines which of the embedded elements must
be interpreted, and which may be ignored. Definitions for these common
elements may be found in Appendix B.

TicketExtensions ::= SEQUENCE OF SEQUENCE {
te-type[0] INTEGER,
te-data[1] OCTET STRING

}
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te-data
This field contains opaque data that must be carried with the ticket to
support extensions to the Kerberos protocol including but not limited
to some forms of inter-realm key exchange and plaintext authorization
data. See appendix C for some common uses of this field.

te-type
This field specifies the format for the te-data subfield. All negative
values are reserved for local use. Non-negative values are reserved for
registered use.

APOptions ::= BIT STRING
-- reserved(0),
-- use-session-key(1),
-- mutual-required(2)

TicketFlags ::= BIT STRING
-- reserved(0),
-- forwardable(1),
-- forwarded(2),
-- proxiable(3),
-- proxy(4),
-- may-postdate(5),
-- postdated(6),
-- invalid(7),
-- renewable(8),
-- initial(9),
-- pre-authent(10),
-- hw-authent(11),
-- transited-policy-checked(12),
-- ok-as-delegate(13)

KDCOptions ::= BIT STRING io
-- reserved(0),
-- forwardable(1),
-- forwarded(2),
-- proxiable(3),
-- proxy(4),
-- allow-postdate(5),
-- postdated(6),
-- unused7(7),
-- renewable(8),
-- unused9(9),
-- unused10(10),
-- unused11(11),
-- unused12(12),
-- unused13(13),
-- requestanonymous(14),
-- canonicalize(15),
-- disable-transited-check(26),
-- renewable-ok(27),
-- enc-tkt-in-skey(28),
-- renew(30),
-- validate(31)

ASN.1 Bit strings have a length and a value. When used in Kerberos for the
APOptions, TicketFlags, and KDCOptions, the length of the bit string on
generated values should be the smallest number of bits needed to include the
highest order bit that is set (1), but in no case less than 32 bits. The
ASN.1 representation of the bit strings uses unnamed bits, with the meaning
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of the individual bits defined by the comments in the specification above.
Implementations should accept values of bit strings of any length and treat
the value of flags corresponding to bits beyond the end of the bit string as
if the bit were reset (0). Comparison of bit strings of different length
should treat the smaller string as if it were padded with zeros beyond the
high order bits to the length of the longer string[23].

LastReq ::= SEQUENCE OF SEQUENCE {
lr-type[0] INTEGER,
lr-value[1] KerberosTime

}

lr-type
This field indicates how the following lr-value field is to be
interpreted. Negative values indicate that the information pertains
only to the responding server. Non-negative values pertain to all
servers for the realm. If the lr-type field is zero (0), then no
information is conveyed by the lr-value subfield. If the absolute value
of the lr-type field is one (1), then the lr-value subfield is the time
of last initial request for a TGT. If it is two (2), then the lr-value
subfield is the time of last initial request. If it is three (3), then
the lr-value subfield is the time of issue for the newest
ticket-granting ticket used. If it is four (4), then the lr-value
subfield is the time of the last renewal. If it is five (5), then the
lr-value subfield is the time of last request (of any type). If it is
(6), then the lr-value subfield is the time when the password will
expire.

lr-value
This field contains the time of the last request. the time must be
interpreted according to the contents of the accompanying lr-type
subfield.

See section 6 for the definitions of Checksum, ChecksumType, EncryptedData,
EncryptionKey, EncryptionType, and KeyType.

5.3. Tickets and Authenticators

This section describes the format and encryption parameters for tickets and
authenticators. When a ticket or authenticator is included in a protocol
message it is treated as an opaque object.

5.3.1. Tickets

A ticket is a record that helps a client authenticate to a service. A Ticket
contains the following information:

Ticket ::= [APPLICATION 1] SEQUENCE {
tkt-vno[0] INTEGER,
realm[1] Realm,
sname[2] PrincipalName,
enc-part[3] EncryptedData, --

EncTicketPart
extensions[4] TicketExtensions OPTIONAL

}

-- Encrypted part of ticket
EncTicketPart ::= [APPLICATION 3] SEQUENCE {

flags[0] TicketFlags,
key[1] EncryptionKey,
crealm[2] Realm,
cname[3] PrincipalName,
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transited[4] TransitedEncoding,
authtime[5] KerberosTime,
starttime[6] KerberosTime OPTIONAL,
endtime[7] KerberosTime,
renew-till[8] KerberosTime OPTIONAL,
caddr[9] HostAddresses OPTIONAL,
authorization-data[10] AuthorizationData OPTIONAL

}
-- encoded Transited field
TransitedEncoding ::= SEQUENCE {

tr-type[0] INTEGER, -- must be
registered

contents[1] OCTET STRING
}

The encoding of EncTicketPart is encrypted in the key shared by Kerberos and
the end server (the server's secret key). See section 6 for the format of
the ciphertext.

tkt-vno
This field specifies the version number for the ticket format. This
document describes version number 5.

realm
This field specifies the realm that issued a ticket. It also serves to
identify the realm part of the server's principal identifier. Since a
Kerberos server can only issue tickets for servers within its realm,
the two will always be identical.

sname
This field specifies all components of the name part of the server's
identity, including those parts that identify a specific instance of a
service.

enc-part
This field holds the encrypted encoding of the EncTicketPart sequence.

extensions
This optional field contains a sequence of extensions that may be used
to carry information that must be carried with the ticket to support
several extensions, including but not limited to plaintext
authorization data, tokens for exchanging inter-realm keys, and other
information that must be associated with a ticket for use by the
application server. See Appendix C for definitions of common
extensions.

Note that some older versions of Kerberos did not support this field.
Because this is an optional field it will not break older clients, but
older clients might strip this field from the ticket before sending it
to the application server. This limits the usefulness of this ticket
field to environments where the ticket will not be parsed and
reconstructed by these older Kerberos clients.

If it is known that the client will strip this field from the ticket,
as an interim measure the KDC may append this field to the end of the
enc-part of the ticket and append a trailer indicating the length of
the appended extensions field.

flags
This field indicates which of various options were used or requested
when the ticket was issued. It is a bit-field, where the selected
options are indicated by the bit being set (1), and the unselected
options and reserved fields being reset (0). Bit 0 is the most
significant bit. The encoding of the bits is specified in section 5.2.
The flags are described in more detail above in section 2. The meanings
of the flags are:

Bits Name Description
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0 RESERVED Reserved for future expansion of this
field.

The FORWARDABLE flag is normally only
interpreted by the TGS, and can be
ignored by end servers. When set, this

1 FORWARDABLE flag tells the ticket-granting server
that it is OK to issue a new
ticket-granting ticket with a
different network address based on the
presented ticket.

When set, this flag indicates that the
ticket has either been forwarded or

2 FORWARDED was issued based on authentication
involving a forwarded ticket-granting
ticket.

The PROXIABLE flag is normally only
interpreted by the TGS, and can be
ignored by end servers. The PROXIABLE
flag has an interpretation identical

3 PROXIABLE to that of the FORWARDABLE flag,
except that the PROXIABLE flag tells
the ticket-granting server that only
non-ticket-granting tickets may be
issued with different network
addresses.

4 PROXY When set, this flag indicates that a
ticket is a proxy.

The MAY-POSTDATE flag is normally only
interpreted by the TGS, and can be

5 MAY-POSTDATE ignored by end servers. This flag
tells the ticket-granting server that
a post-dated ticket may be issued
based on this ticket-granting ticket.

This flag indicates that this ticket
has been postdated. The end-service

6 POSTDATED can check the authtime field to see
when the original authentication
occurred.

This flag indicates that a ticket is
invalid, and it must be validated by

7 INVALID the KDC before use. Application
servers must reject tickets which have
this flag set.

The RENEWABLE flag is normally only
interpreted by the TGS, and can
usually be ignored by end servers

8 RENEWABLE (some particularly careful servers may
wish to disallow renewable tickets). A
renewable ticket can be used to obtain
a replacement ticket that expires at a
later date.

This flag indicates that this ticket
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9 INITIAL was issued using the AS protocol, and
not issued based on a ticket-granting
ticket.

This flag indicates that during
initial authentication, the client was
authenticated by the KDC before a

10 PRE-AUTHENT ticket was issued. The strength of the
preauthentication method is not
indicated, but is acceptable to the
KDC.

This flag indicates that the protocol
employed for initial authentication
required the use of hardware expected

11 HW-AUTHENT to be possessed solely by the named
client. The hardware authentication
method is selected by the KDC and the
strength of the method is not
indicated.

This flag indicates that the KDC for
the realm has checked the transited
field against a realm defined policy
for trusted certifiers. If this flag
is reset (0), then the application
server must check the transited field
itself, and if unable to do so it must

12 TRANSITED- reject the authentication. If the flag
POLICY-CHECKED

is set (1) then the application server
may skip its own validation of the
transited field, relying on the
validation performed by the KDC. At
its option the application server may
still apply its own validation based
on a separate policy for acceptance.

This flag indicates that the server
(not the client) specified in the
ticket has been determined by policy
of the realm to be a suitable
recipient of delegation. A client can
use the presence of this flag to help
it make a decision whether to delegate
credentials (either grant a proxy or a

13 OK-AS-DELEGATE forwarded ticket granting ticket) to
this server. The client is free to
ignore the value of this flag. When
setting this flag, an administrator
should consider the Security and
placement of the server on which the
service will run, as well as whether
the service requires the use of
delegated credentials.

This flag indicates that the principal
named in the ticket is a generic
principal for the realm and does not
identify the individual using the
ticket. The purpose of the ticket is
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only to securely distribute a session
14 ANONYMOUS key, and not to identify the user.

Subsequent requests using the same
ticket and session may be considered
as originating from the same user, but
requests with the same username but a
different ticket are likely to
originate from different users.

15-31 RESERVED Reserved for future use.
key

This field exists in the ticket and the KDC response and is used to
pass the session key from Kerberos to the application server and the
client. The field's encoding is described in section 6.2.

crealm
This field contains the name of the realm in which the client is
registered and in which initial authentication took place.

cname
This field contains the name part of the client's principal identifier.

transited
This field lists the names of the Kerberos realms that took part in
authenticating the user to whom this ticket was issued. It does not
specify the order in which the realms were transited. See section
3.3.3.2 for details on how this field encodes the traversed realms.
When the names of CA's are to be embedded in the transited field (as
specified for some extensions to the protocol), the X.500 names of the
CA's should be mapped into items in the transited field using the
mapping defined by RFC2253.

authtime
This field indicates the time of initial authentication for the named
principal. It is the time of issue for the original ticket on which
this ticket is based. It is included in the ticket to provide
additional information to the end service, and to provide the necessary
information for implementation of a `hot list' service at the KDC. An
end service that is particularly paranoid could refuse to accept
tickets for which the initial authentication occurred "too far" in the
past. This field is also returned as part of the response from the KDC.
When returned as part of the response to initial authentication
(KRB_AS_REP), this is the current time on the Kerberos server[24].

starttime
This field in the ticket specifies the time after which the ticket is
valid. Together with endtime, this field specifies the life of the
ticket. If it is absent from the ticket, its value should be treated as
that of the authtime field.

endtime
This field contains the time after which the ticket will not be honored
(its expiration time). Note that individual services may place their
own limits on the life of a ticket and may reject tickets which have
not yet expired. As such, this is really an upper bound on the
expiration time for the ticket.

renew-till
This field is only present in tickets that have the RENEWABLE flag set
in the flags field. It indicates the maximum endtime that may be
included in a renewal. It can be thought of as the absolute expiration
time for the ticket, including all renewals.

caddr
This field in a ticket contains zero (if omitted) or more (if present)
host addresses. These are the addresses from which the ticket can be
used. If there are no addresses, the ticket can be used from any
location. The decision by the KDC to issue or by the end server to
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accept zero-address tickets is a policy decision and is left to the
Kerberos and end-service administrators; they may refuse to issue or
accept such tickets. The suggested and default policy, however, is that
such tickets will only be issued or accepted when additional
information that can be used to restrict the use of the ticket is
included in the authorization_data field. Such a ticket is a
capability.

Network addresses are included in the ticket to make it harder for an
attacker to use stolen credentials. Because the session key is not sent
over the network in cleartext, credentials can't be stolen simply by
listening to the network; an attacker has to gain access to the session
key (perhaps through operating system security breaches or a careless
user's unattended session) to make use of stolen tickets.

It is important to note that the network address from which a
connection is received cannot be reliably determined. Even if it could
be, an attacker who has compromised the client's workstation could use
the credentials from there. Including the network addresses only makes
it more difficult, not impossible, for an attacker to walk off with
stolen credentials and then use them from a "safe" location.

authorization-data
The authorization-data field is used to pass authorization data from
the principal on whose behalf a ticket was issued to the application
service. If no authorization data is included, this field will be left
out. Experience has shown that the name of this field is confusing, and
that a better name for this field would be restrictions. Unfortunately,
it is not possible to change the name of this field at this time.

This field contains restrictions on any authority obtained on the basis
of authentication using the ticket. It is possible for any principal in
possession of credentials to add entries to the authorization data

field
since these entries further restrict what can be done with the ticket.
Such additions can be made by specifying the additional entries when a
new ticket is obtained during the TGS exchange, or they may be added
during chained delegation using the authorization data field of the
authenticator.

Because entries may be added to this field by the holder of
credentials, except when an entry is separately authenticated by
encapsulation in the kdc-issued element, it is not allowable for the
presence of an entry in the authorization data field of a ticket to
amplify the privileges one would obtain from using a ticket.

The data in this field may be specific to the end service; the field
will contain the names of service specific objects, and the rights to
those objects. The format for this field is described in section 5.2.
Although Kerberos is not concerned with the format of the contents of
the sub-fields, it does carry type information (ad-type).

By using the authorization_data field, a principal is able to issue a
proxy that is valid for a specific purpose. For example, a client
wishing to print a file can obtain a file server proxy to be passed to
the print server. By specifying the name of the file in the
authorization_data field, the file server knows that the print server
can only use the client's rights when accessing the particular file to
be printed.

A separate service providing authorization or certifying group
membership may be built using the authorization-data field. In this
case, the entity granting authorization (not the authorized entity),
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may obtain a ticket in its own name (e.g. the ticket is issued in the
name of a privilege server), and this entity adds restrictions on its
own authority and delegates the restricted authority through a proxy to
the client. The client would then present this authorization credential
to the application server separately from the authentication exchange.
Alternatively, such authorization credentials may be embedded in the
ticket authenticating the authorized entity, when the authorization is
separately authenticated using the kdc-issued authorization data
element (see B.4).

Similarly, if one specifies the authorization-data field of a proxy and
leaves the host addresses blank, the resulting ticket and session key
can be treated as a capability. See [Neu93] for some suggested uses of
this field.

The authorization-data field is optional and does not have to be
included in a ticket.

5.3.2. Authenticators

An authenticator is a record sent with a ticket to a server to certify the
client's knowledge of the encryption key in the ticket, to help the server
detect replays, and to help choose a "true session key" to use with the
particular session. The encoding is encrypted in the ticket's session key
shared by the client and the server:

-- Unencrypted authenticator
Authenticator ::= [APPLICATION 2] SEQUENCE {

authenticator-vno[0] INTEGER,
crealm[1] Realm,
cname[2] PrincipalName,
cksum[3] Checksum OPTIONAL,
cusec[4] INTEGER,
ctime[5] KerberosTime,
subkey[6] EncryptionKey OPTIONAL,
seq-number[7] INTEGER OPTIONAL,
authorization-data[8] AuthorizationData OPTIONAL

}

authenticator-vno
This field specifies the version number for the format of the
authenticator. This document specifies version 5.

crealm and cname
These fields are the same as those described for the ticket in section
5.3.1.

cksum
This field contains a checksum of the application data that
accompanies the KRB_AP_REQ.

cusec
This field contains the microsecond part of the client's timestamp. Its
value (before encryption) ranges from 0 to 999999. It often appears
along with ctime. The two fields are used together to specify a
reasonably accurate timestamp.

ctime
This field contains the current time on the client's host.

subkey
This field contains the client's choice for an encryption key which is
to be used to protect this specific application session. Unless an
application specifies otherwise, if this field is left out the session
key from the ticket will be used.

seq-number
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This optional field includes the initial sequence number to be used by
the KRB_PRIV or KRB_SAFE messages when sequence numbers are used to
detect replays (It may also be used by application specific messages).
When included in the authenticator this field specifies the initial
sequence number for messages from the client to the server. When

included in the AP-REP message, the initial sequence number is that for
messages from the server to the client. When used in KRB_PRIV or
KRB_SAFE messages, it is incremented by one after each message is sent.
Sequence numbers fall in the range of 0 through 2^32 - 1 and wrap to
zero following the value 2^32 - 1.

For sequence numbers to adequately support the detection of replays
they should be non-repeating, even across connection boundaries. The
initial sequence number should be random and uniformly distributed
across the full space of possible sequence numbers, so that it cannot
be guessed by an attacker and so that it and the successive sequence
numbers do not repeat other sequences.

authorization-data
This field is the same as described for the ticket in section 5.3.1. It
is optional and will only appear when additional restrictions are to be
placed on the use of a ticket, beyond those carried in the ticket
itself.

5.4. Specifications for the AS and TGS exchanges

This section specifies the format of the messages used in the exchange
between the client and the Kerberos server. The format of possible error
messages appears in section 5.9.1.

5.4.1. KRB_KDC_REQ definition

The KRB_KDC_REQ message has no type of its own. Instead, its type is one of
KRB_AS_REQ or KRB_TGS_REQ depending on whether the request is for an initial
ticket or an additional ticket. In either case, the message is sent from the
client to the Authentication Server to request credentials for a service.

The message fields are:

AS-REQ ::= [APPLICATION 10] KDC-REQ
TGS-REQ ::= [APPLICATION 12] KDC-REQ

KDC-REQ ::= SEQUENCE {
pvno[1] INTEGER,
msg-type[2] INTEGER,
padata[3] SEQUENCE OF PA-DATA OPTIONAL,
req-body[4] KDC-REQ-BODY

}

PA-DATA ::= SEQUENCE {
padata-type[1] INTEGER,
padata-value[2] OCTET STRING,

-- might be encoded AP-REQ
}

KDC-REQ-BODY ::= SEQUENCE {
kdc-options[0] KDCOptions,
cname[1] PrincipalName OPTIONAL,

-- Used only in AS-REQ
realm[2] Realm, -- Server's realm

-- Also client's in AS-REQ
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sname[3] PrincipalName OPTIONAL,
from[4] KerberosTime OPTIONAL,
till[5] KerberosTime OPTIONAL,
rtime[6] KerberosTime OPTIONAL,
nonce[7] INTEGER,
etype[8] SEQUENCE OF INTEGER,

-- EncryptionType,
-- in preference order

addresses[9] HostAddresses OPTIONAL,
enc-authorization-data[10] EncryptedData OPTIONAL,

-- Encrypted AuthorizationData
-- encoding

additional-tickets[11] SEQUENCE OF Ticket OPTIONAL
}

The fields in this message are:

pvno
This field is included in each message, and specifies the protocol
version number. This document specifies protocol version 5.

msg-type
This field indicates the type of a protocol message. It will almost
always be the same as the application identifier associated with a
message. It is included to make the identifier more readily accessible
to the application. For the KDC-REQ message, this type will be
KRB_AS_REQ or KRB_TGS_REQ.

padata
The padata (pre-authentication data) field contains a sequence of
authentication information which may be needed before credentials can
be issued or decrypted. In the case of requests for additional tickets
(KRB_TGS_REQ), this field will include an element with padata-type of
PA-TGS-REQ and data of an authentication header (ticket-granting ticket
and authenticator). The checksum in the authenticator (which must be
collision-proof) is to be computed over the KDC-REQ-BODY encoding. In
most requests for initial authentication (KRB_AS_REQ) and most replies
(KDC-REP), the padata field will be left out.

This field may also contain information needed by certain extensions to
the Kerberos protocol. For example, it might be used to initially
verify the identity of a client before any response is returned. When
this field is used to authenticate or pre-authenticate a request, it
should contain a keyed checksum over the KDC-REQ-BODY to bind the
pre-authentication data to rest of the request. The KDC, as a matter of
policy, may decide whether to honor a KDC-REQ which includes any
pre-authentication data that does not contain the checksum field.

PA-ENC-TIMESTAMP defines a pre-authentication data type that is used
for authenticating a client by way of an encrypted timestamp. This is
accomplished with a padata field with padata-type equal to
PA-ENC-TIMESTAMP and padata-value defined as follows (query: the
checksum is new in this definition. If the optional field will break
things we can keep the old PA-ENC-TS-ENC, and define a new alternate
form that includes the checksum). :

padata-type ::= PA-ENC-TIMESTAMP
padata-value ::= EncryptedData -- PA-ENC-TS-ENC

PA-ENC-TS-ENC ::= SEQUENCE {
patimestamp[0] KerberosTime, -- client's time
pausec[1] INTEGER OPTIONAL,
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pachecksum[2] checksum OPTIONAL
-- keyed checksum of KDC-REQ-

BODY
}

with patimestamp containing the client's time and pausec containing the
microseconds which may be omitted if a client will not generate more
than one request per second. The ciphertext (padata-value) consists of
the PA-ENC-TS-ENC sequence, encrypted using the client's secret key.

It may also be used by the client to specify the version of a key that
is being used for accompanying preauthentication, and/or which should
be used to encrypt the reply from the KDC.

padata-type ::= PA-USE-SPECIFIED-KVNO
padata-value ::= Integer
}

The KDC should only accept and abide by the value of the
use-specified-kvno preauthentication data field when the specified key
is still valid and until use of a new key is confirmed. This situation
is likely to occur primarily during the period during which an updated
key is propagating to other KDC's in a realm.

The padata field can also contain information needed to help the KDC or
the client select the key needed for generating or decrypting the
response. This form of the padata is useful for supporting the use of
certain token cards with Kerberos. The details of such extensions are
specified in separate documents. See [Pat92] for additional uses of
this field.

padata-type
The padata-type element of the padata field indicates the way that the
padata-value element is to be interpreted. Negative values of
padata-type are reserved for unregistered use; non-negative values are
used for a registered interpretation of the element type.

req-body
This field is a placeholder delimiting the extent of the remaining
fields. If a checksum is to be calculated over the request, it is
calculated over an encoding of the KDC-REQ-BODY sequence which is
enclosed within the req-body field.

kdc-options
This field appears in the KRB_AS_REQ and KRB_TGS_REQ requests to the
KDC and indicates the flags that the client wants set on the tickets as
well as other information that is to modify the behavior of the KDC.
Where appropriate, the name of an option may be the same as the flag
that is set by that option. Although in most case, the bit in the
options field will be the same as that in the flags field, this is not
guaranteed, so it is not acceptable to simply copy the options field to
the flags field. There are various checks that must be made before
honoring an option anyway.

The kdc_options field is a bit-field, where the selected options are
indicated by the bit being set (1), and the unselected options and
reserved fields being reset (0). The encoding of the bits is specified
in section 5.2. The options are described in more detail above in
section 2. The meanings of the options are:
Bits Name Description

0 RESERVED Reserved for future expansion of
this field.

The FORWARDABLE option indicates
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that the ticket to be issued is to
have its forwardable flag set. It

1 FORWARDABLE may only be set on the initial
request, or in a subsequent request
if the ticket-granting ticket on
which it is based is also
forwardable.

The FORWARDED option is only
specified in a request to the
ticket-granting server and will only
be honored if the ticket-granting
ticket in the request has its

2 FORWARDED FORWARDABLE bit set. This option
indicates that this is a request for
forwarding. The address(es) of the
host from which the resulting ticket
is to be valid are included in the
addresses field of the request.

The PROXIABLE option indicates that
the ticket to be issued is to have
its proxiable flag set. It may only

3 PROXIABLE be set on the initial request, or in
a subsequent request if the
ticket-granting ticket on which it
is based is also proxiable.

The PROXY option indicates that this
is a request for a proxy. This
option will only be honored if the
ticket-granting ticket in the

4 PROXY request has its PROXIABLE bit set.
The address(es) of the host from
which the resulting ticket is to be
valid are included in the addresses
field of the request.

The ALLOW-POSTDATE option indicates
that the ticket to be issued is to
have its MAY-POSTDATE flag set. It

5 ALLOW-POSTDATE may only be set on the initial
request, or in a subsequent request
if the ticket-granting ticket on
which it is based also has its
MAY-POSTDATE flag set.

The POSTDATED option indicates that
this is a request for a postdated
ticket. This option will only be
honored if the ticket-granting
ticket on which it is based has its

6 POSTDATED MAY-POSTDATE flag set. The resulting
ticket will also have its INVALID
flag set, and that flag may be reset
by a subsequent request to the KDC
after the starttime in the ticket
has been reached.

7 UNUSED This option is presently unused.
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The RENEWABLE option indicates that
the ticket to be issued is to have
its RENEWABLE flag set. It may only
be set on the initial request, or
when the ticket-granting ticket on

8 RENEWABLE which the request is based is also
renewable. If this option is
requested, then the rtime field in
the request contains the desired
absolute expiration time for the
ticket.

9 RESERVED Reserved for PK-Cross

10-13 UNUSED These options are presently unused.

The REQUEST-ANONYMOUS option
indicates that the ticket to be
issued is not to identify the user
to which it was issued. Instead, the
principal identifier is to be
generic, as specified by the policy
of the realm (e.g. usually

14 REQUEST-ANONYMOUS anonymous@realm). The purpose of the
ticket is only to securely
distribute a session key, and not to
identify the user. The ANONYMOUS
flag on the ticket to be returned
should be set. If the local realms
policy does not permit anonymous
credentials, the request is to be
rejected.

The CANONICALIZE option indicates
that the client will accept the
return of a true server name instead
of the name specified in the
request. In addition the client will
be able to process any TGT referrals
that will direct the client to

15 CANONICALIZE another realm to locate the
requested server. If a KDC does not
support name- canonicalization, the
option is ignored and the
appropriate
KDC_ERR_C_PRINCIPAL_UNKNOWN or
KDC_ERR_S_PRINCIPAL_UNKNOWN error is
returned. [JBrezak]

16-25 RESERVED Reserved for future use.

By default the KDC will check the
transited field of a
ticket-granting-ticket against the
policy of the local realm before it
will issue derivative tickets based
on the ticket granting ticket. If
this flag is set in the request,
checking of the transited field is
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26 DISABLE-TRANSITED-CHECK disabled. Tickets issued without the
performance of this check will be
noted by the reset (0) value of the
TRANSITED-POLICY-CHECKED flag,
indicating to the application server
that the transited field must be
checked locally. KDC's are
encouraged but not required to honor
the DISABLE-TRANSITED-CHECK option.

The RENEWABLE-OK option indicates
that a renewable ticket will be
acceptable if a ticket with the
requested life cannot otherwise be
provided. If a ticket with the
requested life cannot be provided,

27 RENEWABLE-OK then a renewable ticket may be
issued with a renew-till equal to
the requested endtime. The value
of the renew-till field may still be
limited by local limits, or limits
selected by the individual principal
or server.

This option is used only by the
ticket-granting service. The
ENC-TKT-IN-SKEY option indicates

28 ENC-TKT-IN-SKEY that the ticket for the end server
is to be encrypted in the session
key from the additional
ticket-granting ticket provided.

29 RESERVED Reserved for future use.

This option is used only by the
ticket-granting service. The RENEW
option indicates that the present
request is for a renewal. The ticket
provided is encrypted in the secret
key for the server on which it is

30 RENEW valid. This option will only be
honored if the ticket to be renewed
has its RENEWABLE flag set and if
the time in its renew-till field has
not passed. The ticket to be renewed
is passed in the padata field as
part of the authentication header.

This option is used only by the
ticket-granting service. The
VALIDATE option indicates that the
request is to validate a postdated
ticket. It will only be honored if
the ticket presented is postdated,
presently has its INVALID flag set,

31 VALIDATE and would be otherwise usable at
this time. A ticket cannot be
validated before its starttime. The
ticket presented for validation is
encrypted in the key of the server
for which it is valid and is passed
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in the padata field as part of the
authentication header.

cname and sname
These fields are the same as those described for the ticket in section
5.3.1. sname may only be absent when the ENC-TKT-IN-SKEY option is
specified. If absent, the name of the server is taken from the name of
the client in the ticket passed as additional-tickets.

enc-authorization-data
The enc-authorization-data, if present (and it can only be present in
the TGS_REQ form), is an encoding of the desired authorization-data
encrypted under the sub-session key if present in the Authenticator, or
alternatively from the session key in the ticket-granting ticket, both
from the padata field in the KRB_AP_REQ.

realm
This field specifies the realm part of the server's principal
identifier. In the AS exchange, this is also the realm part of the
client's principal identifier. If the CANONICALIZE option is set, the
realm is used as a hint to the KDC for its database lookup.

from
This field is included in the KRB_AS_REQ and KRB_TGS_REQ ticket
requests when the requested ticket is to be postdated. It specifies the
desired start time for the requested ticket. If this field is omitted
then the KDC should use the current time instead.

till
This field contains the expiration date requested by the client in a
ticket request. It is optional and if omitted the requested ticket is
to have the maximum endtime permitted according to KDC policy for the
parties to the authentication exchange as limited by expiration date of
the ticket granting ticket or other preauthentication credentials.

rtime
This field is the requested renew-till time sent from a client to the
KDC in a ticket request. It is optional.

nonce
This field is part of the KDC request and response. It intended to
hold a random number generated by the client. If the same number is
included in the encrypted response from the KDC, it provides evidence
that the response is fresh and has not been replayed by an attacker.
Nonces must never be re-used. Ideally, it should be generated randomly,
but if the correct time is known, it may suffice[25].

etype
This field specifies the desired encryption algorithm to be used in the
response.

addresses
This field is included in the initial request for tickets, and
optionally included in requests for additional tickets from the
ticket-granting server. It specifies the addresses from which the
requested ticket is to be valid. Normally it includes the addresses for
the client's host. If a proxy is requested, this field will contain
other addresses. The contents of this field are usually copied by the
KDC into the caddr field of the resulting ticket.

additional-tickets
Additional tickets may be optionally included in a request to the
ticket-granting server. If the ENC-TKT-IN-SKEY option has been
specified, then the session key from the additional ticket will be used
in place of the server's key to encrypt the new ticket. When he
ENC-TKT-IN-SKEY option is used for user-to-user authentication, this
additional ticket may be a TGT issued by the local realm or an
inter-realm TGT issued for the current KDC's realm by a remote KDC. If
more than one option which requires additional tickets has been
specified, then the additional tickets are used in the order specified



PKT-SP-SEC-I07-021127 PacketCableTM 1.x Specifications 

276 CableLabs  11/27/02 

by the ordering of the options bits (see kdc-options, above).

