

CableLabs® Asset Distribution Interface Specification
Version 1.1

MD-SP-ADI1.1-I01-020927
Issued

Notice

This specification is a cooperative effort undertaken at the direction of
Cable Television Laboratories, Inc. (CableLabs®) for the benefit of the
cable industry. Neither CableLabs, nor any other entity participating in
the creation of this document, is responsible for any liability of any
nature whatsoever resulting from or arising out of use or reliance upon
this document by any party. This document is furnished on an AS-IS
basis and neither CableLabs, nor other participating entity, provides
any representation or warranty, express or implied, regarding its
accuracy, completeness, or fitness for a particular purpose.

 Copyright 2002 Cable Television Laboratories, Inc.
All rights reserved.

golow

MD-SP-ADI1.1-I01-020927 Metadata Specification

ii CableCableCableCableLabs 09/27/02

Document Status Sheet

Document Control Number: MD-SP-ADI1.1-I01-020927

Document Title: CableLabs® Asset Distribution Interface Specification Version 1.1

Revision History: I01 – Released 9/27/02

Date: September 27, 2002

Status: WIP Draft Issued Released

Distribution Restrictions: Author Only CL/Member CL/ Member/
Vendor

Public

Key to Document Status Codes:

Work in Progress An incomplete document, designed to guide discussion and generate feedback,
that may include several alternative requirements for consideration.

Draft A document in specification format considered largely complete, but lacking
review by Members and vendors. Drafts are susceptible to substantial change
during the review process.

Issued A stable document, which has undergone rigorous member and vendor review
and is suitable for product design and development, cross-vendor
interoperability, and for certification testing.

Closed A static document, reviewed, tested, validated, and closed to further engineering
change requests to the specification through CableLabs.

CableLabsAsset Distribution Interface Version 1.1 MD-SP-ADI1.1-I01-020927

09/27/02 CableCableCableCableLabs iii

Table of Contents
1 INTRODUCTION... 1

1.1 PURPOSE .. 1
1.2 SCOPE .. 1
1.3 REQUIREMENTS.. 1

2 REFERENCES.. 2
2.1 NORMATIVE REFERENCES.. 2
2.2 INFORMATIVE REFERENCES ... 2
2.3 REFERENCE ACQUISITION .. 2

3 TERMS AND DEFINITIONS.. 3

4 ABBREVIATIONS AND ACRONYMS ... 4

5 DATA TYPES ... 5
5.1 ASSET .. 5
5.2 METADATA .. 6

5.2.1 AMS metadata ... 6
5.2.2 Application metadata .. 7

5.3 CONTENT ... 7
6 FILE FORMATS .. 8

6.1 ADS DIRECTORY FORMAT... 8
6.1.1 Structure.. 8

6.2 FILE FORMATS ... 8
6.2.1 XML asset file.. 8
6.2.2 Content files .. 8
6.2.3 File Size... 8

7 MESSAGING PROTOCOL... 9

8 EXPECTED BEHAVIORS .. 10
8.1 INSTANTIATION OF A PACKAGE .. 10
8.2 ASSIGNMENT OF A CHILD ASSET TO A PARENT ASSET ... 10
8.3 ASSIGNMENT OF APPLICATION METADATA AND CONTENT TO AN ASSET... 10
8.4 DELETE AN ASSET.. 10

APPENDIX I – DTD FILE FORMAT .. 12

APPENDIX II – EXAMPLE ADI XML DOCUMENTS... 13
II.1 INITIAL PITCH OF ASSETS... 13
II.2 REPLACE THE ASSET METADATA .. 14
II.3 ADD AN ADDITIONAL ASSET.. 16
II.4 DELETE AN ASSET... 16

APPENDIX III – REFERENCE MESSAGING PROTOCOL IMPLEMENTATION 18
III.1 LOCATING THE PACKAGEFACTORY.. 18
III.2 LOCATING A PACKAGE... 18
III.3 CREATING A PACKAGE... 18
III.4 PROVISIONING THE PACKAGE... 19
III.5 TRANSFERRING CONTENT .. 19

MD-SP-ADI1.1-I01-020927 Metadata Specification

iv CableCableCableCableLabs 09/27/02

III.6 ISA PACKAGE DISTRIBUTION EVENT TRACE DIAGRAMS ... 19
III.7 PROVISION FUNCTIONS .. 24

List of Figures
Figure 1 – Asset Distribution...1
Figure 2 – UML Diagram for Assets ...6
Figure 3 – Initial Package Propagation - ADS view..20
Figure 4 – Package Update Propagation - ADS View...21