The application code will be either ten (10) or twelve (12) depending on
whether the request is for an initial ticket (AS-REQ) or for an additional
ticket (TGS-REQ).

The optional fields (addresses, authorization-data and additional-tickets)
are only included if necessary to perform the operation specified in the
kdc-options field.

It should be noted that in KRB_TGS_REQ, the protocol version number appears
twice and two different message types appear: the KRB_TGS_REQ message
contains these fields as does the authentication header (KRB_AP_REQ) that is
passed in the padata field.

5.4.2. KRB_KDC_REP definition

The KRB_KDC_REP message format is used for the reply from the KDC for either
an initial (AS) request or a subsequent (TGS) request. There is no message
type for KRB_KDC_REP. Instead, the type will be either KRB_AS_REP or
KRB_TGS_REP. The key used to encrypt the ciphertext part of the reply
depends on the message type. For KRB_AS_REP, the ciphertext is encrypted in
the client's secret key, and the client's key version number is included in
the key version number for the encrypted data. For KRB_TGS_REP, the
ciphertext is encrypted in the sub-session key from the Authenticator, or if
absent, the session key from the ticket-granting ticket used in the request.
In that case, no version number will be present in the EncryptedData
sequence.

The KRB_KDC_REP message contains the following fields:

AS-REP ::= [APPLICATION 11] KDC-REP
TGS-REP ::= [APPLICATION 13] KDC-REP

KDC-REP ::= SEQUENCE {
pvno[0] INTEGER,
msg-type[1] INTEGER,
padata[2] SEQUENCE OF PA-DATA OPTIONAL,
crealm[3] Realm,
cname[4] PrincipalName,
ticket[5] Ticket,
enc-part[6] EncryptedData

-- EncASREpPart or EncTGSReoOart
}

EncASRepPart ::= [APPLICATION 25[27]] EncKDCRepPart
EncTGSRepPart ::= [APPLICATION 26] EncKDCRepPart

EncKDCRepPart ::= SEQUENCE {
key[0] EncryptionKey,
last-req[1] LastReq,
nonce[2] INTEGER,
key-expiration[3] KerberosTime OPTIONAL,
flags[4] TicketFlags,
authtime[5] KerberosTime,
starttime[6] KerberosTime OPTIONAL,
endtime[7] KerberosTime,
renew-till[8] KerberosTime OPTIONAL,
srealm[9] Realm,
sname[10] PrincipalName,
caddr[11] HostAddresses OPTIONAL

}
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pvno and msg-type
These fields are described above in section 5.4.1. msg-type is either
KRB_AS_REP or KRB_TGS_REP.

padata
This field is described in detail in section 5.4.1. One possible use
for this field is to encode an alternate "mix-in" string to be used
with a string-to-key algorithm (such as is described in section 6.3.2).
This ability is useful to ease transitions if a realm name needs to
change (e.g. when a company is acquired); in such a case all existing
password-derived entries in the KDC database would be flagged as
needing a special mix-in string until the next password change.

crealm, cname, srealm and sname
These fields are the same as those described for the ticket in section
5.3.1.

ticket
The newly-issued ticket, from section 5.3.1.

enc-part
This field is a place holder for the ciphertext and related information
that forms the encrypted part of a message. The description of the
encrypted part of the message follows each appearance of this field.
The encrypted part is encoded as described in section 6.1.

key
This field is the same as described for the ticket in section 5.3.1.

last-req
This field is returned by the KDC and specifies the time(s) of the last
request by a principal. Depending on what information is available,
this might be the last time that a request for a ticket-granting ticket
was made, or the last time that a request based on a ticket-granting
ticket was successful. It also might cover all servers for a realm, or
just the particular server. Some implementations may display this
information to the user to aid in discovering unauthorized use of one's
identity. It is similar in spirit to the last login time displayed when
logging into timesharing systems.

nonce
This field is described above in section 5.4.1.

key-expiration
The key-expiration field is part of the response from the KDC and
specifies the time that the client's secret key is due to expire. The
expiration might be the result of password aging or an account
expiration. This field will usually be left out of the TGS reply since
the response to the TGS request is encrypted in a session key and no
client information need be retrieved from the KDC database. It is up to
the application client (usually the login program) to take appropriate
action (such as notifying the user) if the expiration time is imminent.

flags, authtime, starttime, endtime, renew-till and caddr
These fields are duplicates of those found in the encrypted portion of
the attached ticket (see section 5.3.1), provided so the client may
verify they match the intended request and to assist in proper ticket
caching. If the message is of type KRB_TGS_REP, the caddr field will
only be filled in if the request was for a proxy or forwarded ticket,
or if the user is substituting a subset of the addresses from the
ticket granting ticket. If the client-requested addresses are not
present or not used, then the addresses contained in the ticket will be
the same as those included in the ticket-granting ticket.

5.5. Client/Server (CS) message specifications

This section specifies the format of the messages used for the
authentication of the client to the application server.
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5.5.1. KRB_AP_REQ definition

The KRB_AP_REQ message contains the Kerberos protocol version number, the
message type KRB_AP_REQ, an options field to indicate any options in use,
and the ticket and authenticator themselves. The KRB_AP_REQ message is often
referred to as the 'authentication header'.

AP-REQ ::= [APPLICATION 14] SEQUENCE {
pvno[0] INTEGER,
msg-type[1] INTEGER,
ap-options[2] APOptions,
ticket[3] Ticket,
authenticator[4] EncryptedData

-- Authenticator from 5.3.2
}

APOptions ::= BIT STRING {
reserved(0),
use-session-key(1),
mutual-required(2)

}

pvno and msg-type
These fields are described above in section 5.4.1. msg-type is
KRB_AP_REQ.

ap-options
This field appears in the application request (KRB_AP_REQ) and affects
the way the request is processed. It is a bit-field, where the selected
options are indicated by the bit being set (1), and the unselected
options and reserved fields being reset (0). The encoding of the bits
is specified in section 5.2. The meanings of the options are:

Bit(s) Name Description

0 RESERVED
Reserved for future expansion of this
field.

1 USE-SESSION-KEY
The USE-SESSION-KEY option indicates
that the ticket the client is presenting
to a server is encrypted in the session
key from the server's ticket-granting
ticket. When this option is not speci-
fied, the ticket is encrypted in the
server's secret key.

2 MUTUAL-REQUIRED
The MUTUAL-REQUIRED option tells the
server that the client requires mutual
authentication, and that it must respond
with a KRB_AP_REP message.

3-31 RESERVED
Reserved for future use.

ticket
This field is a ticket authenticating the client to the server.

authenticator
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This contains the authenticator, which includes the client's choice of
a subkey. Its encoding is described in section 5.3.2.

5.5.2. KRB_AP_REP definition

The KRB_AP_REP message contains the Kerberos protocol version number, the
message type, and an encrypted time- stamp. The message is sent in
response to an application request (KRB_AP_REQ) where the mutual
authentication option has been selected in the ap-options field.

AP-REP ::= [APPLICATION 15] SEQUENCE {
pvno[0] INTEGER,
msg-type[1] INTEGER,
enc-part[2] EncryptedData

-- EncAPRepPart
}

EncAPRepPart ::= [APPLICATION 27[29]] SEQUENCE {
ctime[0] KerberosTime,
cusec[1] INTEGER,
subkey[2] EncryptionKey OPTIONAL,
seq-number[3] INTEGER OPTIONAL

}

The encoded EncAPRepPart is encrypted in the shared session key of the
ticket. The optional subkey field can be used in an application-arranged
negotiation to choose a per association session key.

pvno and msg-type
These fields are described above in section 5.4.1. msg-type is
KRB_AP_REP.

enc-part
This field is described above in section 5.4.2.

ctime
This field contains the current time on the client's host.

cusec
This field contains the microsecond part of the client's timestamp.

subkey
This field contains an encryption key which is to be used to protect
this specific application session. See section 3.2.6 for specifics on
how this field is used to negotiate a key. Unless an application
specifies otherwise, if this field is left out, the sub-session key
from the authenticator, or if also left out, the session key from the
ticket will be used.

seq-number
This field is described above in section 5.3.2.

5.5.3. Error message reply

If an error occurs while processing the application request, the KRB_ERROR
message will be sent in response. See section 5.9.1 for the format of the
error message. The cname and crealm fields may be left out if the server
cannot determine their appropriate values from the corresponding KRB_AP_REQ
message. If the authenticator was decipherable, the ctime and cusec fields
will contain the values from it.

5.6. KRB_SAFE message specification

This section specifies the format of a message that can be used by either
side (client or server) of an application to send a tamper-proof message to
its peer. It presumes that a session key has previously been exchanged (for
example, by using the KRB_AP_REQ/KRB_AP_REP messages).
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5.6.1. KRB_SAFE definition

The KRB_SAFE message contains user data along with a collision-proof
checksum keyed with the last encryption key negotiated via subkeys, or the
session key if no negotiation has occurred. The message fields are:

KRB-SAFE ::= [APPLICATION 20] SEQUENCE {
pvno[0] INTEGER,
msg-type[1] INTEGER,
safe-body[2] KRB-SAFE-BODY,
cksum[3] Checksum

}

KRB-SAFE-BODY ::= SEQUENCE {
user-data[0] OCTET STRING,
timestamp[1] KerberosTime OPTIONAL,
usec[2] INTEGER OPTIONAL,
seq-number[3] INTEGER OPTIONAL,
s-address[4] HostAddress OPTIONAL,
r-address[5] HostAddress OPTIONAL

}

pvno and msg-type
These fields are described above in section 5.4.1. msg-type is
KRB_SAFE.

safe-body
This field is a placeholder for the body of the KRB-SAFE message.

cksum
This field contains the checksum of the application data. Checksum
details are described in section 6.4. The checksum is computed over the
encoding of the KRB-SAFE sequence. First, the cksum is zeroed and the
checksum is computed over the encoding of the KRB-SAFE sequence, then
the checksum is set to the result of that computation, and finally the
KRB-SAFE sequence is encoded again.

user-data
This field is part of the KRB_SAFE and KRB_PRIV messages and contain
the application specific data that is being passed from the sender to
the recipient.

timestamp
This field is part of the KRB_SAFE and KRB_PRIV messages. Its contents
are the current time as known by the sender of the message. By checking
the timestamp, the recipient of the message is able to make sure that
it was recently generated, and is not a replay.

usec
This field is part of the KRB_SAFE and KRB_PRIV headers. It contains
the microsecond part of the timestamp.

seq-number
This field is described above in section 5.3.2.

s-address
This field specifies the address in use by the sender of the message.
It may be omitted if not required by the application protocol. The
application designer considering omission of this field is warned, that
the inclusion of this address prevents some kinds of replay attacks
(e.g., reflection attacks) and that it is only acceptable to omit this
address if there is sufficient information in the integrity protected
part of the application message for the recipient to unambiguously
determine if it was the intended recipient.

r-address
This field specifies the address in use by the recipient of the
message. It may be omitted for some uses (such as broadcast protocols),
but the recipient may arbitrarily reject such messages. This field
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along with s-address can be used to help detect messages which have
been incorrectly or maliciously delivered to the wrong recipient.

5.7. KRB_PRIV message specification

This section specifies the format of a message that can be used by either
side (client or server) of an application to securely and privately send a
message to its peer. It presumes that a session key has previously been
exchanged (for example, by using the KRB_AP_REQ/KRB_AP_REP messages).

5.7.1. KRB_PRIV definition

The KRB_PRIV message contains user data encrypted in the Session Key. The
message fields are:

KRB-PRIV ::= [APPLICATION 21] SEQUENCE {
pvno[0] INTEGER,
msg-type[1] INTEGER,
enc-part[3] EncryptedData

-- EncKrbPrivPart
}

EncKrbPrivPart ::= [APPLICATION 28[31]] SEQUENCE {
user-data[0] OCTET STRING,
timestamp[1] KerberosTime OPTIONAL,
usec[2] INTEGER OPTIONAL,
seq-number[3] INTEGER OPTIONAL,
s-address[4] HostAddress OPTIONAL, -- sender's

addr
r-address[5] HostAddress OPTIONAL -- recip's

addr
}

pvno and msg-type
These fields are described above in section 5.4.1. msg-type is
KRB_PRIV.

enc-part
This field holds an encoding of the EncKrbPrivPart sequence encrypted
under the session key[32]. This encrypted encoding is used for the
enc-part field of the KRB-PRIV message. See section 6 for the format of
the ciphertext.

user-data, timestamp, usec, s-address and r-address
These fields are described above in section 5.6.1.

seq-number
This field is described above in section 5.3.2.

5.8. KRB_CRED message specification

This section specifies the format of a message that can be used to send
Kerberos credentials from one principal to another. It is presented here to
encourage a common mechanism to be used by applications when forwarding
tickets or providing proxies to subordinate servers. It presumes that a
session key has already been exchanged perhaps by using the
KRB_AP_REQ/KRB_AP_REP messages.

5.8.1. KRB_CRED definition

The KRB_CRED message contains a sequence of tickets to be sent and
information needed to use the tickets, including the session key from each.
The information needed to use the tickets is encrypted under an encryption
key previously exchanged or transferred alongside the KRB_CRED message. The
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message fields are:

KRB-CRED ::= [APPLICATION 22] SEQUENCE {
pvno[0] INTEGER,
msg-type[1] INTEGER, -- KRB_CRED
tickets[2] SEQUENCE OF Ticket,
enc-part[3] EncryptedData -- EncKrbCredPart

}

EncKrbCredPart ::= [APPLICATION 29] SEQUENCE {
ticket-info[0] SEQUENCE OF KrbCredInfo,
nonce[1] INTEGER OPTIONAL,
timestamp[2] KerberosTime OPTIONAL,
usec[3] INTEGER OPTIONAL,
s-address[4] HostAddress OPTIONAL,
r-address[5] HostAddress OPTIONAL

}

KrbCredInfo ::= SEQUENCE {
key[0] EncryptionKey,
prealm[1] Realm OPTIONAL,
pname[2] PrincipalName OPTIONAL,
flags[3] TicketFlags OPTIONAL,
authtime[4] KerberosTime OPTIONAL,
starttime[5] KerberosTime OPTIONAL,
endtime[6] KerberosTime OPTIONAL
renew-till[7] KerberosTime OPTIONAL,
srealm[8] Realm OPTIONAL,
sname[9] PrincipalName OPTIONAL,
caddr[10] HostAddresses OPTIONAL

}

pvno and msg-type
These fields are described above in section 5.4.1. msg-type is
KRB_CRED.

tickets
These are the tickets obtained from the KDC specifically for use by the
intended recipient. Successive tickets are paired with the
corresponding KrbCredInfo sequence from the enc-part of the KRB-CRED
message.

enc-part
This field holds an encoding of the EncKrbCredPart sequence encrypted
under the session key shared between the sender and the intended
recipient. This encrypted encoding is used for the enc-part field of
the KRB-CRED message. See section 6 for the format of the ciphertext.

nonce
If practical, an application may require the inclusion of a nonce
generated by the recipient of the message. If the same value is
included as the nonce in the message, it provides evidence that the
message is fresh and has not been replayed by an attacker. A nonce must
never be re-used; it should be generated randomly by the recipient of
the message and provided to the sender of the message in an application
specific manner.

timestamp and usec
These fields specify the time that the KRB-CRED message was generated.
The time is used to provide assurance that the message is fresh.

s-address and r-address
These fields are described above in section 5.6.1. They are used
optionally to provide additional assurance of the integrity of the
KRB-CRED message.
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key
This field exists in the corresponding ticket passed by the KRB-CRED
message and is used to pass the session key from the sender to the
intended recipient. The field's encoding is described in section 6.2.

The following fields are optional. If present, they can be associated with
the credentials in the remote ticket file. If left out, then it is assumed
that the recipient of the credentials already knows their value.

prealm and pname
The name and realm of the delegated principal identity.

flags, authtime, starttime, endtime, renew-till, srealm, sname, and caddr
These fields contain the values of the corresponding fields from the
ticket found in the ticket field. Descriptions of the fields are
identical to the descriptions in the KDC-REP message.

5.9. Error message specification

This section specifies the format for the KRB_ERROR message. The fields
included in the message are intended to return as much information as
possible about an error. It is not expected that all the information
required by the fields will be available for all types of errors. If the
appropriate information is not available when the message is composed, the
corresponding field will be left out of the message.

Note that since the KRB_ERROR message is only optionally integrity
protected, it is quite possible for an intruder to synthesize or modify such
a message. In particular, this means that unless appropriate integrity
protection mechanisms have been applied to the KRB_ERROR message, the client
should not use any fields in this message for security-critical purposes,
such as setting a system clock or generating a fresh authenticator. The
message can be useful, however, for advising a user on the reason for some
failure.

5.9.1. KRB_ERROR definition

The KRB_ERROR message consists of the following fields:

KRB-ERROR ::= [APPLICATION 30] SEQUENCE {
pvno[0] INTEGER,
msg-type[1] INTEGER,
ctime[2] KerberosTime OPTIONAL,
cusec[3] INTEGER OPTIONAL,
stime[4] KerberosTime,
susec[5] INTEGER,
error-code[6] INTEGER,
crealm[7] Realm OPTIONAL,
cname[8] PrincipalName OPTIONAL,
realm[9] Realm, -- Correct realm
sname[10] PrincipalName, -- Correct name
e-text[11] GeneralString OPTIONAL,
e-data[12] OCTET STRING OPTIONAL,
e-cksum[13] Checksum OPTIONAL,

}

pvno and msg-type
These fields are described above in section 5.4.1. msg-type is
KRB_ERROR.

ctime
This field is described above in section 5.4.1.
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cusec
This field is described above in section 5.5.2.

stime
This field contains the current time on the server. It is of type
KerberosTime.

susec
This field contains the microsecond part of the server's timestamp. Its
value ranges from 0 to 999999. It appears along with stime. The two
fields are used in conjunction to specify a reasonably accurate
timestamp.

error-code
This field contains the error code returned by Kerberos or the server
when a request fails. To interpret the value of this field see the list
of error codes in section 8. Implementations are encouraged to provide
for national language support in the display of error messages.

crealm, cname, srealm and sname
These fields are described above in section 5.3.1.

e-text
This field contains additional text to help explain the error code
associated with the failed request (for example, it might include a
principal name which was unknown).

e-data
This field contains additional data about the error for use by the
application to help it recover from or handle the error. If present,
this field will contain the encoding of a sequence of TypedData
(TYPED-DATA below), unless the errorcode is KDC_ERR_PREAUTH_REQUIRED,
in which case it will contain the encoding of a sequence of padata
fields (METHOD-DATA below), each corresponding to an acceptable
pre-authentication method and optionally containing data for the
method:

TYPED-DATA ::= SEQUENCE of TypedData
METHOD-DATA ::= SEQUENCE of PA-DATA

TypedData ::= SEQUENCE {
data-type[0] INTEGER,
data-value[1] OCTET STRING OPTIONAL

}

Note that the padata-type field in the PA-DATA structure and the
data-type field in the TypedData structure share a common range of
allocated values which are coordinated to avoid conflicts. One Kerberos
error message, KDC_ERR_PREAUTH_REQUIRED, embeds elements of type
PA-DATA, while all other error messages embed TypedData.

While preauthentication methods of type PA-DATA should be encapsulated
within a TypedData element of type TD-PADATA, for compatibility with
old clients, the KDC should include PA-DATA types below 22 directly as
method-data. All new implementations interpreting the METHOD-DATA field
for the KDC_ERR_PREAUTH_REQUIRED message must accept a type of
TD-PADATA, extract the typed data field and interpret the use any
elements encapsulated in the TD-PADATA elements as if they were present
in the METHOD-DATA sequence.

Unless otherwise specified, unrecognized TypedData elements within the
KRB-ERROR message MAY be ignored by implementations that do not support
them. Note that all TypedData MAY be bound to the KRB-ERROR message via
the checksum field.

An application may use the TD-APP-DEFINED-ERROR typed data type for
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data carried in a Kerberos error message that is specific to the
application. TD-APP-SPECIFIC must set the data-type value of TypedData
to TD-APP-SPECIFIC and the data-value field to

AppSpecificTypedData as follows:
AppSpecificTypedData ::= SEQUENCE {

oid[0] OPTIONAL OBJECT IDENTIFIER,
-- identifies the application

data-value[1] OCTET STRING
-- application
-- specific data

}

The TD-REQ-NONCE TypedData MAY be used to bind a KRB-ERROR to a
KDC-REQ. The data-value is an INTEGER that is equivalent to the
nonce in a KDC-REQ.

The TD-REQ-SEQ TypedData MAY be used for binding a KRB-ERROR to
the sequence number from an authenticator. The data-value is an
INTEGER, and it is identical to sequence number sent in the
authenticator.

The data-value for TD-KRB-PRINCIPAL is the Kerberos-defined
PrincipalName. The data-value for TD-KRB-REALM is the
Kerberos-defined Realm. These TypedData types MAY be used to
indicate principal and realm name when appropriate.

e-cksum
This field contains an optional checksum for the KRB-ERROR message. The
checksum is calculated over the Kerberos ASN.1 encoding of the
KRB-ERROR message with the checksum absent. The checksum is then added
to the KRB-ERROR structure and the message is re-encoded. The Checksum
should be calculated using the session key from the ticket granting
ticket or service ticket, where available. If the error is in response
to a TGS or AP request, the checksum should be calculated using the
session key from the client's ticket. If the error is in response to an
AS request, then the checksum should be calculated using the client's
secret key ONLY if there has been suitable preauthentication to prove
knowledge of the secret key by the client[33]. If a checksum can not be
computed because the key to be used is not available, no checksum will
be included.

6. Encryption and Checksum Specifications

This section is undergoing major revision to include rijndael support based
on the Internet Draft by Ken Raeburn
(draft-raeburn-krb-rijndael-krb-00.txt). The discussions of 3DES are also
undergoing revision. Please see http://www.isi.edu/people/bcn/krb-revisions
for the latest versions of this section when it becomes available.

7. Naming Constraints

7.1. Realm Names

Although realm names are encoded as GeneralStrings and although a realm can
technically select any name it chooses, interoperability across realm
boundaries requires agreement on how realm names are to be assigned, and
what information they imply.

To enforce these conventions, each realm must conform to the conventions
itself, and it must require that any realms with which inter-realm keys are
shared also conform to the conventions and require the same from its
neighbors.
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Kerberos realm names are case sensitive. Realm names that differ only in the
case of the characters are not equivalent. There are presently four styles
of realm names: domain, X500, other, and reserved. Examples of each style
follow:

domain: ATHENA.MIT.EDU (example)
X500: C=US/O=OSF (example)
other: NAMETYPE:rest/of.name=without-restrictions (example)

reserved: reserved, but will not conflict with above

Domain names must look like domain names: they consist of components
separated by periods (.) and they contain neither colons (:) nor slashes
(/). Though domain names themselves are case insensitive, in order for
realms to match, the case must match as well. When establishing a new realm
name based on an internet domain name it is recommended by convention that
the characters be converted to upper case.

X.500 names contain an equal (=) and cannot contain a colon (:) before the
equal. The realm names for X.500 names will be string representations of the
names with components separated by slashes. Leading and trailing slashes
will not be included. Note that the slash separator is consistent with
Kerberos implementations based on RFC1510, but it is different from the
separator recommended in RFC2253.

Names that fall into the other category must begin with a prefix that
contains no equal (=) or period (.) and the prefix must be followed by a
colon (:) and the rest of the name. All prefixes must be assigned before
they may be used. Presently none are assigned.

The reserved category includes strings which do not fall into the first
three categories. All names in this category are reserved. It is unlikely
that names will be assigned to this category unless there is a very strong
argument for not using the 'other' category.

These rules guarantee that there will be no conflicts between the various
name styles. The following additional constraints apply to the assignment of
realm names in the domain and X.500 categories: the name of a realm for the
domain or X.500 formats must either be used by the organization owning (to
whom it was assigned) an Internet domain name or X.500 name, or in the case
that no such names are registered, authority to use a realm name may be
derived from the authority of the parent realm. For example, if there is no
domain name for E40.MIT.EDU, then the administrator of the MIT.EDU realm can
authorize the creation of a realm with that name.

This is acceptable because the organization to which the parent is assigned
is presumably the organization authorized to assign names to its children in
the X.500 and domain name systems as well. If the parent assigns a realm
name without also registering it in the domain name or X.500 hierarchy, it
is the parent's responsibility to make sure that there will not in the
future exist a name identical to the realm name of the child unless it is
assigned to the same entity as the realm name.

7.2. Principal Names

As was the case for realm names, conventions are needed to ensure that all
agree on what information is implied by a principal name. The name-type
field that is part of the principal name indicates the kind of information
implied by the name. The name-type should be treated as a hint. Ignoring the
name type, no two names can be the same (i.e. at least one of the
components, or the realm, must be different). The following name types are
defined:
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name-type value meaning

NT-UNKNOWN 0 Name type not known
NT-PRINCIPAL 1 General principal name (e.g. username, or DCE

principal)
NT-SRV-INST 2 Service and other unique instance (krbtgt)
NT-SRV-HST 3 Service with host name as instance (telnet,

rcommands)
NT-SRV-XHST 4 Service with slash-separated host name components
NT-UID 5 Unique ID
NT-X500-PRINCIPAL 6 Encoded X.509 Distingished name [RFC 1779]
NT-SMTP-NAME 7 Name in form of SMTP email name (e.g. user@foo.com)

When a name implies no information other than its uniqueness at a particular
time the name type PRINCIPAL should be used. The principal name type should
be used for users, and it might also be used for a unique server. If the
name is a unique machine generated ID that is guaranteed never to be
reassigned then the name type of UID should be used (note that it is
generally a bad idea to reassign names of any type since stale entries might
remain in access control lists).

If the first component of a name identifies a service and the remaining
components identify an instance of the service in a server specified manner,
then the name type of SRV-INST should be used. An example of this name type
is the Kerberos ticket-granting service whose name has a first component of
krbtgt and a second component identifying the realm for which the ticket is
valid.

If instance is a single component following the service name and the
instance identifies the host on which the server is running, then the name
type SRV-HST should be used. This type is typically used for Internet
services such as telnet and the Berkeley R commands. If the separate
components of the host name appear as successive components following the
name of the service, then the name type SRV-XHST should be used. This type
might be used to identify servers on hosts with X.500 names where the slash
(/) might otherwise be ambiguous.

A name type of NT-X500-PRINCIPAL should be used when a name from an X.509
certificate is translated into a Kerberos name. The encoding of the X.509
name as a Kerberos principal shall conform to the encoding rules specified
in RFC 2253.

A name type of SMTP allows a name to be of a form that resembles a SMTP
email name. This name, including an "@" and a domain name, is used as the
one component of the principal name. This name type can be used in
conjunction with name-canonicalization to allow a free-form of email address
to be specified as a client name and allow the KDC to determine the Kerberos
principal name for the requested name. [JBrezak, Raeburn]

A name type of UNKNOWN should be used when the form of the name is not
known. When comparing names, a name of type UNKNOWN will match principals
authenticated with names of any type. A principal authenticated with a name
of type UNKNOWN, however, will only match other names of type UNKNOWN.

Names of any type with an initial component of 'krbtgt' are reserved for the
Kerberos ticket granting service. See section 8.2.3 for the form of such
names.

7.2.1. Name of server principals

The principal identifier for a server on a host will generally be composed



PKT-SP-SEC-I07-021127 PacketCableTM 1.x Specifications 

288 CableLabs  11/27/02 

of two parts: (1) the realm of the KDC with which the server is registered,
and (2) a two-component name of type NT-SRV-HST if the host name is an
Internet domain name or a multi-component name of type NT-SRV-XHST if the
name of the host is of a form such as X.500 that allows slash (/)
separators. The first component of the two- or multi-component name will
identify the service and the latter components will identify the host. Where
the name of the host is not case sensitive (for example, with Internet
domain names) the name of the host must be lower case. If specified by the
application protocol for services such as telnet and the Berkeley R commands
which run with system privileges, the first component may be the string
'host' instead of a service specific identifier. When a host has an official
name and one or more aliases and the official name can be reliably
determined, the official name of the host should be used when constructing
the name of the server principal.

8. Constants and other defined values

8.1. Host address types

All negative values for the host address type are reserved for local use.
All non-negative values are reserved for officially assigned type fields and
interpretations.

The values of the types for the following addresses are chosen to match the
defined address family constants in the Berkeley Standard Distributions of
Unix. They can be found in with symbolic names AF_xxx (where xxx is an
abbreviation of the address family name).

Internet (IPv4) Addresses

Internet (IPv4) addresses are 32-bit (4-octet) quantities, encoded in MSB
order. The IPv4 loopback address should not appear in a Kerberos packet. The
type of IPv4 addresses is two (2).

Internet (IPv6) Addresses [Westerlund]

IPv6 addresses are 128-bit (16-octet) quantities, encoded in MSB order. The
type of IPv6 addresses is twenty-four (24). [RFC1883] [RFC1884]. The
following addresses (see [RFC1884]) MUST not appear in any Kerberos packet:

* the Unspecified Address
* the Loopback Address
* Link-Local addresses

IPv4-mapped IPv6 addresses MUST be represented as addresses of type 2.

CHAOSnet addresses

CHAOSnet addresses are 16-bit (2-octet) quantities, encoded in MSB order.
The type of CHAOSnet addresses is five (5).

ISO addresses

ISO addresses are variable-length. The type of ISO addresses is seven (7).

Xerox Network Services (XNS) addresses

XNS addresses are 48-bit (6-octet) quantities, encoded in MSB order. The
type of XNS addresses is six (6).

AppleTalk Datagram Delivery Protocol (DDP) addresses
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AppleTalk DDP addresses consist of an 8-bit node number and a 16-bit network
number. The first octet of the address is the node number; the remaining two
octets encode the network number in MSB order. The type of AppleTalk DDP
addresses is sixteen (16).

DECnet Phase IV addresses

DECnet Phase IV addresses are 16-bit addresses, encoded in LSB order. The
type of DECnet Phase IV addresses is twelve (12).

Netbios addresses

Netbios addresses are 16-octet addresses typically composed of 1 to 15
characters, trailing blank (ascii char 20) filled, with a 16th octet of 0x0.
The type of Netbios addresses is 20 (0x14).

8.2. KDC messages

8.2.1. UDP/IP transport

When contacting a Kerberos server (KDC) for a KRB_KDC_REQ request using UDP
IP transport, the client shall send a UDP datagram containing only an
encoding of the request to port 88 (decimal) at the KDC's IP address; the
KDC will respond with a reply datagram containing only an encoding of the
reply message (either a KRB_ERROR or a KRB_KDC_REP) to the sending port at
the sender's IP address. Kerberos servers supporting IP transport must
accept UDP requests on port 88 (decimal). The response to a request made
through UDP/IP transport must also use UDP/IP transport.

8.2.2. TCP/IP transport [Westerlund,Danielsson]

Kerberos servers (KDC's) should accept TCP requests on port 88 (decimal) and
clients should support the sending of TCP requests on port 88 (decimal).
When the KRB_KDC_REQ message is sent to the KDC over a TCP stream, a new
connection will be established for each authentication exchange (request and
response). The KRB_KDC_REP or KRB_ERROR message will be returned to the
client on the same TCP stream that was established for the request. The
response to a request made through TCP/IP transport must also use TCP/IP
transport. Implementors should note that some extensions to the Kerberos
protocol will not work if any implementation not supporting the TCP
transport is involved (client or KDC). Implementors are strongly urged to
support the TCP transport on both the client and server and are advised that
the current notation of "should" support will likely change in the future to
must support. The KDC may close the TCP stream after sending a response, but
may leave the stream open if it expects a followup - in which case it may
close the stream at any time if resource constraints or other factors make
it desirable to do so. Care must be taken in managing TCP/IP connections
with the KDC to prevent denial of service attacks based on the number of
TCP/IP connections with the KDC that remain open. If multiple exchanges with
the KDC are needed for certain forms of preauthentication, multiple TCP
connections may be required. A client may close the stream after receiving
response, and should close the stream if it does not expect to send followup
messages. The client must be prepared to have the stream closed by the KDC
at anytime, in which case it must simply connect again when it is ready to
send subsequent messages.

The first four octets of the TCP stream used to transmit the request
will encode in network byte order the length of the request (KRB_KDC_REQ),
and the length will be followed by the request itself. The response will
similarly be preceded by a 4 octet encoding in network byte order of the
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length of the KRB_KDC_REP or the KRB_ERROR message and will be followed by
the KRB_KDC_REP or the KRB_ERROR response. If the sign bit is set on the
integer represented by the first 4 octets, then the next 4 octets will be
read, extending the length of the field by another 4 octets (less the sign
bit of the additional four octets which is reserved for future expansion and
which at present must be zero).

8.2.3. OSI transport

During authentication of an OSI client to an OSI server, the mutual
authentication of an OSI server to an OSI client, the transfer of
credentials from an OSI client to an OSI server, or during exchange of
private or integrity checked messages, Kerberos protocol messages may be
treated as opaque objects and the type of the authentication mechanism will
be:

OBJECT IDENTIFIER ::= {iso (1), org(3), dod(6),internet(1),
security(5),kerberosv5(2)}

Depending on the situation, the opaque object will be an authentication
header (KRB_AP_REQ), an authentication reply (KRB_AP_REP), a safe message
(KRB_SAFE), a private message (KRB_PRIV), or a credentials message
(KRB_CRED). The opaque data contains an application code as specified in the
ASN.1 description for each message. The application code may be used by
Kerberos to determine the message type.

8.2.3. Name of the TGS

The principal identifier of the ticket-granting service shall be composed of
three parts: (1) the realm of the KDC issuing the TGS ticket (2) a two-part
name of type NT-SRV-INST, with the first part "krbtgt" and the second part
the name of the realm which will accept the ticket-granting ticket. For
example, a ticket-granting ticket issued by the ATHENA.MIT.EDU realm to be
used to get tickets from the ATHENA.MIT.EDU KDC has a principal identifier
of "ATHENA.MIT.EDU" (realm), ("krbtgt", "ATHENA.MIT.EDU") (name). A
ticket-granting ticket issued by the ATHENA.MIT.EDU realm to be used to get
tickets from the MIT.EDU realm has a principal identifier of
"ATHENA.MIT.EDU" (realm), ("krbtgt", "MIT.EDU") (name).

8.3. Protocol constants and associated values

The following tables list constants used in the protocol and define their
meanings. Ranges are specified in the "specification" section that limit the
values of constants for which values are defined here. This allows
implementations to make assumptions about the maximum values that will be
received for these constants. Implementation receiving values outside the
range specified in the "specification" section may reject the request, but
they must recover cleanly.

Encryption type etype value block size minimum pad size confounder
size
NULL 0 1 0 0
des-cbc-crc 1 8 4 8
des-cbc-md4 2 8 0 8
des-cbc-md5 3 8 0 8
[reserved] 4
des3-cbc-md5 5 8 0 8
[reserved] 6
des3-cbc-sha1 7 8 0 8
dsaWithSHA1-CmsOID 9 (pkinit)
md5WithRSAEncryption-CmsOID 10 (pkinit)
sha1WithRSAEncryption-CmsOID 11 (pkinit)
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rc2CBC-EnvOID 12 (pkinit)
rsaEncryption-EnvOID 13 (pkinit from PKCS#1
v1.5)
rsaES-OAEP-ENV-OID 14 (pkinit from PKCS#1
v2.0)
des-ede3-cbc-Env-OID 15 (pkinit)
des3-cbc-sha1-kd 16 (Tom Yu)
rc4-hmac 23 (swift)
rc4-hmac-exp 24 (swift)
subkey-keynaterial 65 (opaque
mhur)

[reserved] 0x8003

Checksum type sumtype value checksum size
CRC32 1 4
rsa-md4 2 16
rsa-md4-des 3 24
des-mac 4 16
des-mac-k 5 8
rsa-md4-des-k 6 16 (drop rsa ?)
rsa-md5 7 16 (drop rsa ?)
rsa-md5-des 8 24 (drop rsa ?)
rsa-md5-des3 9 24 (drop rsa ?)
hmac-sha1-des3-kd 12 20
hmac-sha1-des3 13 20
sha1 (unkeyed) 14 20

padata and data types padata-type value comment

PA-TGS-REQ 1
PA-ENC-TIMESTAMP 2
PA-PW-SALT 3
[reserved] 4
PA-ENC-UNIX-TIME 5 (depricated)
PA-SANDIA-SECUREID 6
PA-SESAME 7
PA-OSF-DCE 8
PA-CYBERSAFE-SECUREID 9
PA-AFS3-SALT 10
PA-ETYPE-INFO 11
PA-SAM-CHALLENGE 12 (sam/otp)
PA-SAM-RESPONSE 13 (sam/otp)
PA-PK-AS-REQ 14 (pkinit)
PA-PK-AS-REP 15 (pkinit)
PA-USE-SPECIFIED-KVNO 20
PA-SAM-REDIRECT 21 (sam/otp)
PA-GET-FROM-TYPED-DATA 22 (embedded in typed data)
TD-PADATA 22 (embeds padata)
PA-SAM-ETYPE-INFO 23 (sam/otp)
TD-PKINIT-CMS-CERTIFICATES 101 CertificateSet from CMS
TD-KRB-PRINCIPAL 102 PrincipalName (see Sec.5.9.1)
TD-KRB-REALM 103 Realm (see Sec.5.9.1)
TD-TRUSTED-CERTIFIERS 104 from PKINIT
TD-CERTIFICATE-INDEX 105 from PKINIT
TD-APP-DEFINED-ERROR 106 application specific (see
Sec.5.9.1)
TD-REQ-NONCE 107 INTEGER (see Sec.5.9.1)
TD-REQ-SEQ 108 INTEGER (see Sec.5.9.1)

authorization data type ad-type value
AD-IF-RELEVANT 1



PKT-SP-SEC-I07-021127 PacketCableTM 1.x Specifications 

292 CableLabs  11/27/02 

AD-INTENDED-FOR-SERVER 2
AD-INTENDED-FOR-APPLICATION-CLASS 3
AD-KDC-ISSUED 4
AD-OR 5
AD-MANDATORY-TICKET-EXTENSIONS 6
AD-IN-TICKET-EXTENSIONS 7
reserved values 8-63
OSF-DCE 64
SESAME 65
AD-OSF-DCE-PKI-CERTID 66 (hemsath@us.ibm.com)
AD-WIN200-PAC 128
(jbrezak@exchange.microsoft.com)

Ticket Extension Types

TE-TYPE-NULL 0 Null ticket extension
TE-TYPE-EXTERNAL-ADATA 1 Integrity protected authorization data
[reserved] 2 TE-TYPE-PKCROSS-KDC (I have
reservations)
TE-TYPE-PKCROSS-CLIENT 3 PKCROSS cross realm key ticket
TE-TYPE-CYBERSAFE-EXT 4 Assigned to CyberSafe Corp
[reserved] 5 TE-TYPE-DEST-HOST (I have reservations)

alternate authentication type method-type value
reserved values 0-63
ATT-CHALLENGE-RESPONSE 64

transited encoding type tr-type value
DOMAIN-X500-COMPRESS 1
reserved values all others

Label Value Meaning or MIT code

pvno 5 current Kerberos protocol version number

message types

KRB_AS_REQ 10 Request for initial authentication
KRB_AS_REP 11 Response to KRB_AS_REQ request
KRB_TGS_REQ 12 Request for authentication based on TGT
KRB_TGS_REP 13 Response to KRB_TGS_REQ request
KRB_AP_REQ 14 application request to server
KRB_AP_REP 15 Response to KRB_AP_REQ_MUTUAL
KRB_SAFE 20 Safe (checksummed) application message
KRB_PRIV 21 Private (encrypted) application message
KRB_CRED 22 Private (encrypted) message to forward
credentials
KRB_ERROR 30 Error response

name types

KRB_NT_UNKNOWN 0 Name type not known
KRB_NT_PRINCIPAL 1 Just the name of the principal as in DCE, or for
users
KRB_NT_SRV_INST 2 Service and other unique instance (krbtgt)
KRB_NT_SRV_HST 3 Service with host name as instance (telnet,
rcommands)
KRB_NT_SRV_XHST 4 Service with host as remaining components
KRB_NT_UID 5 Unique ID
KRB_NT_X500_PRINCIPAL 6 Encoded X.509 Distingished name [RFC 2253]
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error codes

KDC_ERR_NONE 0 No error
KDC_ERR_NAME_EXP 1 Client's entry in database has expired
KDC_ERR_SERVICE_EXP 2 Server's entry in database has expired
KDC_ERR_BAD_PVNO 3 Requested protocol version number not
supported
KDC_ERR_C_OLD_MAST_KVNO 4 Client's key encrypted in old master key
KDC_ERR_S_OLD_MAST_KVNO 5 Server's key encrypted in old master key
KDC_ERR_C_PRINCIPAL_UNKNOWN 6 Client not found in Kerberos database
KDC_ERR_S_PRINCIPAL_UNKNOWN 7 Server not found in Kerberos database
KDC_ERR_PRINCIPAL_NOT_UNIQUE 8 Multiple principal entries in database
KDC_ERR_NULL_KEY 9 The client or server has a null key
KDC_ERR_CANNOT_POSTDATE 10 Ticket not eligible for postdating
KDC_ERR_NEVER_VALID 11 Requested start time is later than end
time
KDC_ERR_POLICY 12 KDC policy rejects request
KDC_ERR_BADOPTION 13 KDC cannot accommodate requested option
KDC_ERR_ETYPE_NOSUPP 14 KDC has no support for encryption type
KDC_ERR_SUMTYPE_NOSUPP 15 KDC has no support for checksum type
KDC_ERR_PADATA_TYPE_NOSUPP 16 KDC has no support for padata type
KDC_ERR_TRTYPE_NOSUPP 17 KDC has no support for transited type
KDC_ERR_CLIENT_REVOKED 18 Clients credentials have been revoked
KDC_ERR_SERVICE_REVOKED 19 Credentials for server have been revoked
KDC_ERR_TGT_REVOKED 20 TGT has been revoked
KDC_ERR_CLIENT_NOTYET 21 Client not yet valid - try again later
KDC_ERR_SERVICE_NOTYET 22 Server not yet valid - try again later
KDC_ERR_KEY_EXPIRED 23 Password has expired - change password
to reset
KDC_ERR_PREAUTH_FAILED 24 Pre-authentication information was
invalid
KDC_ERR_PREAUTH_REQUIRED 25 Additional pre-authenticationrequired
[40]
KDC_ERR_SERVER_NOMATCH 26 Requested server and ticket don't match
KDC_ERR_MUST_USE_USER2USER 27 Server principal valid for user2user
only
KDC_ERR_PATH_NOT_ACCPETED 28 KDC Policy rejects transited path
KDC_ERR_SVC_UNAVAILABLE 29 A service is not available
KRB_AP_ERR_BAD_INTEGRITY 31 Integrity check on decrypted field
failed
KRB_AP_ERR_TKT_EXPIRED 32 Ticket expired
KRB_AP_ERR_TKT_NYV 33 Ticket not yet valid
KRB_AP_ERR_REPEAT 34 Request is a replay
KRB_AP_ERR_NOT_US 35 The ticket isn't for us
KRB_AP_ERR_BADMATCH 36 Ticket and authenticator don't match
KRB_AP_ERR_SKEW 37 Clock skew too great
KRB_AP_ERR_BADADDR 38 Incorrect net address
KRB_AP_ERR_BADVERSION 39 Protocol version mismatch
KRB_AP_ERR_MSG_TYPE 40 Invalid msg type
KRB_AP_ERR_MODIFIED 41 Message stream modified
KRB_AP_ERR_BADORDER 42 Message out of order
KRB_AP_ERR_BADKEYVER 44 Specified version of key is not
available
KRB_AP_ERR_NOKEY 45 Service key not available
KRB_AP_ERR_MUT_FAIL 46 Mutual authentication failed
KRB_AP_ERR_BADDIRECTION 47 Incorrect message direction
KRB_AP_ERR_METHOD 48 Alternative authentication method
required
KRB_AP_ERR_BADSEQ 49 Incorrect sequence number in message
KRB_AP_ERR_INAPP_CKSUM 50 Inappropriate type of checksum in
message
KRB_AP_PATH_NOT_ACCEPTED 51 Policy rejects transited path
KRB_ERR_RESPONSE_TOO_BIG 52 Response too big for UDP, retry with TCP
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KRB_ERR_GENERIC 60 Generic error (description in e-text)
KRB_ERR_FIELD_TOOLONG 61 Field is too long for this
implementation
KDC_ERROR_CLIENT_NOT_TRUSTED 62 (pkinit)
KDC_ERROR_KDC_NOT_TRUSTED 63 (pkinit)

KDC_ERROR_INVALID_SIG 64 (pkinit)
KDC_ERR_KEY_TOO_WEAK 65 (pkinit)
KDC_ERR_CERTIFICATE_MISMATCH 66 (pkinit)
KRB_AP_ERR_NO_TGT 67 (user-to-user)
KDC_ERR_WRONG_REALM 68 (user-to-user)
KRB_AP_ERR_USER_TO_USER_REQUIRED 69 (user-to-user)
KDC_ERR_CANT_VERIFY_CERTIFICATE 70 (pkinit)
KDC_ERR_INVALID_CERTIFICATE 71 (pkinit)
KDC_ERR_REVOKED_CERTIFICATE 72 (pkinit)
KDC_ERR_REVOCATION_STATUS_UNKNOWN 73 (pkinit)
KDC_ERR_REVOCATION_STATUS_UNAVAILABLE 74 (pkinit)
KDC_ERR_CLIENT_NAME_MISMATCH 75 (pkinit)
KDC_ERR_KDC_NAME_MISMATCH 76 (pkinit)

9. Interoperability requirements

Version 5 of the Kerberos protocol supports a myriad of options. Among these
are multiple encryption and checksum types, alternative encoding schemes for
the transited field, optional mechanisms for pre-authentication, the
handling of tickets with no addresses, options for mutual authentication,
user to user authentication, support for proxies, forwarding, postdating,
and renewing tickets, the format of realm names, and the handling of
authorization data.

In order to ensure the interoperability of realms, it is necessary to define
a minimal configuration which must be supported by all implementations. This
minimal configuration is subject to change as technology does. For example,
if at some later date it is discovered that one of the required encryption
or checksum algorithms is not secure, it will be replaced.

9.1. Specification 2

This section defines the second specification of these options.
Implementations which are configured in this way can be said to support
Kerberos Version 5 Specification 2 (5.1). Specification 1 (deprecated) may
be found in RFC1510.

Transport

TCP/IP and UDP/IP transport must be supported by KDCs claiming conformance
to specification 2. Kerberos clients claiming conformance to specification 2
must support UDP/IP transport for messages with the KDC and should support
TCP/IP transport.

Encryption and checksum methods

The following encryption and checksum mechanisms must be supported.
Implementations may support other mechanisms as well, but the additional
mechanisms may only be used when communicating with principals known to also
support them: This list is to be determined.

Encryption: DES-CBC-MD5, DES3-CBC-SHA1-KD, RIJNDAEL(decide identifier)
Checksums: CRC-32, DES-MAC, DES-MAC-K, DES-MD5, HMAC-SHA1-DES3-KD

Realm Names



PKT-SP-SEC-I07-021127 PacketCableTM 1.x Specifications 1.x 

11/27/02 CableLabs  295 

All implementations must understand hierarchical realms in both the Internet
Domain and the X.500 style. When a ticket granting ticket for an unknown
realm is requested, the KDC must be able to determine the names of the
intermediate realms between the KDCs realm and the requested realm.

Transited field encoding

DOMAIN-X500-COMPRESS (described in section 3.3.3.2) must be supported.
Alternative encodings may be supported, but they may be used only when that
encoding is supported by ALL intermediate realms.

Pre-authentication methods

The TGS-REQ method must be supported. The TGS-REQ method is not used on the
initial request. The PA-ENC-TIMESTAMP method must be supported by clients
but whether it is enabled by default may be determined on a realm by realm
basis. If not used in the initial request and the error
KDC_ERR_PREAUTH_REQUIRED is returned specifying PA-ENC-TIMESTAMP as an
acceptable method, the client should retry the initial request using the
PA-ENC-TIMESTAMP preauthentication method. Servers need not support the
PA-ENC-TIMESTAMP method, but if not supported the server should ignore the
presence of PA-ENC-TIMESTAMP pre-authentication in a request.

Mutual authentication

Mutual authentication (via the KRB_AP_REP message) must be supported.

Ticket addresses and flags

All KDC's must pass through tickets that carry no addresses (i.e. if a TGT
contains no addresses, the KDC will return derivative tickets), but each
realm may set its own policy for issuing such tickets, and each application
server will set its own policy with respect to accepting them.

Proxies and forwarded tickets must be supported. Individual realms and
application servers can set their own policy on when such tickets will be
accepted.

All implementations must recognize renewable and postdated tickets, but need
not actually implement them. If these options are not supported, the
starttime and endtime in the ticket shall specify a ticket's entire useful
life. When a postdated ticket is decoded by a server, all implementations
shall make the presence of the postdated flag visible to the calling server.

User-to-user authentication

Support for user to user authentication (via the ENC-TKT-IN-SKEY KDC option)
must be provided by implementations, but individual realms may decide as a
matter of policy to reject such requests on a per-principal or realm-wide
basis.

Authorization data

Implementations must pass all authorization data subfields from
ticket-granting tickets to any derivative tickets unless directed to
suppress a subfield as part of the definition of that registered subfield
type (it is never incorrect to pass on a subfield, and no registered
subfield types presently specify suppression at the KDC).

Implementations must make the contents of any authorization data subfields
available to the server when a ticket is used. Implementations are not
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required to allow clients to specify the contents of the authorization data
fields.

Constant ranges

All protocol constants are constrained to 32 bit (signed) values unless
further constrained by the protocol definition. This limit is provided to
allow implementations to make assumptions about the maximum values that will
be received for these constants. Implementation receiving values outside
this range may reject the request, but they must recover cleanly.

9.2. Recommended KDC values

Following is a list of recommended values for a KDC implementation, based on
the list of suggested configuration constants (see section 4.4).

minimum lifetime 5 minutes
maximum renewable lifetime 1 week
maximum ticket lifetime 1 day
empty addresses only when suitable restrictions appear

in authorization data
proxiable, etc. Allowed.

10. REFERENCES

[NT94] B. Clifford Neuman and Theodore Y. Ts'o, "An Authenti-
cation Service for Computer Networks," IEEE Communica-
tions Magazine, Vol. 32(9), pp. 33-38 (September 1994).

[MNSS87] S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H.
Saltzer, Section E.2.1: Kerberos Authentication and
Authorization System, M.I.T. Project Athena, Cambridge,
Massachusetts (December 21, 1987).

[SNS88] J. G. Steiner, B. C. Neuman, and J. I. Schiller, "Ker-
beros: An Authentication Service for Open Network Sys-
tems," pp. 191-202 in Usenix Conference Proceedings,
Dallas, Texas (February, 1988).

[NS78] Roger M. Needham and Michael D. Schroeder, "Using
Encryption for Authentication in Large Networks of Com-
puters," Communications of the ACM, Vol. 21(12),
pp. 993-999 (December, 1978).

[DS81] Dorothy E. Denning and Giovanni Maria Sacco, "Time-
stamps in Key Distribution Protocols," Communications
of the ACM, Vol. 24(8), pp. 533-536 (August 1981).

[KNT92] John T. Kohl, B. Clifford Neuman, and Theodore Y. Ts'o,
"The Evolution of the Kerberos Authentication Service,"
in an IEEE Computer Society Text soon to be published
(June 1992).

[Neu93] B. Clifford Neuman, "Proxy-Based Authorization and
Accounting for Distributed Systems," in Proceedings of
the 13th International Conference on Distributed Com-
puting Systems, Pittsburgh, PA (May, 1993).

[DS90] Don Davis and Ralph Swick, "Workstation Services and
Kerberos Authentication at Project Athena," Technical
Memorandum TM-424, MIT Laboratory for Computer Science
(February 1990).



PKT-SP-SEC-I07-021127 PacketCableTM 1.x Specifications 1.x 

11/27/02 CableLabs  297 

[LGDSR87] P. J. Levine, M. R. Gretzinger, J. M. Diaz, W. E. Som-
merfeld, and K. Raeburn, Section E.1: Service Manage-
ment System, M.I.T. Project Athena, Cambridge, Mas-
sachusetts (1987).

[X509-88] CCITT, Recommendation X.509: The Directory Authentica-
tion Framework, December 1988.

[Pat92]. J. Pato, Using Pre-Authentication to Avoid Password
Guessing Attacks, Open Software Foundation DCE Request
for Comments 26 (December 1992).

[DES77] National Bureau of Standards, U.S. Department of Com-
merce, "Data Encryption Standard," Federal Information
Processing Standards Publication 46, Washington, DC
(1977).

[DESM80] National Bureau of Standards, U.S. Department of Com-
merce, "DES Modes of Operation," Federal Information
Processing Standards Publication 81, Springfield, VA
(December 1980).

[SG92] Stuart G. Stubblebine and Virgil D. Gligor, "On Message
Integrity in Cryptographic Protocols," in Proceedings
of the IEEE Symposium on Research in Security and
Privacy, Oakland, California (May 1992).

[IS3309] International Organization for Standardization, "ISO
Information Processing Systems - Data Communication -
High-Level Data Link Control Procedure - Frame Struc-
ture," IS 3309 (October 1984). 3rd Edition.

[MD4-92] R. Rivest, "The MD4 Message Digest Algorithm," RFC
1320, MIT Laboratory for Computer Science (April
1992).

[MD5-92] R. Rivest, "The MD5 Message Digest Algorithm," RFC
1321, MIT Laboratory for Computer Science (April
1992).

[KBC96] H. Krawczyk, M. Bellare, and R. Canetti, "HMAC: Keyed-
Hashing for Message Authentication," Working Draft
draft-ietf-ipsec-hmac-md5-01.txt, (August 1996).

[Horowitz96] Horowitz, M., "Key Derivation for Authentication,
Integrity, and Privacy", draft-horowitz-key-derivation-02.txt,
August 1998.

[HorowitzB96] Horowitz, M., "Key Derivation for Kerberos V5", draft-
horowitz-kerb-key-derivation-01.txt, September 1998.

[Krawczyk96] Krawczyk, H., Bellare, and M., Canetti, R., "HMAC:
Keyed-Hashing for Message Authentication", =

draft-ietf-ipsec-hmac-
md5-01.txt, August, 1996.