List of Tables
Table 1 – Metadata Elements...7
Table 2 – Provision Functions ...24

CableLabsAsset Distribution Interface Version 1.1 MD-SP-ADI1.1-I01-020927

09/27/02 CableCableCableCableLabs 1

1 INTRODUCTION

1.1 Purpose

The Asset Distribution Interface is the means by which assets (content as well as metadata describing that content)
are transported from a provider to an Asset Management System. In addition, it provides a mechanism by which
'block' updates may be made to previously distributed assets. These block updates include metadata replacement,
content replacement, adding a new child asset to a previously received asset and deleting an asset.

1.2 Scope

Version 1.0 of this specification was concerned with asset distribution using DLT tape as the medium. This version
allows for other distribution media. This version of ADI defines distribution of assets over a network interface.
Assets are contained in a package that is moved from an Asset Distribution System (ADS) to an Asset Management
System (AMS). The methods by which assets are distributed within the ADS are beyond the scope of this
specification.

Asset
Distribution

System ADI

Asset
Management

System

Figure 1 – Asset Distribution

1.3 Requirements

Throughout this document, the words that are used to define the significance of particular requirements are
capitalized. These words are:

“MUST” This word or the adjective “REQUIRED” means that the item is an absolute
requirement of this specification.

“MUST NOT” This phrase means that the item is an absolute prohibition of this specification.

“SHOULD” This word or the adjective “RECOMMENDED” means that there may exist valid
reasons in particular circumstances to ignore this item, but the full implications
should be understood and the case carefully weighed before choosing a different
course.

“SHOULD NOT” This phrase means that there may exist valid reasons in particular circumstances
when the listed behavior is acceptable or even useful, but the full implications
should be understood and the case carefully weighed before implementing any
behavior described with this label.

“MAY” This word or the adjective “OPTIONAL” means that this item is truly optional. One
vendor may choose to include the item because a particular marketplace requires it
or because it enhances the product, for example; another vendor may omit the same
item.

golow

MD-SP-ADI1.1-I01-020927 Metadata Specification

2 CableCableCableCableLabs 09/27/02

2 REFERENCES

2.1 Normative References

In order to claim compliance with this specification, it is necessary to conform to the following standards and other
works as indicated, in addition to the other requirements of this specification. Notwithstanding, intellectual property
rights may be required to use or implement such normative references.

[1] Extensible Markup Language (XML) Version 1.0, World Wide Web Consortium

[2] IETF RFC 1738, Uniform Resource Locators (URL), December 1994, www.ietf.org

2.2 Informative References
[3] CableLabs Video-On-Demand Content Specification Version 1.1,

MD-SP-VOD-CONTENT1.1-I01-020927, September 27, 2002

[4] The Common Object Request Broker: Architecture and Specification, OMG, CORBA services:
Common Object Services Specification, OMG

[5] IETF RFC 959, File Transfer Protocol (FTP), October 1985

[6] IETF RFC 1945, Hypertext Transfer Protocol -- HTTP/1.0, May 1996

[7] Pegasus 1.0 RFP, Time Warner Cable

[8] Pegasus 2.0 RFP. Time Warner Cable

[9] Pegasus ADI 2.0, Time Warner Cable

[10] Pegasus Interactive Services Architecture 1.1, Time Warner Cable

[11] Pegasus Three Letter Acronyms Version 1.0, Time Warner Cable

2.3 Reference Acquisition
• Cable Television Laboratories, Inc. (CableLabs), 400 Centennial Parkway Louisville CO 80027-1266

www.cablelabs.com/projects/metadata/

• Internet Engineering Task Force (IETF) Secretariat, c/o Corporation for National Research Initiatives, 1895
Preston White Drive, Suite 100, Reston, VA 20191-5434, Phone 703-620-8990, Fax 703-620-9071, Internet:
www.ietf.org

• Time Warner Cable, 290 Harbor Drive, Stamford CT 06902, http://twcable.web.aol.com/Pegasus/

• Worldwide Web Consortium, http://www.w3c.org

http://www.cablelabs.com/projects/metadata/
http://www.ietf.org/
http://twcable.web.aol.com/Pegasus/
http://www.w3c.org/

CableLabsAsset Distribution Interface Version 1.1 MD-SP-ADI1.1-I01-020927

09/27/02 CableCableCableCableLabs 3

3 TERMS AND DEFINITIONS

This specification uses the following terms:

Metadata Metadata is descriptive data associated with a content asset package or file. It
may vary in depth from merely identifying the content package title or
information to populate an EPG to providing a complete index of different
scenes in a movie or providing business rules detailing how the content
package may be displayed, copied, or sold. Separate uses for metadata have
originated from the studios, distribution networks (Cable, Satellite), down to
the CPE (STBs, PVRs).