A. Pseudo-code for protocol processing

This appendix provides pseudo-code describing how the messages are to be
constructed and interpreted by clients and servers.
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A.1. KRB_AS_REQ generation

request.pvno :=3D protocol version; /* pvno =3D 5 */
request.msg-type :=3D message type; /* type =3D KRB_AS_REQ */

if(pa_enc_timestamp_required) then
request.padata.padata-type =3D PA-ENC-TIMESTAMP;
get system_time;
padata-body.patimestamp,pausec =3D system_time;
encrypt padata-body into request.padata.padata-value

using client.key; /* derived from password */
endif

body.kdc-options :=3D users's preferences;
body.cname :=3D user's name;
body.realm :=3D user's realm;
body.sname :=3D service's name; /* usually "krbtgt", =

"localrealm" */
if (body.kdc-options.POSTDATED is set) then

body.from :=3D requested starting time;
else

omit body.from;
endif
body.till :=3D requested end time;
if (body.kdc-options.RENEWABLE is set) then

body.rtime :=3D requested final renewal time;
endif
body.nonce :=3D random_nonce();
body.etype :=3D requested etypes;
if (user supplied addresses) then

body.addresses :=3D user's addresses;
else

omit body.addresses;
endif
omit body.enc-authorization-data;
request.req-body :=3D body;

kerberos :=3D lookup(name of local kerberos server (or =
servers));

send(packet,kerberos);

wait(for response);
if (timed_out) then

retry or use alternate server;
endif

A.2. KRB_AS_REQ verification and KRB_AS_REP generation

decode message into req;

client :=3D lookup(req.cname,req.realm);
server :=3D lookup(req.sname,req.realm);

get system_time;
kdc_time :=3D system_time.seconds;

if (!client) then
/* no client in Database */
error_out(KDC_ERR_C_PRINCIPAL_UNKNOWN);

endif
if (!server) then



PKT-SP-SEC-I07-021127 PacketCableTM 1.x Specifications 1.x 

11/27/02 CableLabs  299 

/* no server in Database */
error_out(KDC_ERR_S_PRINCIPAL_UNKNOWN);

endif

if(client.pa_enc_timestamp_required and
pa_enc_timestamp not present) then

error_out(KDC_ERR_PREAUTH_REQUIRED(PA_ENC_TIMESTAMP));
endif

if(pa_enc_timestamp present) then
decrypt req.padata-value into decrypted_enc_timestamp

using client.key;
using auth_hdr.authenticator.subkey;

if (decrypt_error()) then
error_out(KRB_AP_ERR_BAD_INTEGRITY);

if(decrypted_enc_timestamp is not within allowable skew) =
then

error_out(KDC_ERR_PREAUTH_FAILED);
endif
if(decrypted_enc_timestamp and usec is replay)

error_out(KDC_ERR_PREAUTH_FAILED);
endif
add decrypted_enc_timestamp and usec to replay cache;

endif

use_etype :=3D first supported etype in req.etypes;

if (no support for req.etypes) then
error_out(KDC_ERR_ETYPE_NOSUPP);

endif

new_tkt.vno :=3D ticket version; /* =3D 5 */
new_tkt.sname :=3D req.sname;
new_tkt.srealm :=3D req.srealm;
reset all flags in new_tkt.flags;

/* It should be noted that local policy may affect the */
/* processing of any of these flags. For example, some */
/* realms may refuse to issue renewable tickets */

if (req.kdc-options.FORWARDABLE is set) then
set new_tkt.flags.FORWARDABLE;

endif
if (req.kdc-options.PROXIABLE is set) then

set new_tkt.flags.PROXIABLE;
endif

if (req.kdc-options.ALLOW-POSTDATE is set) then
set new_tkt.flags.MAY-POSTDATE;

endif

if ((req.kdc-options.RENEW is set) or
(req.kdc-options.VALIDATE is set) or
(req.kdc-options.PROXY is set) or
(req.kdc-options.FORWARDED is set) or
(req.kdc-options.ENC-TKT-IN-SKEY is set)) then

error_out(KDC_ERR_BADOPTION);
endif

new_tkt.session :=3D random_session_key();
new_tkt.cname :=3D req.cname;
new_tkt.crealm :=3D req.crealm;
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new_tkt.transited :=3D empty_transited_field();

new_tkt.authtime :=3D kdc_time;

if (req.kdc-options.POSTDATED is set) then
if (against_postdate_policy(req.from)) then

error_out(KDC_ERR_POLICY);
endif
set new_tkt.flags.POSTDATED;
set new_tkt.flags.INVALID;
new_tkt.starttime :=3D req.from;

else
omit new_tkt.starttime; /* treated as authtime when omitted =

*/
endif
if (req.till =3D 0) then

till :=3D infinity;
else

till :=3D req.till;
endif

new_tkt.endtime :=3D min(till,
new_tkt.starttime+client.max_life,
new_tkt.starttime+server.max_life,
new_tkt.starttime+max_life_for_realm);

if ((req.kdc-options.RENEWABLE-OK is set) and
(new_tkt.endtime < req.till)) then

/* we set the RENEWABLE option for later processing */
set req.kdc-options.RENEWABLE;
req.rtime :=3D req.till;

endif

if (req.rtime =3D 0) then
rtime :=3D infinity;

else
rtime :=3D req.rtime;

endif

if (req.kdc-options.RENEWABLE is set) then
set new_tkt.flags.RENEWABLE;
new_tkt.renew-till :=3D min(rtime,

new_tkt.starttime+client.max_rlife,

new_tkt.starttime+server.max_rlife,

new_tkt.starttime+max_rlife_for_realm);

else
omit new_tkt.renew-till; /* only present if RENEWABLE */

endif

if (req.addresses) then
new_tkt.caddr :=3D req.addresses;

else
omit new_tkt.caddr;

endif

new_tkt.authorization_data :=3D empty_authorization_data();

encode to-be-encrypted part of ticket into OCTET STRING;
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new_tkt.enc-part :=3D encrypt OCTET STRING
using etype_for_key(server.key), server.key, =

server.p_kvno;

/* Start processing the response */

resp.pvno :=3D 5;
resp.msg-type :=3D KRB_AS_REP;
resp.cname :=3D req.cname;
resp.crealm :=3D req.realm;
resp.ticket :=3D new_tkt;

resp.key :=3D new_tkt.session;
resp.last-req :=3D fetch_last_request_info(client);
resp.nonce :=3D req.nonce;
resp.key-expiration :=3D client.expiration;
resp.flags :=3D new_tkt.flags;

resp.authtime :=3D new_tkt.authtime;
resp.starttime :=3D new_tkt.starttime;
resp.endtime :=3D new_tkt.endtime;

if (new_tkt.flags.RENEWABLE) then
resp.renew-till :=3D new_tkt.renew-till;

endif

resp.realm :=3D new_tkt.realm;
resp.sname :=3D new_tkt.sname;

resp.caddr :=3D new_tkt.caddr;

encode body of reply into OCTET STRING;

resp.enc-part :=3D encrypt OCTET STRING
using use_etype, client.key, client.p_kvno;

send(resp);

A.3. KRB_AS_REP verification

decode response into resp;

if (resp.msg-type =3D KRB_ERROR) then
if(error =3D KDC_ERR_PREAUTH_REQUIRED(PA_ENC_TIMESTAMP)) =

then
set pa_enc_timestamp_required;
goto KRB_AS_REQ;

endif
process_error(resp);
return;

endif

/* On error, discard the response, and zero the session key */
/* from the response immediately */

key =3D get_decryption_key(resp.enc-part.kvno, =
resp.enc-part.etype,

resp.padata);
unencrypted part of resp :=3D decode of decrypt of resp.enc-part

using resp.enc-part.etype and key;
zero(key);

if (common_as_rep_tgs_rep_checks fail) then
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destroy resp.key;
return error;

endif

if near(resp.princ_exp) then
print(warning message);

endif
save_for_later(ticket,session,client,server,times,flags);

A.4. KRB_AS_REP and KRB_TGS_REP common checks

if (decryption_error() or
(req.cname !=3D resp.cname) or
(req.realm !=3D resp.crealm) or
(req.sname !=3D resp.sname) or
(req.realm !=3D resp.realm) or
(req.nonce !=3D resp.nonce) or
(req.addresses !=3D resp.caddr)) then

destroy resp.key;
return KRB_AP_ERR_MODIFIED;

endif

/* make sure no flags are set that shouldn't be, and that all =
that */

/* should be are set =
*/

if (!check_flags_for_compatability(req.kdc-options,resp.flags)) =
then

destroy resp.key;
return KRB_AP_ERR_MODIFIED;

endif

if ((req.from =3D 0) and
(resp.starttime is not within allowable skew)) then

destroy resp.key;
return KRB_AP_ERR_SKEW;

endif
if ((req.from !=3D 0) and (req.from !=3D resp.starttime)) then

destroy resp.key;
return KRB_AP_ERR_MODIFIED;

endif
if ((req.till !=3D 0) and (resp.endtime > req.till)) then

destroy resp.key;
return KRB_AP_ERR_MODIFIED;

endif

if ((req.kdc-options.RENEWABLE is set) and
(req.rtime !=3D 0) and (resp.renew-till > req.rtime)) then

destroy resp.key;
return KRB_AP_ERR_MODIFIED;

endif
if ((req.kdc-options.RENEWABLE-OK is set) and

(resp.flags.RENEWABLE) and
(req.till !=3D 0) and
(resp.renew-till > req.till)) then

destroy resp.key;
return KRB_AP_ERR_MODIFIED;

endif

A.5. KRB_TGS_REQ generation

/* Note that make_application_request might have to recursivly =
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*/
/* call this routine to get the appropriate ticket-granting =

ticket */

request.pvno :=3D protocol version; /* pvno =3D 5 */
request.msg-type :=3D message type; /* type =3D KRB_TGS_REQ */

body.kdc-options :=3D users's preferences;
/* If the TGT is not for the realm of the end-server */
/* then the sname will be for a TGT for the end-realm */
/* and the realm of the requested ticket (body.realm) */
/* will be that of the TGS to which the TGT we are */
/* sending applies */
body.sname :=3D service's name;
body.realm :=3D service's realm;

if (body.kdc-options.POSTDATED is set) then
body.from :=3D requested starting time;

else
omit body.from;

endif
body.till :=3D requested end time;
if (body.kdc-options.RENEWABLE is set) then

body.rtime :=3D requested final renewal time;
endif

body.nonce :=3D random_nonce();
body.etype :=3D requested etypes;
if (user supplied addresses) then

body.addresses :=3D user's addresses;
else

omit body.addresses;
endif

body.enc-authorization-data :=3D user-supplied data;
if (body.kdc-options.ENC-TKT-IN-SKEY) then

body.additional-tickets_ticket :=3D second TGT;
endif

request.req-body :=3D body;
check :=3D generate_checksum (req.body,checksumtype);

request.padata[0].padata-type :=3D PA-TGS-REQ;
request.padata[0].padata-value :=3D create a KRB_AP_REQ using

the TGT and checksum

/* add in any other padata as required/supplied */

kerberos :=3D lookup(name of local kerberose server (or =
servers));

send(packet,kerberos);

wait(for response);
if (timed_out) then

retry or use alternate server;
endif

A.6. KRB_TGS_REQ verification and KRB_TGS_REP generation

/* note that reading the application request requires first
determining the server for which a ticket was issued, and =

choosing the
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correct key for decryption. The name of the server appears in =
the

plaintext part of the ticket. */

if (no KRB_AP_REQ in req.padata) then
error_out(KDC_ERR_PADATA_TYPE_NOSUPP);

endif
verify KRB_AP_REQ in req.padata;

/* Note that the realm in which the Kerberos server is operating =
is

determined by the instance from the ticket-granting ticket. The =
realm

in the ticket-granting ticket is the realm under which the =
ticket

granting ticket was issued. It is possible for a single =
Kerberos

server to support more than one realm. */

auth_hdr :=3D KRB_AP_REQ;
tgt :=3D auth_hdr.ticket;

if (tgt.sname is not a TGT for local realm and is not req.sname) =
then

error_out(KRB_AP_ERR_NOT_US);

realm :=3D realm_tgt_is_for(tgt);

decode remainder of request;

if (auth_hdr.authenticator.cksum is missing) then
error_out(KRB_AP_ERR_INAPP_CKSUM);

endif

if (auth_hdr.authenticator.cksum type is not supported) then
error_out(KDC_ERR_SUMTYPE_NOSUPP);

endif
if (auth_hdr.authenticator.cksum is not both collision-proof and =

keyed) then
error_out(KRB_AP_ERR_INAPP_CKSUM);

endif

set computed_checksum :=3D checksum(req);
if (computed_checksum !=3D auth_hdr.authenticatory.cksum) then

error_out(KRB_AP_ERR_MODIFIED);
endif

server :=3D lookup(req.sname,realm);

if (!server) then
if (is_foreign_tgt_name(req.sname)) then

server :=3D best_intermediate_tgs(req.sname);
else

/* no server in Database */
error_out(KDC_ERR_S_PRINCIPAL_UNKNOWN);

endif
endif

session :=3D generate_random_session_key();

use_etype :=3D first supported etype in req.etypes;
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if (no support for req.etypes) then
error_out(KDC_ERR_ETYPE_NOSUPP);

endif

new_tkt.vno :=3D ticket version; /* =3D 5 */
new_tkt.sname :=3D req.sname;
new_tkt.srealm :=3D realm;
reset all flags in new_tkt.flags;

/* It should be noted that local policy may affect the */
/* processing of any of these flags. For example, some */
/* realms may refuse to issue renewable tickets */

new_tkt.caddr :=3D tgt.caddr;
resp.caddr :=3D NULL; /* We only include this if they change */
if (req.kdc-options.FORWARDABLE is set) then

if (tgt.flags.FORWARDABLE is reset) then
error_out(KDC_ERR_BADOPTION);

endif
set new_tkt.flags.FORWARDABLE;

endif
if (req.kdc-options.FORWARDED is set) then

if (tgt.flags.FORWARDABLE is reset) then
error_out(KDC_ERR_BADOPTION);

endif
set new_tkt.flags.FORWARDED;
new_tkt.caddr :=3D req.addresses;
resp.caddr :=3D req.addresses;

endif
if (tgt.flags.FORWARDED is set) then

set new_tkt.flags.FORWARDED;
endif

if (req.kdc-options.PROXIABLE is set) then
if (tgt.flags.PROXIABLE is reset)

error_out(KDC_ERR_BADOPTION);
endif
set new_tkt.flags.PROXIABLE;

endif
if (req.kdc-options.PROXY is set) then

if (tgt.flags.PROXIABLE is reset) then
error_out(KDC_ERR_BADOPTION);

endif
set new_tkt.flags.PROXY;
new_tkt.caddr :=3D req.addresses;
resp.caddr :=3D req.addresses;

endif

if (req.kdc-options.ALLOW-POSTDATE is set) then
if (tgt.flags.MAY-POSTDATE is reset)

error_out(KDC_ERR_BADOPTION);
endif
set new_tkt.flags.MAY-POSTDATE;

endif
if (req.kdc-options.POSTDATED is set) then

if (tgt.flags.MAY-POSTDATE is reset) then
error_out(KDC_ERR_BADOPTION);

endif
set new_tkt.flags.POSTDATED;
set new_tkt.flags.INVALID;
if (against_postdate_policy(req.from)) then

error_out(KDC_ERR_POLICY);
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endif
new_tkt.starttime :=3D req.from;

endif

if (req.kdc-options.VALIDATE is set) then
if (tgt.flags.INVALID is reset) then

error_out(KDC_ERR_POLICY);
endif
if (tgt.starttime > kdc_time) then

error_out(KRB_AP_ERR_NYV);
endif
if (check_hot_list(tgt)) then

error_out(KRB_AP_ERR_REPEAT);
endif
tkt :=3D tgt;
reset new_tkt.flags.INVALID;

endif

if (req.kdc-options.(any flag except ENC-TKT-IN-SKEY, RENEW,
and those already processed) is set) then

error_out(KDC_ERR_BADOPTION);
endif

new_tkt.authtime :=3D tgt.authtime;

if (req.kdc-options.RENEW is set) then
/* Note that if the endtime has already passed, the ticket =

would */
/* have been rejected in the initial authentication stage, so =

*/
/* there is no need to check again here =

*/
if (tgt.flags.RENEWABLE is reset) then

error_out(KDC_ERR_BADOPTION);
endif
if (tgt.renew-till < kdc_time) then

error_out(KRB_AP_ERR_TKT_EXPIRED);
endif
tkt :=3D tgt;
new_tkt.starttime :=3D kdc_time;
old_life :=3D tgt.endttime - tgt.starttime;
new_tkt.endtime :=3D min(tgt.renew-till,

new_tkt.starttime + old_life);
else

new_tkt.starttime :=3D kdc_time;
if (req.till =3D 0) then

till :=3D infinity;
else

till :=3D req.till;
endif
new_tkt.endtime :=3D min(till,

=
new_tkt.starttime+client.max_life,

=
new_tkt.starttime+server.max_life,

=
new_tkt.starttime+max_life_for_realm,

tgt.endtime);

if ((req.kdc-options.RENEWABLE-OK is set) and
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(new_tkt.endtime < req.till) and
(tgt.flags.RENEWABLE is set) then

/* we set the RENEWABLE option for later =
processing */

set req.kdc-options.RENEWABLE;
req.rtime :=3D min(req.till, tgt.renew-till);

endif
endif

if (req.rtime =3D 0) then
rtime :=3D infinity;

else
rtime :=3D req.rtime;

endif

if ((req.kdc-options.RENEWABLE is set) and
(tgt.flags.RENEWABLE is set)) then

set new_tkt.flags.RENEWABLE;
new_tkt.renew-till :=3D min(rtime,

=
new_tkt.starttime+client.max_rlife,

=
new_tkt.starttime+server.max_rlife,

=
new_tkt.starttime+max_rlife_for_realm,

tgt.renew-till);
else

new_tkt.renew-till :=3D OMIT; /* leave the renew-till =
field out */

endif
if (req.enc-authorization-data is present) then

decrypt req.enc-authorization-data into =
decrypted_authorization_data

using auth_hdr.authenticator.subkey;
if (decrypt_error()) then

error_out(KRB_AP_ERR_BAD_INTEGRITY);
endif

endif
new_tkt.authorization_data :=3D =

req.auth_hdr.ticket.authorization_data +
decrypted_authorization_data;

new_tkt.key :=3D session;
new_tkt.crealm :=3D tgt.crealm;
new_tkt.cname :=3D req.auth_hdr.ticket.cname;

if (realm_tgt_is_for(tgt) :=3D tgt.realm) then
/* tgt issued by local realm */
new_tkt.transited :=3D tgt.transited;

else
/* was issued for this realm by some other realm */
if (tgt.transited.tr-type not supported) then

error_out(KDC_ERR_TRTYPE_NOSUPP);
endif
new_tkt.transited :=3D compress_transited(tgt.transited =

+ tgt.realm)

/* Don't check transited field if TGT for foreign realm,=20
* or requested not to check */
if (is_not_foreign_tgt_name(new_tkt.server)=20
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&& req.kdc-options.DISABLE-TRANSITED-CHECK not set) =
then

/* Check it, so end-server does not have to=20
* but don't fail, end-server may still accept =

it */
if (check_transited_field(new_tkt.transited) =

=3D=3D OK)
set =

new_tkt.flags.TRANSITED-POLICY-CHECKED;
endif

endif
endif

encode encrypted part of new_tkt into OCTET STRING;
if (req.kdc-options.ENC-TKT-IN-SKEY is set) then

if (server not specified) then
server =3D req.second_ticket.client;

endif
if ((req.second_ticket is not a TGT) or

(req.second_ticket.client !=3D server)) then
error_out(KDC_ERR_POLICY);

endif

new_tkt.enc-part :=3D encrypt OCTET STRING using
using etype_for_key(second-ticket.key), =

second-ticket.key;
else

new_tkt.enc-part :=3D encrypt OCTET STRING
using etype_for_key(server.key), server.key, =

server.p_kvno;
endif

resp.pvno :=3D 5;
resp.msg-type :=3D KRB_TGS_REP;
resp.crealm :=3D tgt.crealm;
resp.cname :=3D tgt.cname;
resp.ticket :=3D new_tkt;

resp.key :=3D session;
resp.nonce :=3D req.nonce;
resp.last-req :=3D fetch_last_request_info(client);
resp.flags :=3D new_tkt.flags;

resp.authtime :=3D new_tkt.authtime;
resp.starttime :=3D new_tkt.starttime;
resp.endtime :=3D new_tkt.endtime;

omit resp.key-expiration;

resp.sname :=3D new_tkt.sname;
resp.realm :=3D new_tkt.realm;

if (new_tkt.flags.RENEWABLE) then
resp.renew-till :=3D new_tkt.renew-till;

endif

encode body of reply into OCTET STRING;

if (req.padata.authenticator.subkey)
resp.enc-part :=3D encrypt OCTET STRING using use_etype,

req.padata.authenticator.subkey;
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else resp.enc-part :=3D encrypt OCTET STRING using use_etype, =
tgt.key;

send(resp);

=09

A.7. KRB_TGS_REP verification

decode response into resp;

if (resp.msg-type =3D KRB_ERROR) then
process_error(resp);
return;

endif

/* On error, discard the response, and zero the session key from
the response immediately */

if (req.padata.authenticator.subkey)
unencrypted part of resp :=3D decode of decrypt of =

resp.enc-part
using resp.enc-part.etype and subkey;

else unencrypted part of resp :=3D decode of decrypt of =
resp.enc-part

using resp.enc-part.etype and tgt's =
session key;

if (common_as_rep_tgs_rep_checks fail) then
destroy resp.key;
return error;

endif

check authorization_data as necessary;
save_for_later(ticket,session,client,server,times,flags);

A.8. Authenticator generation

body.authenticator-vno :=3D authenticator vno; /* =3D 5 */
body.cname, body.crealm :=3D client name;
if (supplying checksum) then

body.cksum :=3D checksum;
endif
get system_time;
body.ctime, body.cusec :=3D system_time;
if (selecting sub-session key) then

select sub-session key;
body.subkey :=3D sub-session key;

endif
if (using sequence numbers) then

select initial sequence number;
body.seq-number :=3D initial sequence;

endif

A.9. KRB_AP_REQ generation

obtain ticket and session_key from cache;

packet.pvno :=3D protocol version; /* 5 */
packet.msg-type :=3D message type; /* KRB_AP_REQ */

if (desired(MUTUAL_AUTHENTICATION)) then
set packet.ap-options.MUTUAL-REQUIRED;
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else
reset packet.ap-options.MUTUAL-REQUIRED;

endif
if (using session key for ticket) then

set packet.ap-options.USE-SESSION-KEY;
else

reset packet.ap-options.USE-SESSION-KEY;
endif
packet.ticket :=3D ticket; /* ticket */
generate authenticator;
encode authenticator into OCTET STRING;
encrypt OCTET STRING into packet.authenticator using =

session_key;

A.10. KRB_AP_REQ verification

receive packet;
if (packet.pvno !=3D 5) then

either process using other protocol spec
or error_out(KRB_AP_ERR_BADVERSION);

endif
if (packet.msg-type !=3D KRB_AP_REQ) then

error_out(KRB_AP_ERR_MSG_TYPE);
endif
if (packet.ticket.tkt_vno !=3D 5) then

either process using other protocol spec
or error_out(KRB_AP_ERR_BADVERSION);

endif
if (packet.ap_options.USE-SESSION-KEY is set) then

retrieve session key from ticket-granting ticket for
packet.ticket.{sname,srealm,enc-part.etype};

else
retrieve service key for
=

packet.ticket.{sname,srealm,enc-part.etype,enc-part.skvno};
endif
if (no_key_available) then

if (cannot_find_specified_skvno) then
error_out(KRB_AP_ERR_BADKEYVER);

else
error_out(KRB_AP_ERR_NOKEY);

endif
endif
decrypt packet.ticket.enc-part into decr_ticket using retrieved =

key;
if (decryption_error()) then

error_out(KRB_AP_ERR_BAD_INTEGRITY);
endif

decrypt packet.authenticator into decr_authenticator
using decr_ticket.key;

if (decryption_error()) then
error_out(KRB_AP_ERR_BAD_INTEGRITY);

endif
if (decr_authenticator.{cname,crealm} !=3D

decr_ticket.{cname,crealm}) then
error_out(KRB_AP_ERR_BADMATCH);

endif
if (decr_ticket.caddr is present) then

if (sender_address(packet) is not in decr_ticket.caddr) =
then

error_out(KRB_AP_ERR_BADADDR);



PKT-SP-SEC-I07-021127 PacketCableTM 1.x Specifications 1.x 

11/27/02 CableLabs  311 

endif
elseif (application requires addresses) then

error_out(KRB_AP_ERR_BADADDR);
endif
if (not in_clock_skew(decr_authenticator.ctime,

decr_authenticator.cusec)) then
error_out(KRB_AP_ERR_SKEW);

endif
if (repeated(decr_authenticator.{ctime,cusec,cname,crealm})) =

then
error_out(KRB_AP_ERR_REPEAT);

endif
save_identifier(decr_authenticator.{ctime,cusec,cname,crealm});
get system_time;
if ((decr_ticket.starttime-system_time > CLOCK_SKEW) or

(decr_ticket.flags.INVALID is set)) then
/* it hasn't yet become valid */
error_out(KRB_AP_ERR_TKT_NYV);

endif
if (system_time-decr_ticket.endtime > CLOCK_SKEW) then

error_out(KRB_AP_ERR_TKT_EXPIRED);
endif
if (decr_ticket.transited) then

/* caller may ignore the TRANSITED-POLICY-CHECKED and do
* check anyway */
if (decr_ticket.flags.TRANSITED-POLICY-CHECKED not set) then

if (check_transited_field(decr_ticket.transited) then
error_out(KDC_AP_PATH_NOT_ACCPETED);

endif
endif

endif
/* caller must check decr_ticket.flags for any pertinent details =

*/
return(OK, decr_ticket, packet.ap_options.MUTUAL-REQUIRED);

A.11. KRB_AP_REP generation

packet.pvno :=3D protocol version; /* 5 */
packet.msg-type :=3D message type; /* KRB_AP_REP */

body.ctime :=3D packet.ctime;
body.cusec :=3D packet.cusec;
if (selecting sub-session key) then

select sub-session key;
body.subkey :=3D sub-session key;

endif

if (using sequence numbers) then
select initial sequence number;
body.seq-number :=3D initial sequence;

endif

encode body into OCTET STRING;

select encryption type;
encrypt OCTET STRING into packet.enc-part;

A.12. KRB_AP_REP verification

receive packet;
if (packet.pvno !=3D 5) then

either process using other protocol spec
or error_out(KRB_AP_ERR_BADVERSION);
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endif
if (packet.msg-type !=3D KRB_AP_REP) then

error_out(KRB_AP_ERR_MSG_TYPE);
endif
cleartext :=3D decrypt(packet.enc-part) using ticket's session =

key;
if (decryption_error()) then

error_out(KRB_AP_ERR_BAD_INTEGRITY);
endif
if (cleartext.ctime !=3D authenticator.ctime) then

error_out(KRB_AP_ERR_MUT_FAIL);
endif
if (cleartext.cusec !=3D authenticator.cusec) then

error_out(KRB_AP_ERR_MUT_FAIL);
endif
if (cleartext.subkey is present) then

save cleartext.subkey for future use;
endif
if (cleartext.seq-number is present) then

save cleartext.seq-number for future verifications;
endif
return(AUTHENTICATION_SUCCEEDED);

A.13. KRB_SAFE generation

collect user data in buffer;

/* assemble packet: */
packet.pvno :=3D protocol version; /* 5 */
packet.msg-type :=3D message type; /* KRB_SAFE */

body.user-data :=3D buffer; /* DATA */
if (using timestamp) then

get system_time;
body.timestamp, body.usec :=3D system_time;

endif
if (using sequence numbers) then

body.seq-number :=3D sequence number;
endif
body.s-address :=3D sender host addresses;
if (only one recipient) then

body.r-address :=3D recipient host address;
endif

checksum.cksumtype :=3D checksum type;
compute checksum over body;
checksum.checksum :=3D checksum value; /* checksum.checksum */
packet.cksum :=3D checksum;
packet.safe-body :=3D body;

A.14. KRB_SAFE verification

receive packet;
if (packet.pvno !=3D 5) then

either process using other protocol spec
or error_out(KRB_AP_ERR_BADVERSION);

endif
if (packet.msg-type !=3D KRB_SAFE) then

error_out(KRB_AP_ERR_MSG_TYPE);
endif
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if (packet.checksum.cksumtype is not both collision-proof and =
keyed) then

error_out(KRB_AP_ERR_INAPP_CKSUM);
endif
if (safe_priv_common_checks_ok(packet)) then

set computed_checksum :=3D checksum(packet.body);
if (computed_checksum !=3D packet.checksum) then

error_out(KRB_AP_ERR_MODIFIED);
endif
return (packet, PACKET_IS_GENUINE);

else
return common_checks_error;

endif

A.15. KRB_SAFE and KRB_PRIV common checks

if (packet.s-address !=3D O/S_sender(packet)) then
/* O/S report of sender not who claims to have sent it =

*/
error_out(KRB_AP_ERR_BADADDR);

endif
if ((packet.r-address is present) and

(packet.r-address !=3D local_host_address)) then
/* was not sent to proper place */
error_out(KRB_AP_ERR_BADADDR);

endif
if (((packet.timestamp is present) and

(not in_clock_skew(packet.timestamp,packet.usec))) or
(packet.timestamp is not present and timestamp expected)) =

then
error_out(KRB_AP_ERR_SKEW);

endif
if (repeated(packet.timestamp,packet.usec,packet.s-address)) =

then
error_out(KRB_AP_ERR_REPEAT);

endif

if (((packet.seq-number is present) and
((not in_sequence(packet.seq-number)))) or
(packet.seq-number is not present and sequence expected)) =

then
error_out(KRB_AP_ERR_BADORDER);

endif

if (packet.timestamp not present and packet.seq-number not =
present) then

error_out(KRB_AP_ERR_MODIFIED);
endif

save_identifier(packet.{timestamp,usec,s-address},
sender_principal(packet));

return PACKET_IS_OK;

A.16. KRB_PRIV generation

collect user data in buffer;

/* assemble packet: */
packet.pvno :=3D protocol version; /* 5 */
packet.msg-type :=3D message type; /* KRB_PRIV */
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packet.enc-part.etype :=3D encryption type;

body.user-data :=3D buffer;
if (using timestamp) then

get system_time;
body.timestamp, body.usec :=3D system_time;

endif
if (using sequence numbers) then

body.seq-number :=3D sequence number;
endif
body.s-address :=3D sender host addresses;
if (only one recipient) then

body.r-address :=3D recipient host address;
endif

encode body into OCTET STRING;

select encryption type;
encrypt OCTET STRING into packet.enc-part.cipher;

A.17. KRB_PRIV verification

receive packet;
if (packet.pvno !=3D 5) then

either process using other protocol spec
or error_out(KRB_AP_ERR_BADVERSION);

endif
if (packet.msg-type !=3D KRB_PRIV) then

error_out(KRB_AP_ERR_MSG_TYPE);
endif

cleartext :=3D decrypt(packet.enc-part) using negotiated key;
if (decryption_error()) then

error_out(KRB_AP_ERR_BAD_INTEGRITY);
endif

if (safe_priv_common_checks_ok(cleartext)) then
return(cleartext.DATA, =

PACKET_IS_GENUINE_AND_UNMODIFIED);
else

return common_checks_error;
endif

A.18. KRB_CRED generation

invoke KRB_TGS; /* obtain tickets to be provided to peer */

/* assemble packet: */
packet.pvno :=3D protocol version; /* 5 */
packet.msg-type :=3D message type; /* KRB_CRED */

for (tickets[n] in tickets to be forwarded) do
packet.tickets[n] =3D tickets[n].ticket;

done

packet.enc-part.etype :=3D encryption type;

for (ticket[n] in tickets to be forwarded) do
body.ticket-info[n].key =3D tickets[n].session;
body.ticket-info[n].prealm =3D tickets[n].crealm;
body.ticket-info[n].pname =3D tickets[n].cname;
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body.ticket-info[n].flags =3D tickets[n].flags;
body.ticket-info[n].authtime =3D tickets[n].authtime;
body.ticket-info[n].starttime =3D tickets[n].starttime;
body.ticket-info[n].endtime =3D tickets[n].endtime;
body.ticket-info[n].renew-till =3D =

tickets[n].renew-till;
body.ticket-info[n].srealm =3D tickets[n].srealm;
body.ticket-info[n].sname =3D tickets[n].sname;
body.ticket-info[n].caddr =3D tickets[n].caddr;

done

get system_time;
body.timestamp, body.usec :=3D system_time;

if (using nonce) then
body.nonce :=3D nonce;

endif

if (using s-address) then
body.s-address :=3D sender host addresses;

endif
if (limited recipients) then

body.r-address :=3D recipient host address;
endif

encode body into OCTET STRING;

select encryption type;
encrypt OCTET STRING into packet.enc-part.cipher

using negotiated encryption key;

A.19. KRB_CRED verification

receive packet;
if (packet.pvno !=3D 5) then

either process using other protocol spec
or error_out(KRB_AP_ERR_BADVERSION);

endif
if (packet.msg-type !=3D KRB_CRED) then

error_out(KRB_AP_ERR_MSG_TYPE);
endif

cleartext :=3D decrypt(packet.enc-part) using negotiated key;
if (decryption_error()) then

error_out(KRB_AP_ERR_BAD_INTEGRITY);
endif
if ((packet.r-address is present or required) and

(packet.s-address !=3D O/S_sender(packet)) then
/* O/S report of sender not who claims to have sent it =

*/
error_out(KRB_AP_ERR_BADADDR);

endif
if ((packet.r-address is present) and

(packet.r-address !=3D local_host_address)) then
/* was not sent to proper place */
error_out(KRB_AP_ERR_BADADDR);

endif
if (not in_clock_skew(packet.timestamp,packet.usec)) then

error_out(KRB_AP_ERR_SKEW);
endif
if (repeated(packet.timestamp,packet.usec,packet.s-address)) =

then
error_out(KRB_AP_ERR_REPEAT);
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endif
if (packet.nonce is required or present) and

(packet.nonce !=3D expected-nonce) then
error_out(KRB_AP_ERR_MODIFIED);

endif

for (ticket[n] in tickets that were forwarded) do
save_for_later(ticket[n],key[n],principal[n],

server[n],times[n],flags[n]);
return

A.20. KRB_ERROR generation

/* assemble packet: */
packet.pvno :=3D protocol version; /* 5 */
packet.msg-type :=3D message type; /* KRB_ERROR */

get system_time;
packet.stime, packet.susec :=3D system_time;
packet.realm, packet.sname :=3D server name;

if (client time available) then
packet.ctime, packet.cusec :=3D client_time;

endif

packet.error-code :=3D error code;
if (client name available) then

packet.cname, packet.crealm :=3D client name;
endif
if (error text available) then

packet.e-text :=3D error text;
endif
if (error data available) then

packet.e-data :=3D error data;
endif

B. Definition of common authorization data elements

This appendix contains the definitions of common authorization data
elements. These common authorization data elements are recursivly defined,
meaning the ad-data for these types will itself contain a sequence of
authorization data whose interpretation is affected by the encapsulating
element. Depending on the meaning of the encapsulating element, the
encapsulated elements may be ignored, might be interpreted as issued
directly by the KDC, or they might be stored in a separate plaintext part of
the ticket. The types of the encapsulating elements are specified as part of
the Kerberos specification because the behavior based on these values should
be understood across implementations whereas other elements need only be
understood by the applications which they affect.

In the definitions that follow, the value of the ad-type for the element
will be specified in the subsection number, and the value of the ad-data
will be as shown in the ASN.1 structure that follows the subsection heading.

B.1. If relevant

AD-IF-RELEVANT AuthorizationData

AD elements encapsulated within the if-relevant element are intended for
interpretation only by application servers that understand the particular
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ad-type of the embedded element. Application servers that do not understand
the type of an element embedded within the if-relevant element may ignore
the uninterpretable element. This element promotes interoperability across
implementations which may have local extensions for authorization.

B.2. Intended for server

AD-INTENDED-FOR-SERVER SEQUENCE {
intended-server[0] SEQUENCE OF PrincipalName
elements[1] AuthorizationData

}

AD elements encapsulated within the intended-for-server element may be
ignored if the application server is not in the list of principal names of
intended servers. Further, a KDC issuing a ticket for an application server
can remove this element if the application server is not in the list of
intended servers.

Application servers should check for their principal name in the
intended-server field of this element. If their principal name is not found,
this element should be ignored. If found, then the encapsulated elements
should be evaluated in the same manner as if they were present in the top
level authorization data field. Applications and application servers that do
not implement this element should reject tickets that contain authorization
data elements of this type.

B.3. Intended for application class

AD-INTENDED-FOR-APPLICATION-CLASS SEQUENCE { intended-application-class[0]
SEQUENCE OF GeneralString elements[1] AuthorizationData } AD elements
encapsulated within the intended-for-application-class element may be
ignored if the application server is not in one of the named classes of
application servers. Examples of application server classes include
"FILESYSTEM", and other kinds of servers.=20
This element and the elements it encapsulates may be safely ignored by
applications, application servers, and KDCs that do not implement this
element.

B.4. KDC Issued

AD-KDCIssued SEQUENCE {
ad-checksum[0] Checksum,
i-realm[1] Realm OPTIONAL,
i-sname[2] PrincipalName OPTIONAL,
elements[3] AuthorizationData.

}

ad-checksum
A checksum over the elements field using a cryptographic checksum
method that is identical to the checksum used to protect the ticket
itself (i.e. using the same hash function and the same encryption
algorithm used to encrypt the ticket) and using a key derived from the
same key used to protect the ticket.

i-realm, i-sname
The name of the issuing principal if different from the KDC itself.
This field would be used when the KDC can verify the authenticity of
elements signed by the issuing principal and it allows this KDC to
notify the application server of the validity of those elements.

elements
A sequence of authorization data elements issued by the KDC.

The KDC-issued ad-data field is intended to provide a means for Kerberos
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principal credentials to embed within themselves privilege attributes and
other mechanisms for positive authorization, amplifying the privileges of
the principal beyond what can be done using a credentials without such an
a-data element.

This can not be provided without this element because the definition of the
authorization-data field allows elements to be added at will by the bearer
of a TGT at the time that they request service tickets and elements may also
be added to a delegated ticket by inclusion in the authenticator.

For KDC-issued elements this is prevented because the elements are signed by
the KDC by including a checksum encrypted using the server's key (the same
key used to encrypt the ticket - or a key derived from that key). Elements
encapsulated with in the KDC-issued element will be ignored by the
application server if this "signature" is not present. Further, elements
encapsulated within this element from a ticket granting ticket may be
interpreted by the KDC, and used as a basis according to policy for
including new signed elements within derivative tickets, but they will not
be copied to a derivative ticket directly. If they are copied directly to a
derivative ticket by a KDC that is not aware of this element, the signature
will not be correct for the application ticket elements, and the field will
be ignored by the application server.

This element and the elements it encapsulates may be safely ignored by
applications, application servers, and KDCs that do not implement this
element.

B.5. And-Or

AD-AND-OR SEQUENCE {
condition-count[0] INTEGER,
elements[1] AuthorizationData

}=20

When restrictive AD elements encapsulated within the and-or element are
encountered, only the number specified in condition-count of the
encapsulated conditions must be met in order to satisfy this element. This
element may be used to implement an "or" operation by setting the
condition-count field to 1, and it may specify an "and" operation by setting
the condition count to the number of embedded elements. Application servers
that do not implement this element must reject tickets that contain
authorization data elements of this type.

B.6. Mandatory ticket extensions

AD-Mandatory-Ticket-Extensions SEQUENCE {
te-type[0] INTEGER,
te-checksum[0] Checksum

}=20

An authorization data element of type mandatory-ticket-extensions specifies
the type and a collision-proof checksum using the same hash algorithm used
to protect the integrity of the ticket itself. This checksum will be
calculated over an individual extension field of the type indicated. If
there are more than one extension, multiple Mandatory-Ticket-Extensions
authorization data elements may be present, each with a checksum for a
different extension field. This restriction indicates that the ticket should
not be accepted if a ticket extension is not present in the ticket for which
the type and checksum do not match that checksum specified in the
authorization data element. Note that although the type is redundant for the
purposes of the comparison, it makes the comparison easier when multiple
extensions are present. Application servers that do not implement this



PKT-SP-SEC-I07-021127 PacketCableTM 1.x Specifications 1.x 

11/27/02 CableLabs  319 

element must reject tickets that contain authorization data elements of this
type.

B.7. Authorization Data in ticket extensions

AD-IN-Ticket-Extensions Checksum

An authorization data element of type in-ticket-extensions specifies a
collision-proof checksum using the same hash algorithm used to protect the
integrity of the ticket itself. This checksum is calculated over a separate
external AuthorizationData field carried in the ticket extensions.
Application servers that do not implement this element must reject tickets
that contain authorization data elements of this type. Application servers
that do implement this element will search the ticket extensions for
authorization data fields, calculate the specified checksum over each
authorization data field and look for one matching the checksum in this
in-ticket-extensions element. If not found, then the ticket must be
rejected. If found, the corresponding authorization data elements will be
interpreted in the same manner as if they were contained in the top level
authorization data field.

Note that if multiple external authorization data fields are present in a
ticket, each will have a corresponding element of type in-ticket-extensions
in the top level authorization data field, and the external entries will be
linked to the corresponding element by their checksums.

C. Definition of common ticket extensions

This appendix contains the definitions of common ticket extensions. Support
for these extensions is optional. However, certain extensions have
associated authorization data elements that may require rejection of a
ticket containing an extension by application servers that do not implement
the particular extension. Other extensions have been defined beyond those
described in this specification. Such extensions are described elsewhere and
for some of those extensions the reserved number may be found in the list of
constants.
It is known that older versions of Kerberos did not support this field, and
that some clients will strip this field from a ticket when they parse and
then reassemble a ticket as it is passed to the application servers. The
presence of the extension will not break such clients, but any functionally
dependent on the extensions will not work when such tickets are handled by
old clients. In such situations, some implementation may use alternate
methods to transmit the information in the extensions field.

C.1. Null ticket extension

TE-NullExtension OctetString -- The empty Octet String

The te-data field in the null ticket extension is an octet string of length
zero. This extension may be included in a ticket granting ticket so that the
KDC can determine on presentation of the ticket granting ticket whether the
client software will strip the extensions field. =20

C.2. External Authorization Data

TE-ExternalAuthorizationData AuthorizationData

The te-data field in the external authorization data ticket extension is
field of type AuthorizationData containing one or more authorization data
elements. If present, a corresponding authorization data element will be
present in the primary authorization data for the ticket and that element
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will contain a checksum of the external authorization data ticket extension.

D. Significant changes since RFC 1510

Commentary

Section 1: The preamble and introduction does not define the protocol,
mention is made in the introduction regarding the ability to rely on the KDC
to check the transited field, and on the inclusion of a flag in a ticket
indicating that this check has occurred. This is a new capability not
present in RFC1510. Pre-existing implementation may ignore or not set this
flag without negative security implications.

The definition of the secret key says that in the case of a user the key may
be derived from a password. In 1510, it said that the key was derived from
the password. This change was made to accommodate situations where the user
key might be stored on a smart-card, or otherwise obtained independent of a
password.

The introduction also mentions the use of public key for initial
authentication in Kerberos by reference. RFC1510 did not include such a
reference.

Section 1.2 was added to explain that while Kerberos provides authentication
of a named principal, it is still the responsibility of the application to
ensure that the authenticated name is the entity with which the application
wishes to communicate. Because section 1.2 is completely new, I am
particularly interested in suggestions to improve the wording of this
section. Sections 1.2-4 were renumbered.

Section 2: No changes were made to existing options and flags specified in
RFC1510, though some of the sections in the specification were renumbered,
and text was revised to make the description and intent of existing options
clearer, especially with respect to the ENC-TKT-IN-SKEY option (now section
2.9.3) which is used for user-to-user authentication. New options and ticket
flags added since RFC1510 include transited policy checking (section 2.7),
anonymous tickets (section 2.8) and name canonicalization (section 2.9.1).

Section 3: Added mention of the optional checksum field in the KRB-ERROR
message. Added mention of name canonicalization and anonymous tickets in
exposition on KDC options. Mention of the name canonicalization case is
included in the description of the KDC reply (3.1.3). A warning regarding
generation of session keys for application use was added, urging the
inclusion of key entropy from the KDC generated session key in the ticket.
An example regarding use of the subsession key was added to section 3.2.6.
Descriptions of the pa-etype-info, and pa-pw-salt preauthentication data
items were added.

Changes to section 4: Added language about who has access to the keys in the
Kerberos database. Also made it clear that KDC's may obtain the information
from some database field through other means - for example, one form of
pkinit may extract some of these fields from a certificate.

Regarding the discussion on the list regarding the use of tamper resistant
hardware to store keys, I was not able to determine specific suggested
changes to the text in the RFC regarding this. Much of this discussion
centers around particular implementations. I did however loosen the wording
about the database so as not to preclude keys that can not be extracted in
the clear from such hardware.

Section 5: A statement regarding the carrying of unrecognized additional
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fields in ASN.1 encoding through in tickets was added (still waiting on some
better text regarding this).

Ticket flags and KDC options were added to support the new functions
described elsewhere in this document. The encoding of the options flags are
now described to be no less than 32 bits, and the smallest number of bits
beyond 32 needed to encode any set bits. It also describes the encoding of
the bitstring as using "unnamed" bits.

An optional ticket extensions field was added to support the carrying of
auxiliary data that allows the passing of auxiliary that is to accompany a
ticket to the verifier.

(I would like to drop the part about optionally appending it of the opaque
part of the ciphertext. We are still waiting on some text regarding how to
assure backward compatibility).

(Still pending, Tom Yu's request to change the application codes on KDC
message to indicate which minor rev of the protocol - I think this might
break things, but am not sure).

Definition of the PA-USE-SPECIFIED-KVNO preauthentication data field was
added.

The optional e-cksum field was added to the KRB-ERROR message and the e-data
filed was generalized for use in other than the KDC_ERR_PREAUTH_REQUIRED
error. The TypedData structure was defined. Type tags for TypedData are
defined in the same sequence as the PA-DATA type space to avoid confusion
with the use of the PA-DATA namespace previously used for the e-data field
for the KDC_ERR_PREAUTH_REQUIRED error.

Section 7: Words were added describing the convention that domain based
realm names for newly created realms should be specified as upper case. This
recommendation does not make lower case realm names illegal. Words were
added highlighting that the slash separated components in the X500 style of
realm names is consistent with existing RFC1510 based implementations, but
that it conflicts with the general recommendation of X.500 name
representation specified in RFC2253.

There were suggestions on the list regarding extensions to or new name
types. These require discussion at the IETF meeting. My own feeling at this
point is that in the absence of a strong consensus for adding new types
at this time, I would rather not add new name types in the current draft,
but leave things open for additions later.

Section 8: Since RFC1510, the definition of the TCP transport for Kerberos
messages was added.

Section 9: Requirements for supporting DES3-CBC-SHA1-KD encryption and
HMAC-SHA1-DES3-KD checksums were added.

I would like to make support for Rijndael mandatory and for us to have a
SINGLE standard for use of Rijndale in these revisions.

------------------------------------------------------------------------

Discussion

Section 8: Regarding the suggestion of weakening the requirement for use of
port 88 for cases where the port can be looked up elsewhere - I did not
incorporate this suggestion because cross realm authentication requires the
ability to contact the appropriate KDC, and unless ALL implementations of
Kerberos include support for finding such alternate port numbers, use of
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such KDC's would be non-interoperable.

------------------------------------------------------------------------
[TM] Project Athena, Athena, and Kerberos are trademarks of the
Massachusetts Institute of Technology (MIT). No commercial use of these
trademarks may be made without prior written permission of MIT.

[1.1] Note, however, that many applications use Kerberos' functions only
upon the initiation of a stream-based network connection. Unless an
application subsequently provides integrity protection for the data stream,
the identity verification applies only to the initiation of the connection,
and does not guarantee that subsequent messages on the connection originate
from the same principal.

[1.2] Secret and private are often used interchangeably in the literature.
In our usage, it takes two (or more) to share a secret, thus a shared DES
key is a secret key. Something is only private when no one but its owner
knows it. Thus, in public key cryptosystems, one has a public and a private
key.

[1.3] Of course, with appropriate permission the client could arrange
registration of a separately-named principal in a remote realm, and engage
in normal exchanges with that realm's services. However, for even small
numbers of clients this becomes cumbersome, and more automatic methods as
described here are necessary.

[2.1] Though it is permissible to request or issue tickets with no network
addresses specified.

[2.2] It is important that the KDC be sent the name as typed by the user,
and not only the canonical form of the name. If the domain name system was
used to find the canonical name on the client side, the mapping is
vulnerable. [3.1] The password-changing request must not be honored unless
the requester can provide the old password (the user's current secret key).
Otherwise, it would be possible for someone to walk up to an unattended
session and change another user's password.

[3.2] To authenticate a user logging on to a local system, the credentials
obtained in the AS exchange may first be used in a TGS exchange to obtain
credentials for a local server. Those credentials must then be verified by a
local server through successful completion of the Client/Server exchange.

[3.3] "Random" means that, among other things, it should be impossible to
guess the next session key based on knowledge of past session keys. This can
only be achieved in a pseudo-random number generator if it is based on
cryptographic principles. It is more desirable to use a truly random number
generator, such as one based on measurements of random physical phenomena.

[3.4] Tickets contain both an encrypted and unencrypted portion, so
cleartext here refers to the entire unit, which can be copied from one
message and replayed in another without any cryptographic skill.

[3.5] Note that this can make applications based on unreliable transports
difficult to code correctly. If the transport might deliver duplicated
messages, either a new authenticator must be generated for each retry, or
the application server must match requests and replies and replay the first
reply in response to a detected duplicate.

[3.6] This allows easy implementation of user-to-user authentication [8],
which uses ticket-granting ticket session keys in lieu of secret server keys
in situations where such secret keys could be easily compromised.

[3.7]Note also that the rejection here is restricted to authenticators from
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the same principal to the same server. Other client principals communicating
with the same server principal should not be have their authenticators
rejected if the time and microsecond fields happen to match some other
client's authenticator.

[3.8] If this is not done, an attacker could subvert the authentication by
recording the ticket and authenticator sent over the network to a server and
replaying them following an event that caused the server to lose track of
recently seen authenticators.

[3.9] In the Kerberos version 4 protocol, the timestamp in the reply was the
client's timestamp plus one. This is not necessary in version 5 because
version 5 messages are formatted in such a way that it is not possible to
create the reply by judicious message surgery (even in encrypted form)
without knowledge of the appropriate encryption keys.

[3.10] Note that for encrypting the KRB_AP_REP message, the sub-session key
is not used, even if present in the Authenticator.

[3.11] Implementations of the protocol may wish to provide routines to
choose subkeys based on session keys and random numbers and to generate a
negotiated key to be returned in the KRB_AP_REP message.

[3.12]This can be accomplished in several ways. It might be known beforehand
(since the realm is part of the principal identifier), it might be stored in
a nameserver, or it might be obtained from a configuration file. If the
realm to be used is obtained from a nameserver, there is a danger of being
spoofed if the nameservice providing the realm name is not authenticated.
This might result in the use of a realm which has been compromised, and
would result in an attacker's ability to compromise the authentication of
the application server to the client.

[3.13] If the client selects a sub-session key, care must be taken to ensure
the randomness of the selected sub-session key. One approach would be to
generate a random number and XOR it with the session key from the
ticket-granting ticket.

[4.1] The implementation of the Kerberos server need not combine the
database and the server on the same machine; it is feasible to store the
principal database in, say, a network name service, as long as the entries
stored therein are protected from disclosure to and modification by
unauthorized parties. However, we recommend against such strategies, as they
can make system management and threat analysis quite complex.

[4.2] See the discussion of the padata field in section 5.4.2 for details on
why this can be useful.
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Appendix C. PKINIT Specification 
The PKINIT specification is currently still an IETF draft.  This document complies only 
with the version of the PKINIT draft that is included in this section.  The PacketCable 
security team will continue to track the progress of the PKINIT draft through the IETF. 
Note that the details of the first and second Oakley groups are provided in Appendix H of 
this specification. 
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Public Key Cryptography for Initial Authentication in Kerberos

0. Status Of This Memo

This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC 2026. Internet-Drafts are
working documents of the Internet Engineering Task Force (IETF),
its areas, and its working groups. Note that other groups may also
distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other
documents at any time. It is inappropriate to use Internet-Drafts
as reference material or to cite them other than as "work in
progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

To learn the current status of any Internet-Draft, please check
the "1id-abstracts.txt" listing contained in the Internet-Drafts
Shadow Directories on ftp.ietf.org (US East Coast),
nic.nordu.net (Europe), ftp.isi.edu (US West Coast), or
munnari.oz.au (Pacific Rim).

The distribution of this memo is unlimited. It is filed as
draft-ietf-cat-kerberos-pk-init-16.txt, and expires June 25, 2002.
Please send comments to the authors.

1. Abstract

This document defines extensions (PKINIT) to the Kerberos protocol
specification (RFC 1510bis [1]) to provide a method for using public
key cryptography during initial authentication. The methods
defined specify the ways in which preauthentication data fields and
error data fields in Kerberos messages are to be used to transport
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public key data.

2. Introduction

The popularity of public key cryptography has produced a desire for
its support in Kerberos [2]. The advantages provided by public key
cryptography include simplified key management (from the Kerberos
perspective) and the ability to leverage existing and developing
public key certification infrastructures.

Public key cryptography can be integrated into Kerberos in a number
of ways. One is to associate a key pair with each realm, which can
then be used to facilitate cross-realm authentication; this is the
topic of another draft proposal. Another way is to allow users with
public key certificates to use them in initial authentication. This
is the concern of the current document.

PKINIT utilizes ephemeral-ephemeral Diffie-Hellman keys in
combination with RSA keys as the primary, required mechanism. Note
that PKINIT supports the use of separate signature and encryption
keys.

PKINIT enables access to Kerberos-secured services based on initial
authentication utilizing public key cryptography. PKINIT utilizes
standard public key signature and encryption data formats within the
standard Kerberos messages. The basic mechanism is as follows: The
user sends an AS-REQ message to the KDC as before, except that if that
user is to use public key cryptography in the initial authentication
step, his certificate and a signature accompany the initial request
in the preauthentication fields. Upon receipt of this request, the
KDC verifies the certificate and issues a ticket granting ticket
(TGT) as before, except that the encPart from the AS-REP message
carrying the TGT is now encrypted utilizing either a Diffie-Hellman
derived key or the user's public key. This message is authenticated
utilizing the public key signature of the KDC.

Note that PKINIT does not require the use of certificates. A KDC
may store the public key of a principal as part of that principal's
record. In this scenario, the KDC is the trusted party that vouches
for the principal (as in a standard, non-cross realm, Kerberos
environment). Thus, for any principal, the KDC may maintain a
symmetric key, a public key, or both.

The PKINIT specification may also be used as a building block for
other specifications. PKINIT may be utilized to establish
inter-realm keys for the purposes of issuing cross-realm service
tickets. It may also be used to issue anonymous Kerberos tickets
using the Diffie-Hellman option. Efforts are under way to draft
specifications for these two application protocols.

Additionally, the PKINIT specification may be used for direct peer
to peer authentication without contacting a central KDC. This
application of PKINIT is based on concepts introduced in [6, 7].
For direct client-to-server authentication, the client uses PKINIT
to authenticate to the end server (instead of a central KDC), which
then issues a ticket for itself. This approach has an advantage
over TLS [5] in that the server does not need to save state (cache
session keys). Furthermore, an additional benefit is that Kerberos
tickets can facilitate delegation (see [6]).

3. Proposed Extensions

This section describes extensions to RFC 1510bis for supporting the
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use of public key cryptography in the initial request for a ticket
granting ticket (TGT).

In summary, the following change to RFC 1510bis is proposed:

* Users may authenticate using either a public key pair or a
conventional (symmetric) key. If public key cryptography is
used, public key data is transported in preauthentication
data fields to help establish identity. The user presents
a public key certificate and obtains an ordinary TGT that may
be used for subsequent authentication, with such
authentication using only conventional cryptography.

Section 3.1 provides definitions to help specify message formats.
Section 3.2 describes the extensions for the initial authentication
method.

3.1. Definitions

The extensions involve new preauthentication fields; we introduce
the following preauthentication types:

PA-PK-AS-REQ 14
PA-PK-AS-REP 15

The extensions also involve new error types; we introduce the
following types:

KDC_ERR_CLIENT_NOT_TRUSTED 62
KDC_ERR_KDC_NOT_TRUSTED 63
KDC_ERR_INVALID_SIG 64
KDC_ERR_KEY_TOO_WEAK 65
KDC_ERR_CERTIFICATE_MISMATCH 66
KDC_ERR_CANT_VERIFY_CERTIFICATE 70
KDC_ERR_INVALID_CERTIFICATE 71
KDC_ERR_REVOKED_CERTIFICATE 72
KDC_ERR_REVOCATION_STATUS_UNKNOWN 73
KDC_ERR_REVOCATION_STATUS_UNAVAILABLE 74
KDC_ERR_CLIENT_NAME_MISMATCH 75
KDC_ERR_KDC_NAME_MISMATCH 76

We utilize the following typed data for errors:

TD-PKINIT-CMS-CERTIFICATES 101
TD-KRB-PRINCIPAL 102
TD-KRB-REALM 103
TD-TRUSTED-CERTIFIERS 104
TD-CERTIFICATE-INDEX 105

We utilize the following encryption types (which map directly to
OIDs):

dsaWithSHA1-CmsOID 9
md5WithRSAEncryption-CmsOID 10
sha1WithRSAEncryption-CmsOID 11
rc2CBC-EnvOID 12
rsaEncryption-EnvOID (PKCS#1 v1.5) 13
rsaES-OAEP-ENV-OID (PKCS#1 v2.0) 14
des-ede3-cbc-Env-OID 15

These mappings are provided so that a client may send the
appropriate enctypes in the AS-REQ message in order to indicate
support for the corresponding OIDs (for performing PKINIT). The
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above encryption types are utilized only within CMS structures
within the PKINIT preauthentication fields. Their use within
the Kerberos EncryptedData structure is unspecified.

In many cases, PKINIT requires the encoding of the X.500 name of a
certificate authority as a Realm. When such a name appears as
a realm it will be represented using the "Other" form of the realm
name as specified in the naming constraints section of RFC 1510bis.
For a realm derived from an X.500 name, NAMETYPE will have the value
X500-RFC2253. The full realm name will appear as follows:

<nametype> + ":" + <string>

where nametype is "X500-RFC2253" and string is the result of doing
an RFC2253 encoding of the distinguished name, i.e.

"X500-RFC2253:" + RFC2253Encode(DistinguishedName)

where DistinguishedName is an X.500 name, and RFC2253Encode is a
function returning a readable UTF encoding of an X.500 name, as
defined by RFC 2253 [11] (part of LDAPv3 [15]).

Each component of a DistinguishedName is called a
RelativeDistinguishedName, where a RelativeDistinguishedName is a
SET OF AttributeTypeAndValue. RFC 2253 does not specify the order
in which to encode the elements of the RelativeDistinguishedName and
so to ensure that this encoding is unique, we add the following rule
to those specified by RFC 2253:

When converting a multi-valued RelativeDistinguishedName
to a string, the output consists of the string encodings
of each AttributeTypeAndValue, in the same order as

specified by the DER encoding.

Similarly, in cases where the KDC does not provide a specific
policy-based mapping from the X.500 name or X.509 Version 3
SubjectAltName extension in the user's certificate to a Kerberos
principal name, PKINIT requires the direct encoding of the X.500
name as a PrincipalName. In this case, the name-type of the
principal name MUST be set to KRB_NT-X500-PRINCIPAL. This new
name type is defined in RFC 1510bis as:

KRB_NT_X500_PRINCIPAL 6

For this type, the name-string MUST be set as follows:

RFC2253Encode(DistinguishedName)

as described above. When this name type is used, the principal's
realm MUST be set to the certificate authority's distinguished
name using the X500-RFC2253 realm name format described earlier in
this section.

Note that the same string may be represented using several different
ASN.1 data types. As the result, the reverse conversion from an
RFC2253-encoded principal name back to an X.500 name may not be
unique and may result in an X.500 name that is not the same as the
original X.500 name found in the client certificate.

RFC 1510bis describes an alternate encoding of an X.500 name into a
realm name. However, as described in RFC 1510bis, the alternate
encoding does not guarantee a unique mapping from a
DistinguishedName inside a certificate into a realm name and
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similarly cannot be used to produce a unique principal name. PKINIT
therefore uses an RFC 2253-based name mapping approach, as specified
above.

RFC 1510bis specifies the ASN.1 structure for PrincipalName as follows:

PrincipalName ::= SEQUENCE {
name-type[0] INTEGER,
name-string[1] SEQUENCE OF GeneralString

}

The following rules relate to the matching of PrincipalNames
with regard to the PKI name constraints for CAs as laid out in RFC
2459 [12]. In order to be regarded as a match (for permitted and
excluded name trees), the following MUST be satisfied.

1. If the constraint is given as a user plus realm name, or
as a client principal name plus realm name (as specified in
RFC 1510bis), the realm name MUST be valid (see 2.a-d below)
and the match MUST be exact, byte for byte.