Asset Distribution
Interface

The Asset Distribution Interface is the means by which assets (content as
well as metadata describing that content) are transported from a provider to
an Asset Management System. In addition, it provides a mechanism by which
'block' updates may be made to previously distributed assets. These block
updates include metadata replacement, content replacement ,adding a new
child asset to a previously received asset and deleting an asset.

Asset Management
System

An Asset Management System is any entity that stores and manages the
lifecycle of Assets.

Asset Distribution
System

An Asset Distribution System provides transportation of Assets from the
premises of the Assets’ Provider to the Premises of the MSO. It interfaces to
the Asset Management System using ADI.

Package A Package is a collection of Assets delivered, tracked, and managed as a
unit.

Asset An Asset is the combination of a Content, which is a physical media file such
as an MPEG-encoded movie, combined with the necessary metadata required
to use the Content for a given application. Assets may, optionally, be
composite such that they contain other Assets.

Update Update refers to the replacement of a component of an Asset, either the
Metadata, the Content, or both. Either component may be updated
independently, but, if updated, must be replaced in its entirety.

MD-SP-ADI1.1-I01-020927 Metadata Specification

4 CableCableCableCableLabs 09/27/02

4 ABBREVIATIONS AND ACRONYMS

This specification uses the following abbreviations:

ADI Asset Distribution Interface
AMS Asset Management System
ADS Asset Distribution System
CORBA Common Object Request Broker Architecture
CPE Customer Premise Equipment
DTD Document Type Definition

FTP File Transfer Protocol
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
JPEG Joint Photographic Experts Group
MOD Movies on Demand
MPEG Motion Picture Expert Group
PVR Personal Video Recorder
STB Set-Top-Box
SVOD Subscription Video on Demand
URL Uniform Resource Locator
VOD Video on Demand
WWW World Wide Web
XML eXtensible Markup Language

CableLabsAsset Distribution Interface Version 1.1 MD-SP-ADI1.1-I01-020927

09/27/02 CableCableCableCableLabs 5

5 DATA TYPES

5.1 Asset

An asset is a container for any object or set of objects that may be required to implement a service, including video,
audio, images, application executables, scripts, configuration files, text, fonts, and HTML pages. In addition to the
raw content, metadata is also a part of an asset object that describes characteristics of the asset.

Assets may be recursive in nature; that is, they may contain additional assets, which may, themselves, contain
additional assets, and so on. Assets are objects that are used to contain arbitrary content for purposes of tracking and
control. An application is a type of asset. Delivering an asset that is an application runs that application.

Assets are contained in a single directory in the distribution environment to avoid fragmentation. It is important not
to let asset content get separated from metadata.

Assumptions about assets:

• Asset metadata describes the type of content contained in the asset.
• Assets may either contain their content, or a reference to it.
• An asset may have no content.
• Content is any arbitrary set of bits.
• Assets always have a version number.
• Assets may contain zero or more assets.

Metadata is grouped according to its consumer, i.e., what part of the system is going to be processing it. Possible
groups are:

• Asset Management System
• Delivery system (like the video server)
• An application (such as MOD)
• Operational Support System
• Business Support System (the billing system)

Assets are uniquely identified by the combination of the Provider_ID and Asset_ID fields within the ADI.DTD. Each
Provider assigns these IDs prior to delivery. These identifiers are persistent across both the ADS and the AMS. They
serve as the 'agreed to' identifier between the ADS and the AMS so that and Asset may be referenced for subsequent
actions such as delete or update.

MD-SP-ADI1.1-I01-020927 Metadata Specification

6 CableCableCableCableLabs 09/27/02

Asset Content

Metadata
0..*

0..1 0..*

Figure 2 – UML Diagram for Assets

5.2 Metadata

Metadata describes characteristics of an asset, attributes that are inherent in the content of the asset, such as format,
duration, size, or encoding method. Values for metadata are determined at the time the asset is created and do not
change over time. Metadata is extensible and consists of keyword-value pairs. Asset-specific keywords may be
created and values defined at asset creation time.