2. If the constraint is given only as a realm name, matching
depends on the type of the realm:

a. If the realm contains a colon (':') before any equal
sign ('='), it is treated as a realm of type Other,
and MUST match exactly, byte for byte.

b. Otherwise, if the realm name conforms to rules regarding
the format of DNS names, it is considered a realm name of
type Domain. The constraint may be given as a realm
name 'FOO.BAR', which matches any PrincipalName within
the realm 'FOO.BAR' but not those in subrealms such as
'CAR.FOO.BAR'. A constraint of the form '.FOO.BAR'
matches PrincipalNames in subrealms of the form
'CAR.FOO.BAR' but not the realm 'FOO.BAR' itself.

c. Otherwise, the realm name is invalid and does not match
under any conditions.

3.1.1. Encryption and Key Formats

In the exposition below, we use the terms public key and private
key generically. It should be understood that the term "public
key" may be used to refer to either a public encryption key or a
signature verification key, and that the term "private key" may be
used to refer to either a private decryption key or a signature
generation key. The fact that these are logically distinct does
not preclude the assignment of bitwise identical keys for RSA
keys.

In the case of Diffie-Hellman, the key is produced from the agreed
bit string as follows:

* Truncate the bit string to the required length.
* Apply the specific cryptosystem's random-to-key function.

Appropriate key constraints for each valid cryptosystem are given
in RFC 1510bis.

3.1.2. Algorithm Identifiers

PKINIT does not define, but does permit, the algorithm identifiers
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listed below.

3.1.2.1. Signature Algorithm Identifiers

The following signature algorithm identifiers specified in [8] and
in [12] are used with PKINIT:

sha-1WithRSAEncryption (RSA with SHA1)
md5WithRSAEncryption (RSA with MD5)
id-dsa-with-sha1 (DSA with SHA1)

3.1.2.2 Diffie-Hellman Key Agreement Algorithm Identifier

The following algorithm identifier shall be used within the
SubjectPublicKeyInfo data structure: dhpublicnumber

This identifier and the associated algorithm parameters are
specified in RFC 2459 [12].

3.1.2.3. Algorithm Identifiers for RSA Encryption

These algorithm identifiers are used inside the EnvelopedData data
structure, for encrypting the temporary key with a public key:

rsaEncryption (RSA encryption, PKCS#1 v1.5)
id-RSAES-OAEP (RSA encryption, PKCS#1 v2.0)

Both of the above RSA encryption schemes are specified in [13].
Currently, only PKCS#1 v1.5 is specified by CMS [8], although the
CMS specification says that it will likely include PKCS#1 v2.0 in
the future. (PKCS#1 v2.0 addresses adaptive chosen ciphertext
vulnerability discovered in PKCS#1 v1.5.)

3.1.2.4. Algorithm Identifiers for Encryption with Secret Keys

These algorithm identifiers are used inside the EnvelopedData data
structure in the PKINIT Reply, for encrypting the reply key with the
temporary key:

des-ede3-cbc (3-key 3-DES, CBC mode)
rc2-cbc (RC2, CBC mode)

The full definition of the above algorithm identifiers and their
corresponding parameters (an IV for block chaining) is provided in
the CMS specification [8].

3.2. Public Key Authentication

Implementation of the changes in this section is REQUIRED for
compliance with PKINIT.

3.2.1. Client Request

Public keys may be signed by some certification authority (CA), or
they may be maintained by the KDC in which case the KDC is the
trusted authority. Note that the latter mode does not require the
use of certificates.

The initial authentication request is sent as per RFC 1510bis, except
that a preauthentication field containing data signed by the user's
private key accompanies the request:

PA-PK-AS-REQ ::= SEQUENCE {
-- PA TYPE 14
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signedAuthPack [0] ContentInfo,
-- Defined in CMS [8];
-- SignedData OID is {pkcs7 2}
-- AuthPack (below) defines the
-- data that is signed.

trustedCertifiers [1] SEQUENCE OF TrustedCas OPTIONAL,
-- This is a list of CAs that the
-- client trusts and that certify
-- KDCs.

kdcCert [2] IssuerAndSerialNumber OPTIONAL
-- As defined in CMS [8];
-- specifies a particular KDC
-- certificate if the client
-- already has it.

encryptionCert [3] IssuerAndSerialNumber OPTIONAL
-- For example, this may be the
-- client's Diffie-Hellman
-- certificate, or it may be the
-- client's RSA encryption
-- certificate.

}

TrustedCas ::= CHOICE {
principalName [0] KerberosName,

-- as defined below
caName [1] Name

-- fully qualified X.500 name
-- as defined by X.509

issuerAndSerial [2] IssuerAndSerialNumber
-- Since a CA may have a number of
-- certificates, only one of which
-- a client trusts

}

The type of the ContentInfo in the signedAuthPack is SignedData.
Its usage is as follows:

The SignedData data type is specified in the Cryptographic
Message Syntax, a product of the S/MIME working group of the
IETF. The following describes how to fill in the fields of
this data:

1. The encapContentInfo field MUST contain the PKAuthenticator
and, optionally, the client's Diffie Hellman public value.

a. The eContentType field MUST contain the OID value for
pkauthdata: iso (1) org (3) dod (6) internet (1)
security (5) kerberosv5 (2) pkinit (3) pkauthdata (1)

b. The eContent field is data of the type AuthPack (below).

2. The signerInfos field contains the signature of AuthPack.

3. The Certificates field, when non-empty, contains the client's
certificate chain. If present, the KDC uses the public key
from the client's certificate to verify the signature in the
request. Note that the client may pass different certificate
chains that are used for signing or for encrypting. Thus,
the KDC may utilize a different client certificate for
signature verification than the one it uses to encrypt the
reply to the client. For example, the client may place a
Diffie-Hellman certificate in this field in order to convey
its static Diffie Hellman certificate to the KDC to enable
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static-ephemeral Diffie-Hellman mode for the reply; in this
case, the client does NOT place its public value in the
AuthPack (defined below). As another example, the client may
place an RSA encryption certificate in this field. However,
there MUST always be (at least) a signature certificate.

4. When a DH key is being used, the public exponent is provided
in the subjectPublicKey field of the SubjectPublicKeyInfo and
the DH parameters are supplied as a DomainParameters in the
AlgorithmIdentitfier parameters. The DH paramaters SHOULD be
chosen from the First and Second defined Oakley Groups [The
Internet Key Exchange (IKE) RFC-2409], if a server will not
accept either of these groups, it will respond with a krb-
error of KDC_ERR_KEY_TOO_WEAK and the e_data will contain a
DomainParameters with appropriate parameters for the client
to use.

5. The KDC may wish to use cached Diffie-Hellman parameters
(see Section 3.2.2, KDC Response). To indicate acceptance
of cached parameters, the client sends zero in the nonce
field of the PKAuthenticator. Zero is not a valid value
for this field under any other circumstances. If cached
parameters are used, the client and the KDC MUST perform
key derivation (for the appropriate cryptosystem) on the
resulting encryption key, as specified in RFC 1510bis. (With
a zero nonce, message binding is performed using the nonce
in the main request, which must be encrypted using the
encapsulated reply key.)

AuthPack ::= SEQUENCE {
pkAuthenticator [0] PKAuthenticator,
clientPublicValue [1] SubjectPublicKeyInfo OPTIONAL

-- if client is using Diffie-Hellman
-- (ephemeral-ephemeral only)

}

PKAuthenticator ::= SEQUENCE {
cusec [0] INTEGER,

-- for replay prevention as in RFC 1510bis
ctime [1] KerberosTime,

-- for replay prevention as in RFC 1510bis
nonce [2] INTEGER,

-- zero only if client will accept
-- cached DH parameters from KDC;
-- must be non-zero otherwise

pachecksum [3] Checksum
-- Checksum over KDC-REQ-BODY
-- Defined by Kerberos spec;

-- must be unkeyed, e.g. sha1 or rsa-md5
}

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,

-- dhKeyAgreement
subjectPublicKey BIT STRING

-- for DH, equals
-- public exponent (INTEGER encoded
-- as payload of BIT STRING)

} -- as specified by the X.509 recommendation [7]

AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,

-- for dhKeyAgreement, this is
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-- { iso (1) member-body (2) US (840)
-- ansi-x942(10046) number-type(2) 1 }
-- from RFC 2459 [12]

parameters ANY DEFINED by algorithm OPTIONAL
-- for dhKeyAgreement, this is
-- DomainParameters

} -- as specified by the X.509 recommendation [7]

DomainParameters ::= SEQUENCE {
p INTEGER, -- odd prime, p=jq +1
g INTEGER, -- generator, g
q INTEGER, -- factor of p-1
j INTEGER OPTIONAL, -- subgroup factor
validationParms ValidationParms OPTIONAL

} -- as defined in RFC 2459 [12]

ValidationParms ::= SEQUENCE {
seed BIT STRING,

-- seed for the system parameter
-- generation process

pgenCounter INTEGER
-- integer value output as part
-- of the of the system parameter
-- prime generation process

} -- as defined in RFC 2459 [12]

If the client passes an issuer and serial number in the request,
the KDC is requested to use the referred-to certificate. If none
exists, then the KDC returns an error of type
KDC_ERR_CERTIFICATE_MISMATCH. It also returns this error if, on the
other hand, the client does not pass any trustedCertifiers,
believing that it has the KDC's certificate, but the KDC has more
than one certificate. The KDC should include information in the
KRB-ERROR message that indicates the KDC certificate(s) that a
client may utilize. This data is specified in the e-data, which
is defined in RFC 1510bis revisions as a SEQUENCE of TypedData:

TypedData ::= SEQUENCE {
data-type [0] INTEGER,
data-value [1] OCTET STRING,

} -- per Kerberos RFC 1510bis

where:
data-type = TD-PKINIT-CMS-CERTIFICATES = 101
data-value = CertificateSet // as specified by CMS [8]

The PKAuthenticator carries information to foil replay attacks, to
bind the pre-authentication data to the KDC-REQ-BODY, and to bind the
request and response. The PKAuthenticator is signed with the client's
signature key.

3.2.2. KDC Response

Upon receipt of the AS_REQ with PA-PK-AS-REQ pre-authentication
type, the KDC attempts to verify the user's certificate chain
(userCert), if one is provided in the request. This is done by
verifying the certification path against the KDC's policy of
legitimate certifiers.

If the client's certificate chain contains no certificate signed by
a CA trusted by the KDC, then the KDC sends back an error message
of type KDC_ERR_CANT_VERIFY_CERTIFICATE. The accompanying e-data
is a SEQUENCE of one TypedData (with type TD-TRUSTED-CERTIFIERS=104)
whose data-value is an OCTET STRING which is the DER encoding of
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TrustedCertifiers ::= SEQUENCE OF PrincipalName
-- X.500 name encoded as a principal name
-- see Section 3.1

If while verifying a certificate chain the KDC determines that the
signature on one of the certificates in the CertificateSet from
the signedAuthPack fails verification, then the KDC returns an
error of type KDC_ERR_INVALID_CERTIFICATE. The accompanying
e-data is a SEQUENCE of one TypedData (with type
TD-CERTIFICATE-INDEX=105) whose data-value is an OCTET STRING
which is the DER encoding of the index into the CertificateSet
ordered as sent by the client.

CertificateIndex ::= INTEGER
-- 0 = 1st certificate,
-- (in order of encoding)
-- 1 = 2nd certificate, etc

The KDC may also check whether any of the certificates in the
client's chain has been revoked. If one of the certificates has
been revoked, then the KDC returns an error of type
KDC_ERR_REVOKED_CERTIFICATE; if such a query reveals that
the certificate's revocation status is unknown or not
available, then if required by policy, the KDC returns the
appropriate error of type KDC_ERR_REVOCATION_STATUS_UNKNOWN or
KDC_ERR_REVOCATION_STATUS_UNAVAILABLE. In any of these three
cases, the affected certificate is identified by the accompanying
e-data, which contains a CertificateIndex as described for
KDC_ERR_INVALID_CERTIFICATE.

If the certificate chain can be verified, but the name of the
client in the certificate does not match the client's name in the
request, then the KDC returns an error of type
KDC_ERR_CLIENT_NAME_MISMATCH. There is no accompanying e-data
field in this case.

Even if all succeeds, the KDC may--for policy reasons--decide not
to trust the client. In this case, the KDC returns an error message
of type KDC_ERR_CLIENT_NOT_TRUSTED. One specific case of this is
the presence or absence of an Enhanced Key Usage (EKU) OID within
the certificate extensions. The rules regarding acceptability of
an EKU sequence (or the absence of any sequence) are a matter of
local policy. For the benefit of implementers, we define a PKINIT
EKU OID as the following: iso (1) org (3) dod (6) internet (1)
security (5) kerberosv5 (2) pkinit (3) pkekuoid (2).

If a trust relationship exists, the KDC then verifies the client's
signature on AuthPack. If that fails, the KDC returns an error
message of type KDC_ERR_INVALID_SIG. Otherwise, the KDC uses the
timestamp (ctime and cusec) in the PKAuthenticator to assure that
the request is not a replay. The KDC also verifies that its name
is specified in the PKAuthenticator.

If the clientPublicValue field is filled in, indicating that the
client wishes to use Diffie-Hellman key agreement, then the KDC
checks to see that the parameters satisfy its policy. If they do
not (e.g., the prime size is insufficient for the expected
encryption type), then the KDC sends back an error message of type
KDC_ERR_KEY_TOO_WEAK, with an e-data containing a structure of
type DomainParameters with appropriate DH parameters for the client
to retry the request. Otherwise, it generates its own public and
private values for the response.
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The KDC also checks that the timestamp in the PKAuthenticator is
within the allowable window and that the principal name and realm
are correct. If the local (server) time and the client time in the
authenticator differ by more than the allowable clock skew, then the
KDC returns an error message of type KRB_AP_ERR_SKEW as defined in
RFC 1510bis.

Assuming no errors, the KDC replies as per RFC 1510bis, except as
follows. The user's name in the ticket is determined by the
following decision algorithm:

1. If the KDC has a mapping from the name in the certificate
to a Kerberos name, then use that name.
Else

2. If the certificate contains the SubjectAltName extension
and the local KDC policy defines a mapping from the
SubjectAltName to a Kerberos name, then use that name.
Else

3. Use the name as represented in the certificate, mapping
as necessary (e.g., as per RFC 2253 for X.500 names). In
this case the realm in the ticket MUST be the name of the
certifier that issued the user's certificate.

Note that a principal name may be carried in the subjectAltName
field of a certificate. This name may be mapped to a principal
record in a security database based on local policy, for example
the subjectAltName may be kerberos/principal@realm format. In
this case the realm name is not that of the CA but that of the
local realm doing the mapping (or some realm name chosen by that
realm).

If a non-KDC X.509 certificate contains the principal name within
the subjectAltName version 3 extension, that name may utilize
KerberosName as defined below, or, in the case of an S/MIME
certificate [14], may utilize the email address. If the KDC
is presented with an S/MIME certificate, then the email address
within subjectAltName will be interpreted as a principal and realm
separated by the "@" sign, or as a name that needs to be mapped
according to local policy. If the resulting name does not correspond
to a registered principal name, then the principal name is formed as
defined in section 3.1.

The trustedCertifiers field contains a list of certification
authorities trusted by the client, in the case that the client does
not possess the KDC's public key certificate. If the KDC has no
certificate signed by any of the trustedCertifiers, then it returns
an error of type KDC_ERR_KDC_NOT_TRUSTED.

KDCs should try to (in order of preference):
1. Use the KDC certificate identified by the serialNumber included

in the client's request.
2. Use a certificate issued to the KDC by one of the client's

trustedCertifier(s);
If the KDC is unable to comply with any of these options, then the
KDC returns an error message of type KDC_ERR_KDC_NOT_TRUSTED to the
client.

The KDC encrypts the reply not with the user's long-term key, but
with the Diffie Hellman derived key or a random key generated
for this particular response which is carried in the padata field of
the TGS-REP message.
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PA-PK-AS-REP ::= CHOICE {
-- PA TYPE 15

dhSignedData [0] ContentInfo,
-- Defined in CMS [8] and used only with
-- Diffie-Hellman key exchange (if the
-- client public value was present in the
-- request).
-- SignedData OID is {pkcs7 2}
-- This choice MUST be supported
-- by compliant implementations.

encKeyPack [1] ContentInfo
-- Defined in CMS [8].
-- The temporary key is encrypted
-- using the client public key
-- key.
-- EnvelopedData OID is {pkcs7 3}
-- SignedReplyKeyPack, encrypted
-- with the temporary key, is also
-- included.

}

The type of the ContentInfo in the dhSignedData is SignedData.
Its usage is as follows:

When the Diffie-Hellman option is used, dhSignedData in
PA-PK-AS-REP provides authenticated Diffie-Hellman parameters
of the KDC. The reply key used to encrypt part of the KDC reply
message is derived from the Diffie-Hellman exchange:

1. Both the KDC and the client calculate a secret value
(g^ab mod p), where a is the client's private exponent and
b is the KDC's private exponent.

2. Both the KDC and the client take the first N bits of this
secret value and convert it into a reply key. N depends on
the reply key type.

a. For example, if the reply key is DES, N=64 bits, where
some of the bits are replaced with parity bits, according
to FIPS PUB 74.

b. As another example, if the reply key is (3-key) 3-DES,
N=192 bits, where some of the bits are replaced with
parity bits, according to FIPS PUB 74.

3. The encapContentInfo field MUST contain the KdcDHKeyInfo as
defined below.

a. The eContentType field MUST contain the OID value for
pkdhkeydata: iso (1) org (3) dod (6) internet (1)
security (5) kerberosv5 (2) pkinit (3) pkdhkeydata (2)

b. The eContent field is data of the type KdcDHKeyInfo
(below).

4. The certificates field MUST contain the certificates
necessary for the client to establish trust in the KDC's
certificate based on the list of trusted certifiers sent by
the client in the PA-PK-AS-REQ. This field may be empty if
the client did not send to the KDC a list of trusted
certifiers (the trustedCertifiers field was empty, meaning
that the client already possesses the KDC's certificate).
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5. The signerInfos field is a SET that MUST contain at least
one member, since it contains the actual signature.

6. If the client indicated acceptance of cached Diffie-Hellman
parameters from the KDC, and the KDC supports such an option
(for performance reasons), the KDC should return a zero in
the nonce field and include the expiration time of the
parameters in the dhKeyExpiration field. If this time is
exceeded, the client SHOULD NOT use the reply. If the time
is absent, the client SHOULD NOT use the reply and MAY
resubmit a request with a non-zero nonce (thus indicating
non-acceptance of cached Diffie-Hellman parameters). As
indicated above in Section 3.2.1, Client Request, when the
KDC uses cached parameters, the client and the KDC MUST
perform key derivation (for the appropriate cryptosystem)
on the resulting encryption key, as specified in RFC 1510bis.

KdcDHKeyInfo ::= SEQUENCE {
-- used only when utilizing Diffie-Hellman

subjectPublicKey [0] BIT STRING,
-- Equals public exponent (g^a mod p)
-- INTEGER encoded as payload of
-- BIT STRING

nonce [1] INTEGER,
-- Binds response to the request
-- Exception: Set to zero when KDC
-- is using a cached DH value

dhKeyExpiration [2] KerberosTime OPTIONAL
-- Expiration time for KDC's cached
-- DH value

}

The type of the ContentInfo in the encKeyPack is EnvelopedData. Its
usage is as follows:

The EnvelopedData data type is specified in the Cryptographic
Message Syntax, a product of the S/MIME working group of the
IETF. It contains a temporary key encrypted with the PKINIT
client's public key. It also contains a signed and encrypted
reply key.

1. The originatorInfo field is not required, since that
information may be presented in the signedData structure
that is encrypted within the encryptedContentInfo field.

2. The optional unprotectedAttrs field is not required for
PKINIT.

3. The recipientInfos field is a SET which MUST contain exactly
one member of the KeyTransRecipientInfo type for encryption
with a public key.

a. The encryptedKey field (in KeyTransRecipientInfo)
contains the temporary key which is encrypted with the
PKINIT client's public key.

4. The encryptedContentInfo field contains the signed and
encrypted reply key.

a. The contentType field MUST contain the OID value for
id-signedData: iso (1) member-body (2) us (840)
rsadsi (113549) pkcs (1) pkcs7 (7) signedData (2)
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b. The encryptedContent field is encrypted data of the CMS
type signedData as specified below.

i. The encapContentInfo field MUST contains the
ReplyKeyPack.

* The eContentType field MUST contain the OID value
for pkrkeydata: iso (1) org (3) dod (6) internet (1)
security (5) kerberosv5 (2) pkinit (3) pkrkeydata (3)

* The eContent field is data of the type ReplyKeyPack
(below).

ii. The certificates field MUST contain the certificates
necessary for the client to establish trust in the
KDC's certificate based on the list of trusted
certifiers sent by the client in the PA-PK-AS-REQ.
This field may be empty if the client did not send
to the KDC a list of trusted certifiers (the
trustedCertifiers field was empty, meaning that the
client already possesses the KDC's certificate).

iii. The signerInfos field is a SET that MUST contain at
least one member, since it contains the actual
signature.

ReplyKeyPack ::= SEQUENCE {
-- not used for Diffie-Hellman

replyKey [0] EncryptionKey,
-- from RFC 1510bis
-- used to encrypt main reply
-- ENCTYPE is at least as strong as
-- ENCTYPE of session key

nonce [1] INTEGER,
-- binds response to the request
-- must be same as the nonce
-- passed in the PKAuthenticator

}

3.2.2.1. Use of transited Field

Since each certifier in the certification path of a user's
certificate is equivalent to a separate Kerberos realm, the name
of each certifier in the certificate chain MUST be added to the
transited field of the ticket. The format of these realm names is
defined in Section 3.1 of this document. If applicable, the
transit-policy-checked flag should be set in the issued ticket.

3.2.2.2. Kerberos Names in Certificates

The KDC's certificate(s) MUST bind the public key(s) of the KDC to
a name derivable from the name of the realm for that KDC. X.509
certificates MUST contain the principal name of the KDC (defined in
RFC 1510bis) as the SubjectAltName version 3 extension. Below is
the definition of this version 3 extension, as specified by the
X.509 standard:

subjectAltName EXTENSION ::= {
SYNTAX GeneralNames
IDENTIFIED BY id-ce-subjectAltName

}
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GeneralNames ::= SEQUENCE SIZE(1..MAX) OF GeneralName

GeneralName ::= CHOICE {
otherName [0] OtherName,
...

}

OtherName ::= SEQUENCE {
type-id OBJECT IDENTIFIER,
value [0] EXPLICIT ANY DEFINED BY type-id

}

For the purpose of specifying a Kerberos principal name, the value
in OtherName MUST be a KerberosName, defined as follows:

KerberosName ::= SEQUENCE {
realm [0] Realm,
principalName [1] PrincipalName

}

This specific syntax is identified within subjectAltName by setting
the type-id in OtherName to krb5PrincipalName, where (from the
Kerberos specification) we have

krb5 OBJECT IDENTIFIER ::= { iso (1)
org (3)
dod (6)
internet (1)
security (5)
kerberosv5 (2) }

krb5PrincipalName OBJECT IDENTIFIER ::= { krb5 2 }

(This specification may also be used to specify a Kerberos name
within the user's certificate.) The KDC's certificate may be signed
directly by a CA, or there may be intermediaries if the server resides
within a large organization, or it may be unsigned if the client
indicates possession (and trust) of the KDC's certificate.

Note that the KDC's principal name has the instance equal to the
realm, and those fields should be appropriately set in the realm
and principalName fields of the KerberosName. This is the case
even when obtaining a cross-realm ticket using PKINIT.

3.2.3. Client Extraction of Reply

The client then extracts the random key used to encrypt the main
reply. This random key (in encPaReply) is encrypted with either the
client's public key or with a key derived from the DH values
exchanged between the client and the KDC. The client uses this
random key to decrypt the main reply, and subsequently proceeds as
described in RFC 1510bis.

3.2.4. Required Algorithms

Not all of the algorithms in the PKINIT protocol specification have
to be implemented in order to comply with the proposed standard.
Below is a list of the required algorithms:

* Diffie-Hellman public/private key pairs
* utilizing Diffie-Hellman ephemeral-ephemeral mode
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* SHA1 digest and RSA for signatures
* SHA1 digest for the Checksum in the PKAuthenticator

* using Kerberos checksum type 'sha1'
* 3-key triple DES keys derived from the Diffie-Hellman Exchange
* 3-key triple DES Temporary and Reply keys

4. Logistics and Policy

This section describes a way to define the policy on the use of
PKINIT for each principal and request.

The KDC is not required to contain a database record for users
who use public key authentication. However, if these users are
registered with the KDC, it is recommended that the database record
for these users be modified to an additional flag in the attributes
field to indicate that the user should authenticate using PKINIT.
If this flag is set and a request message does not contain the
PKINIT preauthentication field, then the KDC sends back as error of
type KDC_ERR_PREAUTH_REQUIRED indicating that a preauthentication
field of type PA-PK-AS-REQ must be included in the request.

5. Security Considerations

PKINIT raises a few security considerations, which we will address
in this section.

First of all, PKINIT extends the cross-realm model to the public
key infrastructure. Anyone using PKINIT must be aware of how the
certification infrastructure they are linking to works.

Also, as in standard Kerberos, PKINIT presents the possibility of
interactions between different cryptosystems of varying strengths,
and this now includes public-key cryptosystems. Many systems, for
instance, allow the use of 512-bit public keys. Using such keys
to wrap data encrypted under strong conventional cryptosystems,
such as triple-DES, may be inappropriate.

Care should be taken in how certificates are chosen for the purposes
of authentication using PKINIT. Some local policies require that key
escrow be applied for certain certificate types. People deploying
PKINIT should be aware of the implications of using certificates that
have escrowed keys for the purposes of authentication.

As described in Section 3.2, PKINIT allows for the caching of the
Diffie-Hellman parameters on the KDC side, for performance reasons.
For similar reasons, the signed data in this case does not vary from
message to message, until the cached parameters expire. Because of
the persistence of these parameters, the client and the KDC are to
use the appropriate key derivation measures (as described in RFC
1510bis) when using cached DH parameters.

PKINIT does not provide for a "return routability test" to prevent
attackers from mounting a denial of service attack on the KDC by
causing it to perform needless expensive cryptographic operations.
Strictly speaking, this is also true of base Kerberos, although the
potential cost is not as great in base Kerberos, because it does
not make use of public key cryptography.

Lastly, PKINIT calls for randomly generated keys for conventional
cryptosystems. Many such systems contain systematically "weak"
keys. For recommendations regarding these weak keys, see RFC
1510bis.
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6. Transport Issues

Certificate chains can potentially grow quite large and span several
UDP packets; this in turn increases the probability that a Kerberos
message involving PKINIT extensions will be broken in transit. In
light of the possibility that the Kerberos specification will
require KDCs to accept requests using TCP as a transport mechanism,
we make the same recommendation with respect to the PKINIT
extensions as well.
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Appendix D. PKCROSS Specification 
The PKCROSS specification is currently still an IETF draft. This document complies 
only with the version of the PKCROSS draft that is included in this section. The 
PacketCable security team will continue to track progress of the PKCROSS draft through 
the IETF. 
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Public Key Cryptography for Cross-Realm Authentication in Kerberos

0. Status Of this Memo

This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC 2026. Internet-Drafts are
working documents of the Internet Engineering Task Force (IETF),
its areas, and its working groups. Note that other groups may
also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other
documents at any time. It is inappropriate to use Internet-Drafts
as reference material or to cite them other than as ``work in
progress.''

To learn the current status of any Internet-Draft, please check
the ``1id-abstracts.txt'' listing contained in the Internet-Drafts
Shadow Directories on ftp.ietf.org (US East Coast),
nic.nordu.net (Europe), ftp.isi.edu (US West Coast), or
munnari.oz.au (Pacific Rim).

The distribution of this memo is unlimited. It is filed as
draft-ietf-kerberos-pk-cross-07.txt, and expires May 15, 2001.
Please send comments to the authors.

1. Abstract

This document defines extensions to the Kerberos protocol
specification [1] to provide a method for using public key
cryptography to enable cross-realm authentication. The methods
defined here specify the way in which message exchanges are to be
used to transport cross-realm secret keys protected by encryption
under public keys certified as belonging to KDCs.
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2. Introduction

Symmetric and asymmetric key systems may co-exist within hybrid
architectures in order to leverage the advantages and mitigate
issues within the respective systems. An example of a hybrid
solution that may employ both symmetric and asymmetric technologies
is Kerberos ciphersuites in TLS [KERBTLS] which utilizes the
Kerberos protocol [KERB] [KERB94] in conjunction with TLS [TLS]
which has commonly been thought of as a public key protocol.

The Kerberos can leverage the advantages provided by public key
cryptography. PKINIT [PKINIT] describes the use of public key
cryptography in the initial authentication exchange in Kerberos.
PKTAPP [PKTAPP] describes how an application service can essentially
issue a kerberos ticket to itself after utilizing public key
cryptography for authentication. This specification describes the
use of public key cryptography in cross-realm authentication.

Without the use of public key cryptography, administrators must
maintain separate keys for every realm that wishes to exchange
authentication information with another realm (which implies n(n-1)
keys), or they must utilize a hierarchical arrangement of realms,
which may increase network traffic and complicate the trust model by
requiring evaluation of transited realms.

Even with the multi-hop cross-realm authentication, there must be
some way to locate the path by which separate realms are to be
transited. The current method, which makes use of the DNS-like
realm names typical to Kerberos, requires trust of the intermediate
KDCs.