This data is described in XML so that the parsing routines at the receiving end may be as simple as possible. This
also allows for easy extensions with respect to new metadata tag-value pairs. Regardless of the type of metadata, all
metadata must be provided, both AMS metadata and application metadata within an assets metadata element.

5.2.1 AMS metadata

Certain metadata is used by the Asset Management System to manage assets. This metadata is common to all assets
and is not application specific.

The following metadata elements should be present for all assets delivered to the AMS.

CableLabsAsset Distribution Interface Version 1.1 MD-SP-ADI1.1-I01-020927

09/27/02 CableCableCableCableLabs 7

Table 1 – Metadata Elements

Metadata Name Description Type
Asset_Name A string containing the identifying name of the asset. Asset names must be

unique within a product.
String

Provider A unique identifier for the Asset’s provider String
Product A unique (within the provider’s namespace) identifier for the product String
Version_Minor An integer representing the minor version number (usually displayed after

the decimal point: in Version 7.8, 8 is the minor version number). “*”
represents all versions.

String

Version_Major An integer representing the major version number (usually displayed
before the decimal point: in Version 7.8, 7 is the major version number).
“*” represents all versions.

String

Description A human-readable string describing the Asset. String

Creation_Date A string representing the date on which the Asset was created, for
example: “1999-03-16”.

String format
yyyy-mm-dd

Provider_ID A unique identifier for the Asset’s provider. The Provider_ID shall be set
to the provider’s registered internet domain name.

String

Asset_ID A string containing the identifying name of the asset. An Asset_ID shall
uniquely identify an asset within a provider’s namespace defined by the
Provider_ID attribute.
All Asset_ID’s will have a maximum length of 20, with the first 4
characters alpha and the last 16 characters numeric

String
(alpha/
numeric)

Asset_Class A string containing the class of the asset, as identified within the content
specification that defines the asset. The possible values for this
specification are beyond the scope of this specification.

String

Verb A string containing an action to be performed on the asset. The only valid
values for Verb are the empty string (“”,) and “DELETE”. Note the Verb
attribute is optional.

String

5.2.2 Application metadata

An application may specify and use any metadata tags and values that are specific to that application. This document
describes the mechanism by which application specific metadata is specified.

Application specific metadata tags and values are not described in this document.

5.3 Content
Content is the actual bits that compose the “payload” of the asset. Content may be an HTML web page, an MPEG
transport stream, a JPEG image, or a set top application executable, to name a few examples. Content is any arbitrary
collection of bits. There are no restrictions on size or what a content file contains.

MD-SP-ADI1.1-I01-020927 Metadata Specification

8 CableCableCableCableLabs 09/27/02

6 FILE FORMATS

6.1 ADS Directory Format

6.1.1 Structure

The ADS directory contains the DTD file that describes the XML file syntax, the XML file describing the asset
metadata and relationships, and zero or more files containing the content of the assets as shown here:

• XML asset file
• Content File 1
• Content File 2
• …
• Content File N

The DTD file describes the syntax within the XML asset file. The asset file describes the structure of the asset (and
its nested assets), all metadata, and contains references to the contents in the same directory. There will always be
exactly one DTD file, one asset file, and any number of content files.

6.2 File Formats

6.2.1 XML asset file

The asset metadata and relationships are specified using XML as specified in the AMI DTD (see Appendix I). When
performing metadata updates, all application metadata items (App_Data elements) should be provided such that the
application metadata items are replaced in their entirety.

6.2.2 Content files

Files containing the content of the assets are in the same directory on the ADS as the XML file. Each content file has
a unique name within the directory, and is referenced from within the XML with the “Content Value" item.

If an asset does not contain content, a Content element may be provided with the value attribute containing the literal
“NONE”. The absence of a content element will indicate no change to the content.

6.2.3 File Size

There is no maximum file size specified. Therefore, in order to avoid problems with overflowing file pointer sizes on
various platforms, it is incumbent on the developers of systems on either side of the Asset Distribution Interface to
ensure that they can handle files of arbitrary size. This means that it may be necessary to segment a large file into
smaller pieces before, during, or after transmission.