PKCROSS utilizes a public key infrastructure (PKI) [X509] to
simplify the administrative burden of maintaining cross-realm keys.
Such usage leverages a PKI for a non-centrally-administratable
environment (namely, inter-realm). Thus, a shared key for cross-
realm authentication can be established for a set period of time,
and a remote realm is able to issue policy information that is
returned to itself when a client requests cross-realm
authentication. Such policy information may be in the form of
restrictions [NEUMAN]. Furthermore, these methods are transparent
to the client; therefore, only the KDCs need to be modified to use
them. In this way, we take advantage of the distributed trust
management capabilities of public key cryptography while maintaining
the advantages of localized trust management provided by Kerberos.

Although this specification utilizes the protocol specified in the
PKINIT specification, it is not necessary to implement client
changes in order to make use of the changes in this document.

3. Objectives

The objectives of this specification are as follows:

1. Simplify the administration required to establish Kerberos
cross-realm keys.

2. Avoid modification of clients and application servers.
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3. Allow remote KDC to control its policy on cross-realm
keys shared between KDCs, and on cross-realm tickets
presented by clients.

4. Remove any need for KDCs to maintain state about keys
shared with other KDCs.

5. Leverage the work done for PKINIT to provide the public key
protocol for establishing symmetric cross realm keys.

4. Definitions

The following notation is used throughout this specification:
KDC_l ........... local KDC
KDC_r ........... remote KDC
XTKT_(l,r) ...... PKCROSS ticket that the remote KDC issues to the

local KDC
TGT_(c,r) ....... cross-realm TGT that the local KDC issues to the

client for presentation to the remote KDC

This specification defines the following new types to be added to
the Kerberos specification:

PKCROSS kdc-options field in the AS_REQ is bit 9
TE-TYPE-PKCROSS-KDC 2
TE-TYPE-PKCROSS-CLIENT 3

This specification defines the following ASN.1 type for conveying
policy information:
CrossRealmTktData ::= SEQUENCE OF TypedData

This specification defines the following types for policy
information conveyed in CrossRealmTktData:

PLC_LIFETIME 1
PLC_SET_TKT_FLAGS 2
PLC_NOSET_TKT_FLAGS 3

TicketExtensions are defined per the Kerberos specification
[KERB-REV]:
TicketExtensions ::= SEQUENCE OF TypedData

Where
TypedData ::= SEQUENCE {

data-type[0] INTEGER,
data-value[1] OCTET STRING OPTIONAL

}

5. Protocol Specification

We assume that the client has already obtained a TGT. To perform
cross-realm authentication, the client does exactly what it does
with ordinary (i.e. non-public-key-enabled) Kerberos; the only
changes are in the KDC; although the ticket which the client
forwards to the remote realm may be changed. This is acceptable
since the client treats the ticket as opaque.

5.1. Overview of Protocol

The basic operation of the PKCROSS protocol is as follows:

1. The client submits a request to the local KDC for
credentials for the remote realm. This is just a typical
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cross realm request that may occur with or without PKCROSS.

2. The local KDC submits a PKINIT request to the remote KDC to
obtain a "special" PKCROSS ticket. This is a standard
PKINIT request, except that PKCROSS flag (bit 9) is set in
the kdc-options field in the AS_REQ.

3. The remote KDC responds as per PKINIT, except that
the ticket contains a TicketExtension, which contains
policy information such as lifetime of cross realm tickets
issued by KDC_l to a client. The local KDC must reflect
this policy information in the credentials it forwards to
the client. Call this ticket XTKT_(l,r) to indicate that
this ticket is used to authenticate the local KDC to the
remote KDC.

4. The local KDC passes a ticket, TGT_(c,r) (the cross realm
TGT between the client and remote KDC), to the client.
This ticket contains in its TicketExtension field the
ticket, XTKT_(l,r), which contains the cross-realm key.
The TGT_(c,r) ticket is encrypted using the key sealed in
XTKT_(l,r). (The TicketExtension field is not encrypted.)
The local KDC may optionally include another TicketExtension
type that indicates the hostname and/or IP address for the
remote KDC.

5. The client submits the request directly to the remote
KDC, as before.

6. The remote KDC extracts XTKT_(l,r) from the TicketExtension
in order to decrypt the encrypted part of TGT_(c,r).

--------------------------------------------------------------------

Client Local KDC (KDC_l) Remote KDC (KDC_r)
------ ----------------- ------------------
Normal Kerberos
request for
cross-realm
ticket for KDC_r
---------------------->

PKINIT request for
XTKT(l,r) - PKCROSS flag
set in the AS-REQ
* ------------------------->

PKINIT reply with
XTKT_(l,r) and
policy info in
ticket extension

<-------------------------- *

Normal Kerberos reply
with TGT_(c,r) and
XTKT(l,r) in ticket
extension

<---------------------------------

Normal Kerberos
cross-realm TGS-REQ
for remote
application
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service with
TGT_(c,r) and
XTKT(l,r) in ticket
extension
------------------------------------------------->

Normal Kerberos
cross-realm
TGS-REP

<---------------------------------------------------------------

* Note that the KDC to KDC messages occur only periodically, since
the local KDC caches the XTKT_(l,r).

--------------------------------------------------------------------

Sections 5.2 through 5.4 describe in detail steps 2 through 4
above. Section 5.6 describes the conditions under which steps
2 and 3 may be skipped.

Note that the mechanism presented above requires infrequent KDC to
KDC communication (as dictated by policy - this is discussed
later). Without such an exchange, there are the following issues:
1) KDC_l would have to issue a ticket with the expectation that

KDC_r will accept it.
2) In the message that the client sends to KDC_r, KDC_l would have

to authenticate KDC_r with credentials that KDC_r trusts.
3) There is no way for KDC_r to convey policy information to KDC_l.
4) If, based on local policy, KDC_r does not accept a ticket from

KDC_l, then the client gets stuck in the middle. To address such
an issue would require modifications to standard client
processing behavior.

Therefore, the infrequent use of KDC to KDC communication assures
that inter-realm KDC keys may be established in accordance with local
policies and that clients may continue to operate without
modification.

5.2. Local KDC's Request to Remote KDC

When the local KDC receives a request for cross-realm
authentication, it first checks its ticket cache to see if it has a
valid PKCROSS ticket, XTKT_(l,r). If it has a valid XTKT_(l,r),
then it does not need to send a request to the remote KDC (see
section 5.5).

If the local KDC does not have a valid XTKT_(l,r), it sends a
request to the remote KDC in order to establish a cross realm key
and obtain the XTKT_(l,r). This request is in fact a PKINIT request
as described in the PKINIT specification; i.e., it consists of an AS-
REQ with a PA-PK-AS-REQ included as a preauthentication field.
Note, that the AS-REQ MUST have the PKCROSS flag (bit 9) set in the
kdc_options field of the AS-REQ. Otherwise, this exchange exactly
follows the description given in the PKINIT specification.

5.3. Remote KDC's Response to Local KDC

When the remote KDC receives the PKINIT/PKCROSS request from the
local KDC, it sends back a PKINIT response as described in
the PKINIT specification with the following exception: the encrypted
part of the Kerberos ticket is not encrypted with the krbtgt key;
instead, it is encrypted with the ticket granting server's PKCROSS
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key. This key, rather than the krbtgt key, is used because it
encrypts a ticket used for verifying a cross realm request rather
than for issuing an application service ticket. Note that, as a
matter of policy, the session key for the XTKT_(l,r) MAY be of
greater strength than that of a session key for a normal PKINIT
reply, since the XTKT_(l,r) SHOULD be much longer lived than a
normal application service ticket.

In addition, the remote KDC SHOULD include policy information in the
XTKT_(l,r). This policy information would then be reflected in the
cross-realm TGT, TGT_(c,r). Otherwise, the policy for TGT_(c,r)
would be dictated by KDC_l rather than by KDC_r. The local KDC MAY
enforce a more restrictive local policy when creating a cross-realm
ticket, TGT_(c,r). For example, KDC_r may dictate a lifetime
policy of eight hours, but KDC_l may create TKT_(c,r) with a
lifetime of four hours, as dictated by local policy. Also, the
remote KDC MAY include other information about itself along with the
PKCROSS ticket. These items are further discussed in section 6
below.

5.4. Local KDC's Response to Client

Upon receipt of the PKINIT/CROSS response from the remote KDC,
the local KDC formulates a response to the client. This reply
is constructed exactly as in the Kerberos specification, except
for the following:

A) The local KDC places XTKT_(l,r) in the TicketExtension field of
the client's cross-realm, ticket, TGT_(c,r), for the remote
realm.
Where

data-type equals 3 for TE-TYPE-PKCROSS-CLIENT
data-value is ASN.1 encoding of XTKT_(l,r)

B) The local KDC adds the name of its CA to the transited field of
TGT_(c,r).

5.5 Remote KDC's Processing of Client Request

When the remote KDC, KDC_r, receives a cross-realm ticket,
TGT_(c,r), and it detects that the ticket contains a ticket
extension of type TE-TYPE-PKCROSS-CLIENT, KDC_r must first decrypt
the ticket, XTKT_(l,r) that is encoded in the ticket extension.
KDC_r uses its PKCROSS key in order to decrypt XTKT_(l,r). KDC_r
then uses the key obtained from XTKT_(l,r) in order to decrypt the
cross-realm ticket, TGT_(c,r).

KDC_r MUST verify that the cross-realm ticket, TGT_(c,r) is in
compliance with any policy information contained in XTKT_(l,r) (see
section 6). If the TGT_(c,r) is not in compliance with policy, then
the KDC_r responds to the client with a KRB-ERROR message of type
KDC_ERR_POLICY.

5.6. Short-Circuiting the KDC-to-KDC Exchange

As we described earlier, the KDC to KDC exchange is required only
for establishing a symmetric, inter-realm key. Once this key is
established (via the PKINIT exchange), no KDC to KDC communication
is required until that key needs to be renewed. This section
describes the circumstances under which the KDC to KDC exchange
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described in Sections 5.2 and 5.3 may be skipped.

The local KDC has a known lifetime for TGT_(c,r). This lifetime may
be determined by policy information included in XTKT_(l,r), and/or
it may be determined by local KDC policy. If the local KDC already
has a ticket XTKT(l,r), and the start time plus the lifetime for
TGT_(c,r) does not exceed the expiration time for XTGT_(l,r), then
the local KDC may skip the exchange with the remote KDC, and issue a
cross-realm ticket to the client as described in Section 5.4.

Since the remote KDC may change its PKCROSS key (referred to in
Section 5.2) while there are PKCROSS tickets still active, it SHOULD
cache the old PKCROSS keys until the last issued PKCROSS ticket
expires. Otherwise, the remote KDC will respond to a client with a
KRB-ERROR message of type KDC_ERR_TGT_REVOKED.

6. Extensions for the PKCROSS Ticket

As stated in section 5.3, the remote KDC SHOULD include policy
information in XTKT_(l,r). This policy information is contained in
a TicketExtension, as defined by the Kerberos specification, and the
authorization data of the ticket will contain an authorization
record of type AD-IN-Ticket-Extensions. The TicketExtension defined
for use by PKCROSS is TE-TYPE-PKCROSS-KDC.

Where
data-type equals 2 for TE-TYPE-PKCROSS-KDC
data-value is ASN.1 encoding of CrossRealmTktData

CrossRealmTktData ::= SEQUENCE OF TypedData

------------------------------------------------------------------
CrossRealmTktData types and the corresponding data are interpreted
as follows:

ASN.1 data
type value interpretation encoding
---------------- ----- -------------- ----------
PLC_LIFETIME 1 lifetime (in seconds) INTEGER

for TGT_(c,r)
- cross-realm tickets

issued for clients by
TGT_l

PLC_SET_TKT_FLAGS 2 TicketFlags that must BITSTRING
be set
- format defined by

Kerberos specification

PLC_NOSET_TKT_FLAGS 3 TicketFlags that must BITSTRING
not be set
- format defined by

Kerberos specification

Further types may be added to this table.
------------------------------------------------------------------

7. Usage of Certificates

In the cases of PKINIT and PKCROSS, the trust in a certification
authority is equivalent to Kerberos cross realm trust. For this
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reason, an implementation MAY choose to use the same KDC certificate
when the KDC is acting in any of the following three roles:

1) KDC is authenticating clients via PKINIT
2) KDC is authenticating another KDC for PKCROSS
3) KDC is the client in a PKCROSS exchange with another KDC

Note that per PKINIT, the KDC X.509 certificate (the server in a
PKINIT exchange) MUST contain the principal name of the KDC in the
subjectAltName field.

8. Transport Issues

Because the messages between the KDCs involve PKINIT exchanges, and
PKINIT recommends TCP as a transport mechanism (due to the length of
the messages and the likelihood that they will fragment), the same
recommendation for TCP applies to PKCROSS as well.

9. Security Considerations

Since PKCROSS utilizes PKINIT, it is subject to the same security
considerations as PKINIT. Administrators should assure adherence
to security policy - for example, this affects the PKCROSS policies
for cross realm key lifetime and for policy propagation from the
PKCROSS ticket, issued from a remote KDC to a local KDC, to
cross realm tickets that are issued by a local KDC to a client.
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Appendix E. DNS Locate Specification 

The DNS Locate specification is currently still an IETF draft. This document complies 
only with the version of the DNS Locate draft that is listed in this appendix. The 
PacketCable security team will continue to track progress of the DNS Locate draft 
through the IETF. 

INTERNET-DRAFT Ken Hornstein
<draft-ietf-cat-krb-dns-locate-02.txt> NRL
March 10, 2000 Jeffrey Altman
Expires: September 10, 2000 Columbia University

Distributing Kerberos KDC and Realm Information with DNS

Status of this Memo

This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet- Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Distribution of this memo is unlimited. It is filed as <draft-ietf-
cat-krb-dns-locate-02.txt>, and expires on September 10, 2000. Please
send comments to the authors.

Abstract

Neither the Kerberos V5 protocol [RFC1510] nor the Kerberos V4 proto-
col [RFC????] describe any mechanism for clients to learn critical
configuration information necessary for proper operation of the pro-
tocol. Such information includes the location of Kerberos key dis-
tribution centers or a mapping between DNS domains and Kerberos
realms.

Current Kerberos implementations generally store such configuration
information in a file on each client machine. Experience has shown
this method of storing configuration information presents problems
with out-of-date information and scaling problems, especially when

Hornstein, Altman [Page 1]
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using cross-realm authentication.

This memo describes a method for using the Domain Name System
[RFC1035] for storing such configuration information. Specifically,
methods for storing KDC location and hostname/domain name to realm
mapping information are discussed.

DNS vs. Kerberos - Case Sensitivity of Realm Names

In Kerberos, realm names are case sensitive. While it is strongly
encouraged that all realm names be all upper case this recommendation
has not been adopted by all sites. Some sites use all lower case
names and other use mixed case. DNS on the other hand is case insen-
sitive for queries but is case preserving for responses to TXT
queries. Since "MYREALM", "myrealm", and "MyRealm" are all different
it is necessary that the DNS entries be distinguishable.

Since the recommend realm names are all upper case, we will not
require any quoting to be applied to upper case names. If the realm
name contains lower case characters each character is to be quoted by
a '=' character. So "MyRealm" would be represented as "M=yR=e=a=l=m"
and "myrealm" as "=m=y=r=e=a=l=m". If the realm name contains the
'=' character it will be represented as "==".

Overview - KDC location information

KDC location information is to be stored using the DNS SRV RR [RFC
2052]. The format of this RR is as follows:

Service.Proto.Realm TTL Class SRV Priority Weight Port Target

The Service name for Kerberos is always "_kerberos".

The Proto can be either "_udp" or "_tcp". If these records are to be
used, a "_udp" record MUST be included. If the Kerberos implementa-
tion supports TCP transport, a "_tcp" record SHOULD be included.

The Realm is the Kerberos realm that this record corresponds to.

TTL, Class, SRV, Priority, Weight, Port, and Target have the standard
meaning as defined in RFC 2052.

Example - KDC location information

These are DNS records for a Kerberos realm ASDF.COM. It has two Ker-
beros servers, kdc1.asdf.com and kdc2.asdf.com. Queries should be
directed to kdc1.asdf.com first as per the specified priority.

Hornstein, Altman [Page 2]
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Weights are not used in these records.

_kerberos._udp.ASDF.COM. IN SRV 0 0 88 kdc1.asdf.com.
_kerberos._udp.ASDF.COM. IN SRV 1 0 88 kdc2.asdf.com.

Overview - Kerberos password changing server location information

Kerberos password changing server [KERB-CHG] location is to be stored
using the DNS SRV RR [RFC 2052]. The format of this RR is as fol-
lows:

Service.Proto.Realm TTL Class SRV Priority Weight Port Target

The Service name for the password server is always "_kpasswd".

The Proto MUST be "_udp".

The Realm is the Kerberos realm that this record corresponds to.

TTL, Class, SRV, Priority, Weight, Port, and Target have the standard
meaning as defined in RFC 2052.

Overview - Kerberos admin server location information

Kerberos admin location information is to be stored using the DNS SRV
RR [RFC 2052]. The format of this RR is as follows:

Service.Proto.Realm TTL Class SRV Priority Weight Port Target

The Service name for the admin server is always "_kerberos-adm".

The Proto can be either "_udp" or "_tcp". If these records are to be
used, a "_tcp" record MUST be included. If the Kerberos admin imple-
mentation supports UDP transport, a "_udp" record SHOULD be included.

The Realm is the Kerberos realm that this record corresponds to.

TTL, Class, SRV, Priority, Weight, Port, and Target have the standard
meaning as defined in RFC 2052.

Note that there is no formal definition of a Kerberos admin protocol,
so the use of this record is optional and implementation-dependent.

Example - Kerberos administrative server location information

These are DNS records for a Kerberos realm ASDF.COM. It has one
administrative server, kdc1.asdf.com.

Hornstein, Altman [Page 3]
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_kerberos-adm._tcp.ASDF.COM. IN SRV 0 0 88 kdc1.asdf.com.

Overview - Hostname/domain name to Kerberos realm mapping

Information on the mapping of DNS hostnames and domain names to Ker-
beros realms is stored using DNS TXT records [RFC 1035]. These
records have the following format.

Service.Name TTL Class TXT Realm

The Service field is always "_kerberos", and prefixes all entries of
this type.

The Name is a DNS hostname or domain name. This is explained in
greater detail below.

TTL, Class, and TXT have the standard DNS meaning as defined in RFC
1035.

The Realm is the data for the TXT RR, and consists simply of the Ker-
beros realm that corresponds to the Name specified.

When a Kerberos client wishes to utilize a host-specific service, it
will perform a DNS TXT query, using the hostname in the Name field of
the DNS query. If the record is not found, the first label of the
name is stripped and the query is retried.

Compliant implementations MUST query the full hostname and the most
specific domain name (the hostname with the first label removed).
Compliant implementations SHOULD try stripping all subsequent labels
until a match is found or the Name field is empty.

Example - Hostname/domain name to Kerberos realm mapping

For the previously mentioned ASDF.COM realm and domain, some sample
records might be as follows:

_kerberos.asdf.com. IN TXT "ASDF.COM"
_kerberos.mrkserver.asdf.com. IN TXT "MARKETING.ASDF.COM"
_kerberos.salesserver.asdf.com. IN TXT "SALES.ASDF.COM"

Let us suppose that in this case, a Kerberos client wishes to use a
Kerberized service on the host foo.asdf.com. It would first query:

_kerberos.foo.asdf.com. IN TXT

Finding no match, it would then query:

Hornstein, Altman [Page 4]
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_kerberos.asdf.com. IN TXT

And find an answer of ASDF.COM. This would be the realm that
foo.asdf.com resides in.

If another Kerberos client wishes to use a Kerberized service on the
host salesserver.asdf.com, it would query:

_kerberos.salesserver.asdf.com IN TXT

And find an answer of SALES.ASDF.COM.

Security considerations

As DNS is deployed today, it is an unsecure service. Thus the infor-
mation returned by it cannot be trusted.

Current practice for REALM to KDC mapping is to use hostnames to
indicate KDC hosts (stored in some implementation-dependent location,
but generally a local config file). These hostnames are vulnerable
to the standard set of DNS attacks (denial of service, spoofed
entries, etc). The design of the Kerberos protocol limits attacks of
this sort to denial of service. However, the use of SRV records does
not change this attack in any way. They have the same vulnerabili-
ties that already exist in the common practice of using hostnames for
KDC locations.

Current practice for HOSTNAME to REALM mapping is to provide a local
configuration of mappings of hostname or domain name to realm which
are then mapped to KDCs. But this again is vulnerable to spoofing
via CNAME records that point to hosts in other domains. This has the
same effect as when a TXT record is spoofed. In a realm with no
cross-realm trusts this is a DoS attack. However, when cross-realm
trusts are used it is possible to redirect a client to use a comprom-
ised realm.

This is not an exploit of the Kerberos protocol but of the Kerberos
trust model. The same can be done to any application that must
resolve the hostname in order to determine which domain a non-FQDN
belongs to.

Implementations SHOULD provide a way of specifying this information
locally without the use of DNS. However, to make this feature
worthwhile a lack of any configuration information on a client should
be interpreted as permission to use DNS.
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Expiration

This Internet-Draft expires on September 10, 2000.
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Appendix F. Example of MMH Algorithm Implementation 
(Informative) 

This appendix gives an example implementation of the MMH MAC algorithm. There 
may be other implementations that have advantages over this example in particular 
operating environments. This example is for informational purposes only and is meant to 
clarify the specification. 

The example implementation uses the term “MMH16” for the case where the MAC 
length is 2 octets and “MMH32” for the case where the length is 4 octets. 

A main program is included for exercising the example implementation. The output 
produced by the program is included. 

/*
Demo of PacketCable MMH16 and MMH32 MAC algorithms.

This program has been tested using Microsoft C/C++ Version 5.0.
It is believed to port easily to other compilers, but this has
not been tested. When porting, be sure to pick the definitions
for int16, int32, uint16, and uint32 carefully.

*/

#include <stdio.h>

/*
Define signed and unsigned integers having 16 and 32 bits.
This is machine/compiler dependent, so pick carefully.
*/
typedef short int16;
typedef unsigned short uint16;
typedef int int32;
typedef unsigned int uint32;

/*
Define this symbol to see intermediate values.
Comment it out for clean display.
*/
#define VERBOSE

int32 reduceModF4(int32 x) {

/*
Routine to reduce an int32 value modulo F4, where F4 = 0x10001.
Result is in range [0, 0x10000].
*/

int32 xHi, xLo;

/* Range of x is [0x80000000, 0x7fffffff]. */

/*
If x is negative, add a multiple of F4 to make it non-negative.
This loop executes no more than two times.
*/
while (x < 0) x += 0x7fff7fff;
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/* Range of x is [0, 0x7fffffff]. */

/* Subtract high 16 bits of x from low 16 bits. */
xHi = x >> 16;
xLo = x & 0xffff;
x = xLo - xHi;

/* Range of x is [0xffff8001, 0x0000ffff]. */

/* If x is negative, add F4. */
if (x < 0) x += 0x10001;

/* Range of x is [0, 0x10000]. */

return x;
}

uint16 mmh16(
unsigned char *message,
unsigned char *key,
unsigned char *pad,
int msgLen

) {

/*
Compute and return the MMH16 MAC of the message using the
indicated key and pad.

The length of the message is msgLen bytes; msgLen must be even.

The length of the key must be at least msgLen bytes.

The length of the pad is two bytes. The pad must be freshly
picked from a secure random source.
*/

int16 x, y;
uint16 u, v;
int32 sum;
int i;

sum = 0;

for (i=0; i<msgLen; i+=2) {

/* Build a 16-bit factor from the next two message bytes. */
x = *message++;
x <<= 8;
x |= *message++;

/* Build a 16-bit factor from the next two key bytes. */
y = *key++;
y <<= 8;
y |= *key++;

/* Accumulate product of the factors into 32-bit sum */
sum += (int32)x * (int32)y;

#ifdef VERBOSE
printf(" x %04x y %04x sum %08x\n", x & 0xffff, y & 0xffff, sum);
#endif

}
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/* Reduce sum modulo F4 and truncate to 16 bits. */
u = (uint16) reduceModF4(sum);

#ifdef VERBOSE
printf(" sum mod F4, truncated to 16 bits: %04x\n", u & 0xffff);
#endif

/* Build the pad variable from the two pad bytes */
v = *pad++;
v <<= 8;
v |= *pad;

#ifdef VERBOSE
printf(" pad variable: %04x\n", v & 0xffff);
#endif

/* Accumulate pad variable, truncate to 16 bits */
u = (uint16)(u + v);

#ifdef VERBOSE
printf(" mmh16 value: %04x\n", u & 0xffff);
#endif

return u;
}

uint32 mmh32(
unsigned char *message,
unsigned char *key,
unsigned char *pad,
int msgLen

) {

/*
Compute and return the MMH32 MAC of the message using the
indicated key and pad.

The length of the message is msgLen bytes; msgLen must be even.

The length of the key must be at least (msgLen + 2) bytes.

The length of the pad is four bytes. The pad must be freshly
picked from a secure random source.
*/

uint16 x, y;
uint32 sum;

x = mmh16(message, key, pad, msgLen);
y = mmh16(message, key+2, pad+2, msgLen);
sum = x;
sum <<= 16;
sum |= y;

return sum;
}

void show(char *name, unsigned char *src, int nbytes) {

/*
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Routine to display a byte array, in normal or reverse order
*/

int i;
enum {
BYTES_PER_LINE = 16
};

if (name) printf("%s", name);

for (i=0; i<nbytes; i++) {
if ((i % BYTES_PER_LINE) == 0) printf("\n");
printf("%02x ", src[i]);
}
printf("\n");

}

int main() {

uint16 mac16;
uint32 mac32;

unsigned char message[] = {
0x4e, 0x6f, 0x77, 0x20, 0x69, 0x73, 0x20, 0x74, 0x68,
0x65, 0x20, 0x74, 0x69, 0x6d, 0x65, 0x2e,
};

unsigned char key[] = {
0x35, 0x2c, 0xcf, 0x84, 0x95, 0xef, 0xd7, 0xdf, 0xb8,
0xf5, 0x74, 0x05, 0x95, 0xeb, 0x98, 0xd6, 0xeb, 0x98,
};

unsigned char pad16[] = {
0xae, 0x07,
};

unsigned char pad32[] = {
0xbd, 0xe1, 0x89, 0x7b,
};

unsigned char macBuf[4];

printf("Example of MMH16 computation\n");
show("message", message, sizeof(message));
show("key", key, sizeof(message));
show("pad", pad16, 2);

mac16 = mmh16(message, key, pad16, sizeof(message));
macBuf[1] = (unsigned char)mac16; mac16 >>= 8;
macBuf[0] = (unsigned char)mac16;

show("MMH16 MAC", macBuf, 2);
printf("\n");

printf("Example of MMH32 computation\n");
show("message", message, sizeof(message));
show("key", key, sizeof(message)+2);
show("pad", pad32, 4);

mac32 = mmh32(message, key, pad32, sizeof(message));
macBuf[3] = (unsigned char)mac32; mac32 >>= 8;
macBuf[2] = (unsigned char)mac32; mac32 >>= 8;
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macBuf[1] = (unsigned char)mac32; mac32 >>= 8;
macBuf[0] = (unsigned char)mac32;

show("MMH32 MAC", macBuf, 4);
printf("\n");

return 0;
}

 
 
 
 
Here is the output produced by the program: 
 
Example of MMH16 computation
message
4e 6f 77 20 69 73 20 74 68 65 20 74 69 6d 65 2e
key
35 2c cf 84 95 ef d7 df b8 f5 74 05 95 eb 98 d6
pad
ae 07
x 4e6f y 352c sum 104a7614
x 7720 y cf84 sum f9bac294
x 6973 y 95ef sum ce0a23f1
x 2074 y d7df sum c8f3d4fd
x 6865 y b8f5 sum abfb55a6
x 2074 y 7405 sum bab087ea
x 696d y 95eb sum 8f00bff9
x 652e y 98d6 sum 663aa46d
sum mod F4, truncated to 16 bits: 3e33
pad variable: ae07
mmh16 value: ec3a

MMH16 MAC
ec 3a

Example of MMH32 computation
message
4e 6f 77 20 69 73 20 74 68 65 20 74 69 6d 65 2e
key
35 2c cf 84 95 ef d7 df b8 f5 74 05 95 eb 98 d6
eb 98
pad
bd e1 89 7b
x 4e6f y 352c sum 104a7614
x 7720 y cf84 sum f9bac294
x 6973 y 95ef sum ce0a23f1
x 2074 y d7df sum c8f3d4fd
x 6865 y b8f5 sum abfb55a6
x 2074 y 7405 sum bab087ea
x 696d y 95eb sum 8f00bff9
x 652e y 98d6 sum 663aa46d
sum mod F4, truncated to 16 bits: 3e33
pad variable: bde1
mmh16 value: fc14
x 4e6f y cf84 sum f125323c
x 7720 y 95ef sum bfca091c
x 6973 y d7df sum af427949
x 2074 y b8f5 sum a640e84d
x 6865 y 7405 sum d590b646
x 2074 y 95eb sum c81e04c2
x 696d y 98d6 sum 9da1dde0
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x 652e y eb98 sum 95912b30
sum mod F4, truncated to 16 bits: 959f
pad variable: 897b
mmh16 value: 1f1a

MMH32 MAC
fc 14 1f 1a
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Appendix G. RC4 Encryption and MMH MAC Option for 
RTP 

Section 7.6.2.1.2.2 specifies how Block Ciphers such as AES are used to encrypt RTP 
media streams. The AES Block Cipher, in particular, must be supported. RC4 may 
optionally be supported. This appendix specifies how to use RC4 to encrypt RTP media 
streams. 

G.1 Initializing the RC4 Encryption Process 
The following additional parameter is defined for use with RC4 in addition to the 
parameters defined in section 7.6.2.1: 

• Nk, the state of the RC4 encryption process. “State” means the number of keystream 
octets that have been previously generated by the process, whether used or discarded. 
Nk has value 0 immediately after the RC4 process is initialized with a new key and 
increments with each generated octet of keystream. 

Prior to encoding the first packet, the following procedure MUST be used: 

• The new RTP Privacy Key is used to initialize the RC4 encryption process. 

• Nk is initialized to 0. 

• Nk is initialized to 0. 

G.2 Packet Encoding 
Each packet MUST be encoded using the following procedure: 

• The timestamp is written into the timestamp field of the header. The timestamp 
MUST equate to the value: ((Nf*Nu) + (RTP Initial Timestamp)) modulo 232, where 
Nf is the frame number of the first frame included in the packet. 

• All other fields of the header are set to values prescribed in [14]. 

• The RC4 encryption state Nk is set to the value Nf*(Ne + Nm). 

• The octets of the packet’s payload are encrypted using the RC4 encryption process 
and inserted into the payload field. If there are B octets to be encrypted, then they are 
encrypted using octets Nk +Nm to Nk+Nm+B-1, inclusive and in order in the RC4 
keystream. 

• If the MAC option is enabled, the MAC digest is computed using the MMH 
algorithm (see Appendix F) with the RTP MMH MAC Key. The digest calculation 
begins with the first octet of the unencrypted header and ends with the last octet of the 
encrypted payload. The computed digest is inserted into the MAC field. The digest 
calculation requires Nm octets of keystream from the RC4 process. These Nm octets 
are taken from the octets Nk to Nk+Nm-1, inclusive and in order in the RC4 
keystream. 

Not all of the keystream octets generated by the RC4 process are necessarily used. If a 
packet contains m frames, then the RC4 state is advanced by m*(Ne + Nm) prior to 
encoding the next packet. However, only m*Nc + Nm keystream octets are actually used 
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to encode the current packet; the remaining (m − 1)*Nm + m*(Ne − Nc) keystream octets 
are unused. The RC4 encryption process is advanced for silent codec frames that are not 
actually transmitted, since the value of Nf increments even for silent frames. For each 
dropped silent frame, (Ne + Nm) keystream octets are unused. Instead of dropping a silent 
frame, a codec might encode it using a short frame containing s octets, where s < Nc. For 
such a short frame, (Ne − s) keystream octets are unused. 

G.3 Codec Change 
During a codec change that is explicitly signaled by one of the endpoints via the NCS 
protocol, that endpoint MUST increment the NREKEY counter and then re-derive a new set 
of RTP keys and a new RTP timestamp for both directions of traffic, according to section 
G.8. When that endpoint sends the SDP information (see [18]) describing the codec 
change to the other endpoint, it must also include the new value of the NREKEY counter. 
(As usual, the codec change would be signaled with the NCS protocol, where all 
signaling messages have to first transit through the CMS.) 

After the codec change the new keys MUST be used on all outbound traffic. For inbound 
traffic, each endpoint MAY save the old keys for some period of time – in order to 
decrypt RTP packets that are still using the old codec. Alternatively, endpoints MAY 
elect to drop incoming packets that are using the old codec. 

G.4 RTP Timestamp Wrap-around 
When re-keying occurs during an existing media stream connection, NWRAP MUST be 
reset to 0. Note that this counter is unrelated to the count of key changes specified in 
section G.8. 

G.5 RTP SSRC Collisions 
According to RFC 1889, it is possible that an endpoint (e.g., Media Gateway) finds two 
different RTP sessions with different endpoints with the same RTP Synchronization 
Source Identifier (SSRC). RFC 1889 requires that when an SSRC collision is detected, 
one of the RTP sessions is shut down (via an RTCP BYE command) and is restarted with 
another SSRC value. 

During this SSRC change, the sender MUST re-derive a new set of RTP keys and a new 
initial timestamp for the new SSRC value as specified in section G.8. The first RTP 
packet sent out with the new SSRC value MUST be encrypted and authenticated with the 
new set of keys. 

As soon as the receiver becomes aware of the SSRC collision it MUST also re-derive a 
new set of RTP keys and a new initial timestamp as specified in section G.8. When it 
starts receiving RTP packets with the new SSRC value it MUST start using this new set 
of RTP keys and a new initial timestamp value for the decryption and validation of the 
inbound traffic. (In the case when the RTCP BYE packet got lost and the sender never 
generated packets with the new SSRC value, the receiver would continue decrypting the 
RTP packets with the original set of keys.) 

Note that the SSRC change is uni-directional. Thus, the RTP key and timestamp re-
derivation is applied to only one direction of traffic. The RTP keys and timestamp used 
for the other direction remain unchanged. 
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G.6 RC4 Decryption and MMH MAC Option 

• Prior to decoding the first packet, the RTP Privacy Key is used to initialize the RC4 
decryption process state Nk to zero. 

• Each packet MUST be decoded using the following procedure: 

• The frame number for the first frame in the packet, Nf, is computed from the value of 
the timestamp field in the header as follows: 

Nf = (timestamp − (RTP Initial Timestamp)) / Nu 

• Note that when the timestamp wraps-around its value is adjusted 
by adding 232 (see section G.4).  Thus the timestamp is always 
greater than or equal to the RTP Initial Timestamp. 

• If the computed value of Nf is not an integer value, the packet is 
discarded; this indicates an invalid timestamp. 

• The RC4 decryption state Nk is set to the value Nf*(Ne + Nm). 

• If the MAC option is enabled, a MAC digest is computed using the MMH algorithm 
with the RTP MAC key. The digest calculation begins with the first octet of the 
unencrypted header and ends with the last octet of the encrypted payload. The digest 
calculation requires Nm octets of keystream from the RC4 process. These Nm octets 
are taken from the octets Nk to Nk+Nm-1, inclusive and in order in the RC4 
keystream. The computed digest is compared to the value in the MAC field. If the 
computed digest does not match the value in the MAC field, the packet is discarded. 

• The octets of the packet’s payload are decrypted using the RC4 decryption process. If 
there are B octets to be decrypted, then they are decrypted using octets Nk+Nm to 
Nk+Nm+B-1, inclusive and in order in the RC4 keystream. 

• All other fields of the header are processed as prescribed in [14]. 

Note that the state of the RC4 decryption process is adjusted to match the state of the 
sender’s RC4 encryption process prior to decrypting the packet’s payload or verifying its 
MAC digest. If packets arrive out of order, the receive must, in principle, push the RC4 
process backwards, as well as forwards, in order to match the state of the sender’s RC4 
process. In practice, this can be accomplished by having the receiver run its RC4 process 
in the forward direction only and synchronized to real time, thus making keystream 
available to decode packets in whatever order they arrive. 

G.7 Changes to Key Management Flows for RC4 
Section 7.6.2.3.1 describes the media stream key management flows that utilize NCS 
signaling messages and lists corresponding requirements.  In the case when RC4 is used, 
there are additional steps and requirements that have to be followed.  The RC4-specific 
requirements for key management are listed in this section. 

The following list describes changes to the key management flows described in section 
7.6.2.3.1: 

• (5) MTA1 -> CMS1  
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This step is the same as in section 7.6.2.3.1, except for one specific case.  In the 
event that the encryption algorithm originally selected by MTA0 and the 
encryption algorithm selected by MTA1 is RC4, but the MAC size has changed 
(due to a change in the MAC algorithm), increment the NREKEY counter before 
generating the outbound RTP security parameters.  In this case, as specified in 
section G.8, MTA0 must return the new value of the NREKEY counter inside the 
ACK message in the LocalConnectionDescriptor. 

(7) CMS0 -> MTA0 

This step is the same as in 7.6.2.3.1, except that after receiving this message, 
MTA0 MUST: 

8. If Pad0 was received, remove its inbound RTP and RTCP keys and replace 
them with new ones, based on the keys that are generated from both End-End 
Secret0 and Pad0.  Re-initialize both the RTP timestamp and the RTCP 
sequence numbers for the newkeys.  The ciphersuites used for these inbound 
keys are taken from the RemoteConnectionDescriptor just received from 
CMS0.  (Note that this change to the inbound keys due to the presence of Pad0 
doesn’t increment the NREKEY counter – its value remains 0.  The NREKEY 
counter is incremented only when explicitly stated in this document.) 

9. If the RemoteConnectionDescriptor was received without Pad0, check if the 
first RTP ciphersuite in the RemoteConnectionDescriptor differs from the one 
that MTA0 selected in step (2).  If they differ, perform the following steps:  

a. Remove the inbound RTP key.  

b. If the NREKEY counter is present in the 
RemoteConnectionDescriptor, update the local copy of the NREKEY 
counter as specified in section G.8.  This may happen when the 
encryption algorithm originally selected by MTA0 and the new 
encryption algorithm are both RC4, but the MAC size has changed.  

c. Generate new inbound RTP keys and RTP timestamp from the same 
End-End Secret0 as the last time, as specified in section G.8.   

10. If the RemoteConnectionDescriptor was received without Pad0, check if the 
first RTCP ciphersuite in the RemoteConnectionDescriptor differs from the 
one that MTA0 selected in step (2).  If they differ, perform the following 
steps:  

c. Remove the inbound RTCP key.  

d. Generate a new key based on the key generated from the same End-End 
Secret0 as the last time, but for the new authentication and/or encryption 
algorithms.  

11. If the RemoteConnectionDescriptor was received, establish outbound RTP 
and RTCP keys, based on End-End Secret1 and Pad1.  

12. Be ready to send and receive RTP and RTCP messages with MTA1. 
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G.8 Initial Key Derivation for RC4 
In the case of an RC4 stream cipher, RTCP keys are derived as specified in section 
7.6.2.3.3.1.  But RTP key derivation in the case of RC4 is changed as specified in this 
section.  The only change in the RTP key derivation from section 7.6.2.3.3.1 is in the 
value of the parameter S when it is used inside the key derivation function F(S, “End-End 
RTP Security Association”).  For RC4 RTP key derivation, S MUST be the 
concatenation of the following binary values, each in MSB-first order:  

a. 4-byte SSRC identifier for this RTP session  

b. 2-byte NREKEY counter  

c. End-End Secret  

d. Pad (optional, if it was negotiated through signaling)  

The NREKEY counter MUST be initialized to 0 at the start of an RTP connection and is 
incremented by one of the endpoints during various events requiring RTP rekeying (e.g. 
codec changes), as specified in this document.  The same NREKEY counter is used in the 
generation of keys for both directions of traffic. 

Whenever the value of the NREKEY counter is updated by one endpoint, that endpoint 
MUST relay its value to the other endpoint inside the SDP parameters.  If the other 
endpoint does not receive the value of this counter, it MUST use its current value of the 
NREKEY counter.  

When an endpoint receives a new value of the NREKEY counter inside the SDP, it MUST 
make sure that it is greater than or equal to its locally stored value of this counter.  If that 
check fails, instead of accepting the value of the NREKEY counter from remote SDP, the 
endpoint MUST increment its local value of the counter.  The endpoint MUST also return 
its updated value of the NREKEY counter inside SDP in the ACK message back to the 
CMS.  In the absence of error conditions, the CMS MUST in turn forward this ACK 
message to the other endpoint (possibly via another CMS or SIP Proxy).  

In the case that the new value of the NREKEY counter inside the SDP is equal to the locally 
stored value of this counter, if the received signaling message does not require re-keying 
(e.g. it is a codec change where the new codec is the same as the current one), the 
endpoint MUST NOT update its NREKEY counter and MUST NOT perform rekeying.  If 
the received signaling message does require rekeying (e.g. it is a codec change where the 
new codec is different from the current one), the endpoint MUST increment the local 
value of the NREKEY counter.   The endpoint MUST also return its updated value of the 
NREKEY counter inside SDP in the ACK message back to the CMS.  In the absence of 
error conditions, the CMS MUST in turn forward this ACK message to the other 
endpoint (possibly via another CMS or SIP Proxy).  

G.9 End-to-End Rekey Derivation for RC4 
Any time that either the NREKEY counter or the SSRC value in the RTP header changes, 
the key derivation procedure in section G.8 MUST be used to derive a new set of keys 
and other RTP parameters for the media stream connection.  In the case of the change in 
the NREKEY counter, both directions of traffic are affected, while an SSRC change affects 
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only one direction (the one with that SSRC value).  This rekeying does not affect the keys 
established for RTCP.  

The encryption and decryption procedures do not change after the wrap-around.  
However, the RTP timestamp value is no longer the RTP timestamp in the RTP header.  
After one or more wrap-arounds the RTP timestamp used in the encryption, decryption, 
and authentication procedures MUST be calculated as: 

timestamp + (NWRAP * 232) 
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Appendix H. Oakley Groups 
PKINIT states that DH parameters SHOULD be taken from the first or second Oakley 
groups as defined in [28]. Additionally, this specification requires that DH groups are 
used exactly as defined in [28]. 

[28] defines several so-called “Oakley groups.” Only the first two are relevant to this 
specification. [28] requires implementations to support the first group, and recommends 
that they support the second. This Appendix is included because [28] does not give 
values of q (the  p-1 factor) for the groups, and these are necessary in order to encode the 
dhpublicnumber type used in the subjectPublicKeyInfo data structure in PKINIT. 

The first two Oakley groups are defined as follows: 

First Oakley Group: 

 Prime (p):  
FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1

29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD

EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245

E485B576 625E7EC6 F44C42E9 A63A3620 FFFFFFFF FFFFFFFF 

Generator (g or b):  

2.  

Factor (q): 
7FFFFFFF FFFFFFFF E487ED51 10B4611A 62633145 C06E0E68

94812704 4533E63A 0105DF53 1D89CD91 28A5043C C71A026E

F7CA8CD9 E69D218D 98158536 F92F8A1B A7F09AB6 B6A8E122

F242DABB 312F3F63 7A262174 D31D1B10 7FFFFFFF FFFFFFFF

Second Oakley Group: 

 Prime (p):  
FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1

29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD

EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245

E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED

EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE65381

FFFFFFFF FFFFFFFF 
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Generator (g or b):  

2.  

Factor (q): 
7FFFFFFF FFFFFFFF E487ED51 10B4611A 62633145 C06E0E68

94812704 4533E63A 0105DF53 1D89CD91 28A5043C C71A026E

F7CA8CD9 E69D218D 98158536 F92F8A1B A7F09AB6 B6A8E122

F242DABB 312F3F63 7A262174 D31BF6B5 85FFAE5B 7A035BF6

F71C35FD AD44CFD2 D74F9208 BE258FF3 24943328 F67329C0

FFFFFFFF FFFFFFFF
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Appendix J. Revision History 
The following Engineering Change Notices are included in PKT-SP-SEC-I03-010626. 

ECN Author ECN 
Approval 

Date  

Summary 

sec-n-00049v3 S. Medvinsky 2/26/01 The current RTP key distribution over NCS signaling 
mes-sages assumes that each endpoint knows if it is the 
initiator of a call or a target of a call.  This assumption 
may be false in some cases. 

sec-n-00151v2 J. Xiz 5/29/01 Change RTCP security mechanism from IPSEC to 
RTCP application layer encryption and authentication. 

sec-n-01011v2 D. Maxwell 5/29/01 Consolidates several editorial changes correcting minor 
editorial errors in the recently published IO2 Security 
Specification. 

sec-n-01022 L. LeVay 4/16/01 The value specified for a KRB_NT_SRV_HST 
principal type is incorrect (according the reference 
IETF Kerberos Revisions spec) 

sec-n-01024v2 S. Medvinsky 4/16/01 The spec currently calls for the MTA to adjust its local 
clock based on the Kerberos clock skew, which is 
incorrect. 

sec-n-01025 S. Medvinsky 4/16/01 The interface between the KDC and the Provisioning 
Server for the MTA MAC address -> FQDN mapping 
is currently unspecified. 

sec-n-01026v2 S. Kumar,  
R. Spitzer 

4/16/01 PKT-SP-PROV-ECNI01-010221 explained 
provisioning flows (MTA9 to MTA14); there was a 
mention to refer the security specification for when the 
steps should executed. 

sec-n-01028 R. Spitzer 5/7/01 Makes minor changes to the certificate chapter of the 
specification to bring it line with changes made in 
secure provisioning 

sec-n-01029 S. Medvinsky 5/7/01 The current description of security association 
establishment in the MTA MIB does not provide 
enough details and does not specify requirements. 

sec-n-01030v2 D. Maxwell, 
S. Medvinsky 

6/4/01 Makes minor changes to the certificate chapter of the 
specification to bring it line with changes made in 
secure provisioning 

sec-n-01032 D.R. Evans 6/4/01 Although the specification includes detailed 
instructions for generating fields such as signatures, it 
in many instances does not include a requirement that 
such fields be checked on incoming records. 

sec-n-01034v2 D. Maxwell, 
S. Medvinsky 

5/28/01 This ECR makes a major change by specifying 
RIJNDAEL in the CBC mode as a replacement for RC-
4 as the mandatory cipher for RTP. 

sec-n-01035 D.R. Evans 5/7/01 Minor change to ease restriction on MTA-FQDN client 
port. 

sec-n-00146v2 N. Davoust 1/22/01 Changes to several security mechanisms during the 
PacketCable MTA Device provisioning process. 

sec-n-01049 D.R. Evans 5/21/01 The type of the session key needs to be specified. 
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sec-n-01050 R. Spitzer,  
M. Kumar,  
S. Medvinsky 

5/21/01 In the Security specification (PKT-SP-SEC-IO2-
001219), Kerberos error handling is not addressed. 

sec-n-01062 D.R. Evans 6/4/01 Correct errors and clarify description of DNS lookups 
for cross-realm messaging. 

The following Engineering Change Notices are incorporated in PKT-SP-SEC-I04-
010820.  

ECN Author ECN 
Approval 

Date 

Summary 

sec-n-00079 S. Medvinsky 1/22/01 Construction of CMS Kerberos principal identifier. 

sec-n-01097 D. Maxwell,  
S. Medvinsky, 
P. Grossman 

8/13/01 Replace Figure 11 and Figure 22. 

sec-n-01098 D. Maxwell 8/13/01 Editorial Changes 

sec-n-01101 DR Evans 8/13/01 Correct encoding requirements. 

sec-n-01104 S. Medvinsky 8/13/01 Correct description of SignedData. 

sec-n-01107 S. Medvinsky 8/20/01 Update security spec according to changes in latest 
PKINIT IETF draft. 

sec-n-01108 S. Medvinsky 8/20/01 Fix inconsistency in short block encryption between RTP 
and RTCP protocols. 

sec-n-01109 S. Medvinsky 8/20/01 Fix inconsistency in certificate verification between 
DOCSIS BI+ and this spec 

sec-n-01110 S. Medvinsky 8/20/01 Consolidation of editorial changes of minor editorial 
errors. 

sec-n-01111 S. Medvinsky 8/20/01 Fix description of Kerberos checksum rsa-md5-des. 

sec-n-01112 S. Medvinsky 8/20/01 Correct security interface between RKS and MGC. 
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The following Engineering Change Notices are incorporated in PKT-SP-SEC-I05-
020116.  

ECN Author 

ECN 
Approval 

Date Summary 
sec-n-01115 DR Evans 12/17/01 Simplifies RADIUS key management so that the same 

key is used in both directions for gate coordination 
messages. 

sec-n-01116 S. Medvinsky 12/17/01 Specify how certain Kerberos errors are handled when a 
key management exchange was started with a Wake Up. 
Remove requirements for Kerberos errors that are not 
already mentioned in the security specification. 

sec-n-01117 E. Rosenfeld 12/17/01 This ECR addresses a minor change to make the 
Kerberos Error Header messages consistent. 

sec-n-01126 DR Evans 12/17/01 Allows possibility of eliminating extraneous information 
in Kerberos tickets. 

sec-n-01127 D. Maxwell,  
B. Hagar 

12/17/01 Addresses minor changes in Table 1. 

sec-n-01138 S. Medvinsky 12/17/01 Ensure receiver of a Kerberos message that doesn’t 
comply with PacketCable requirements rejects message 

sec-n-01140 DR Evans 12/17/01 Remove requirement that the service type be KRB-NT-
SRV-HST for the ticket-granting service hosted by the 
KDC. 

sec-n-01143 DR Evans 12/17/01 Clarify requirement concerning nonce to be returned in 
the case of a KRB-ERROR 

sec-n-01159 DR Evans 12/17/01 Explicitly adds checksum algorithm to specification  

sec-n-01160 DR Evans 1/14/02 Clarifies intent of informational language concerning 
Kerberos options by adding normative requirements. 

sec-n-01162 S. Medvinsky 12/17/01 Add a requirement for an MTA to verify subjectAltName 
extension in the KDC certificate. 

sec-n-01163 S. Kumar 12/17/01 This ECR corrects some minor typographical errors. 

sec-n-01165 E. Rosenfeld 1/14/02 Correct error in ASN.1 syntax errors and reformat all 
ASN.1 

sec-n-01173 DR Evans 1/14/02 Removes material related to Management Event 
Messaging 

sec-n-01175 D. Atkins 1/3/2002 Fix Kerberos naming conventions 

sec-n-01200 J. McCauley 1/14/02 Clarify AES use in PacketCable 

sec-n-01201 S. Medvinsky 1/3/2002 In inter-domain call signaling, SIP messages are 
encrypted and then re-encrypted (vi IPSec) at each 
intermediate SIP signaling proxy between the two CMSs.  
This exposes media stream keying material at the SIP 
proxies. 

sec-n-01202 E. Rosenfeld 1/14/02 Fix errors/omissions found in a proofread of sections 5, 6, 
7, 8, and 9. 

sec-n-01203 E. Rosenfeld 1/14/02 Remove all obsolete or unused references to streamline 
the spec. 
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sec-n-01204 E. Rosenfeld 1/14/02 Ensure PKINIT draft used is the most recent.  Add an 
additional appendix to specify the Oakley groups used for 
the Diffie-Hellman exchange, and specify which group 
must be implemented. 

sec-n-01205 E. Rosenfeld 1/14/02 Section 7.6 has many errors and is hard to understand.  
These changes are aimed at making 7.6 much clearer and 
easier to understand. 

sec-n-01206 A. Deacon 1/14/02 Changes in Certificate Chapter; generic naming of CAs in 
IP Telephony Hierarchy. 

 
The following Engineering Change Notices are incorporated in PKT-SP-SEC-I06-
021018.  

ECN Author 

ECN 
Approval 

Date Summary  
sec-n-02004 S. 

Channabasappa 
2/25/02 While specifying SNMPv3 Transform Identifiers the 

specification does not address the key size as per the 
requirements set forth by the SNMPv3 specifications. 

sec-n-02017 DR Evans 6/24/02 Current wording is ambiguous in light of PKINIT use 
of Oakley Groups. 

sec-n-02023 DR Evans 6/24/02 Corrects example MTA principal name 
sec-n-02034 DR Evans 6/24/02 Allows fields in certs to contain differing information 
sec-n-02035 A. Deacon 6/24/02 The details of the subject distinguished name for 

MTA manufacturer CA certificate and the MTA 
device certificates use the incorrect string 
representation for the “State” attribute.   

sec-n-02048 DR Evans 6/24/02 Places requirements on minimum size of private 
Diffie-Hellman keys in PKINIT 

sec-n-02068 S. Medvinsky 6/24/02 The Electronic Surveillance section in the security 
spec has an architecture diagram that is out of date 
and missing descriptions of related security interfaces. 

sec-n-02069 E. Nechamkin 6/24/02 Security Spec. requires that all Mfg. Certificates must 
be included in MTA Secure Code Download.  
Excluding PC Mfg. Certificate which is to be 
customized into modem   

sec-n-02070 J. Munson 6/24/02 In Section 7.5.3.1 irrelevant text is to be deleted. 
sec-n-02071 S. 

Channabasappa 
6/24/02 MTA-FQDN messaging specified between the KDC 

& Prov Server, currently does not totally prevent 
MTA Cloning attacks. 

sec-n-02072 E. Rosenfeld 6/24/02 Remove a few RC4-specific remnants that were 
missed in a previous ECR. 

sec-n-02073 E. Necham-kin 6/24/02 Clarifications of the specifics in the AP Request and 
AP Reply mapping is added. 

sec-n-02074 L. LeVay 6/3/02 Addressing a DoS vulnerability in the Kerberized 
IPSEC interface between MTA & CMS, by requiring 
the MTAs IP address to be included in the CMS 
ticket. 
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ECN Author 

ECN 
Approval 

Date Summary  
sec-n-02086 E. Nechamkin 7/1/02 Need to specify that the MTA must establish SAs with 

the IP address that sent the key management message 
(AP-REP or REKEY). 

sec-n-02087 W. Xiaobo 7/1/02 Fix the inconsistency for IPsec transform identifier 
between PacketCable specification and IANA 
specification in section 6.1.2.1. 

sec-n-02088 S. 
Channabasappa 

7/1/02 The security spec currently references certain 
variables which resemble MIB variables, but are only 
used as place holders – requiring clarification; related 
to the same issue is a misquoted MIB variable 

sec-n-02096 S. Medvinsky 6/24/02 The security spec is unclear as to what the Application 
Server should do after it sends an AP Rep during 
Kerberized key management and times out while 
waiting on an SA Recovered message from the MTA. 

sec-n-02097 E. Rosenfeld 7/1/02 Clarify that the MAC appended to the RTP packet is 
considered part of the security processing, and not 
additional bytes included in the RTP packet (and thus 
subject to having to follow the padding requirements 
in RTP). 

sec-n-02098 DR Evans 7/1/02 Adds Profiles for Kerberos and IKE with certs for 
core network devices 

sec-n-02103 S. Medvinsky 7/1/02 Provides ability to disable RTCP encryption. 
sec-n-02104 S. Medvinsky 7/1/02 A couple entries in Table 1 of the security spec are 

incorrect and out-of-synch with the actual 
specification of those security interfaces. 

sec-n-02105 S. Medvinsky 7/1/02 The specification of the Kerberized IPsec protocol is 
unclear regarding the selected ciphersuite format in 
the AP Reply 

sec-n-02109 J. Shoghli 7/8/02 Clarify RTP and RTCP ciphersuite negotiation in 
conjunction with mgcp-n-02018. 

sec-n-02114 L. LeVay 7/1/02 When an application specific MTA FQDN Error is 
returned from the Provisioning Server to the KDC, 
there is no requirement for the KDC to return an error 
to the MTA (in response to the MTA’s PKINIT 
Request). 

sec-n-02115 N. Gilboa 7/8/02 Change FIPS 140-1 references to FIPS 140-2. 
sec-n-02136 L. LeVay 7/22/02 A KDC requirement to support the inclusion of the 

caddr in the AS Reply when the MTA's IP addr is 
included in the ticket was missed in ECN sec-n-02074 
(which addresses a Kerberized IPSec vulnerability) 

sec-o-02137 S. Medvinsky 7/29/02 The security spec currently requires the same 
retransmission strategy for key management as what 
is defined in the NCS spec, which is inconsistent with 
the MTA MIB definition and is more complex than 
what is necessary. 
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ECN Author 

ECN 
Approval 

Date Summary  
sec-n-02156 E. Rosenfeld 8/22/02 Provide support for disabling the NCS Signaling 

security interface on MTAs during the provisioning 
process, and support for ESP_NULL. 

sec-n-
02157a 

E. Nechamkin 9/9/02 Media (RTP/RTCP) security is always on by default 
in the current spec. This ECR enables media security 
to be turned off during a call set-up. 

 
 

The following Engineering Change Notices are incorporated in PKT-SP-SEC-I07-
021127. 

ECN Author ECN 
Approval 

Date 

Problem Description  

sec-n-02075 P. Leong 11/11/02 The security interface between CMS and Provisioning 
Server shall be IPSec with IKE-. 

sec-n-02102 E. Rosenfeld 11/11/02 Add Secure Software Download functionality in 
support of the Standalone MTA (S-MTA) 
specification. 

sec-n-02159 J. Zhu 11/18/02 Fix IPsec Authentication Algorithms in section 
6.1.2.2. 

sec-n-02189 E. Rosenfeld 11/18/02 Clarify the details surround IPsec Security Association 
processing. 

sec-n-02190 A. Negahdar 11/18/02 Clarifies the requirement for performing the Kerberos 
Key Management and establishing the IPsec SAs 
between the MTA and the new CMS in the case of 
NCS Redirect. 

sec-n-02191 E. Rosenfeld 11/18/02 Removes RADIUS Gate Coordination Security, as the 
Gate Coordination interface has been removed from 
the architecture. 

sec-n-02192 S. 
Channabasappa 

11/18/02 Clarifies proper  storage/usage of Kerberos tickets in 
NVRAM. 

sec-n-02193 A. Negahdar 11/18/02 Clarifies the definition of the Server Kerberos 
Principal Name element of the Wake Up and the 
Rekey messages.  

sec-n-02194 S. Medvinsky 11/18/02 Resolving inconsistencies created from adding 
optional key management protocols per sec-n-02098 

sec-n-02195 N. Gilboa 11/18/02 Clarify the calculation of the subkey used for 
Kerberized IPSec. 

sec-n-02196 J. Byrne 11/18/02 Case 2 of Step 2 of Section 9.8.1.1 MMH[16,s,1] in 
the PacketCable Security specification is incorrect. 

sec-n-02197 D. R. Evans 11/18/02 Change Requirements on Certificate Validity Periods 
 

__________________________ 
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