CableLabsAsset Distribution Interface Version 1.1 MD-SP-ADI1.1-I01-020927

09/27/02 CableCableCableCableLabs 9

7 MESSAGING PROTOCOL

This document envisions, but does not yet require, a messaging protocol to support the transmission of the ADI files
described in section 6. This protocol will provide positive control over the process of distributing Asset Packages
from the ADS to the AMS, and will provide positive feedback to the ADS on the success of the distribution,
including the success or failure of any file copy operation as well as any additional processing of the Asset involved
in installing it into its ultimate repository.

Standardizing the messaging protocol provides for complete interoperability between ADS and AMS vendors, and
also lays the groundwork for automatic distribution failure notification and recovery. Failing to standardize on a
messaging protocol will result in multiple, per-installation vendor-vendor ADI integrations. This will result in longer
deployment times for new content providers. A simplistic approach, such as a simple file copy, would facilitate basic
integration, but would limit the ability of content providers to automatically handle failures in Asset packaging.

While not a normative part of this specification, one example of such a messaging protocol be found in Appendix III.

MD-SP-ADI1.1-I01-020927 Metadata Specification

10 CableCableCableCableLabs 09/27/02

8 EXPECTED BEHAVIORS

While implementation details are not a part of this specification, a messaging protocol implies certain behaviors of
each end of the communication. Note that these behaviors are ‘logical‘ functions and do not assume specific
behaviors or implementation. These behaviors may be implemented by more than one system.

8.1 Instantiation of a Package

The ADS uses a Package asset to instantiate a set of assets on the AMS. Since a package is a specific type of asset, it
is uniquely identified by it’s Provider_ID, Asset_ID pair. The package Asset may contain a hierarchy of children
assets which are also uniquely identified by the their Provider_ID, Asset_ID pair. The root of this hierarchy is the
Package asset. The children assets may contain Application metadata and/or content.

The ADS may expect that an instantiated Asset, which has not been acted upon by the ‘delete’ action, may be
referenced. The reference to an asset shall contain the path through the hierarchy of assets to ‘reach’ that asset. Note
that this does not specify implementation, only that a persistent logical relationship exists among the assets in the
package.

8.2 Assignment of a Child Asset to a Parent Asset

If an asset is specified as a child of an asset in the ADI document, that child asset is assigned to that parent asset and
added to the asset hierarchy. The initial delivery of a package may contain Assets and their hierarchy. Within the
package, this ADI document defines a parent-child relationship between 2 assets. This logical tree structure is
persistent until acted upon by a delete command.

A subsequent delivery of the package may contain new Assets which may be defined as children of existing Assets.
In this manner it is possible to stagger the delivery of assets. For example, business needs may drive the delivery of a
promo video clip prior to the delivery of the feature which it is promoting.

Appendix II.1, ‘Initial Pitch of Asset’ contains an example of the parent-child assignment within an initial Pitch.
Appendix II.3, ‘Add an additional Asset’, contains an example of the assignment of a new child to an existing parent.

8.3 Assignment of Application Metadata and Content to an Asset

If an asset within an ADI document contains Application Metadata and/or Content, those elements are assigned to
that asset. Application Metadata and Content elements are operated upon as a unit, that is, a new element shall
completely replace an existing element.

The ADS may expect that an instantiated asset, which has not been acted upon by the ‘delete’ verb, may be
referenced and that the same new/replacement may be used on that asset

Appendix II.2, ‘Replace Asset Metadata and/or Content’, contains an example of replacement of both Application
Metadata and Content.

8.4 Delete an Asset
The Delete verb will immediately remove the specified asset, its metadata, content, and all of its children assets from
the AMS. Those Asset(s) will no longer be available to either subscribers or to the ADS. This verb is intended to be
used only in an emergency, when immediate action is required (e.g. wrong content was assigned to an asset). It is not
necessary for the ADS to specify all children assets that will be operated upon by a ‘delete’ against a parent asset

CableLabsAsset Distribution Interface Version 1.1 MD-SP-ADI1.1-I01-020927

09/27/02 CableCableCableCableLabs 11

Again, note that specific implementation is not intended or implied, however a ‘delete’ against a package asset will
result in the package and all of its child Assets being removed.

Appendix II.4, ‘Delete an Asset’, contains an example. The delete only applies to the specified asset, not the entire
package.

MD-SP-ADI1.1-I01-020927 Metadata Specification

12 CableCableCableCableLabs 09/27/02

Appendix I – DTD file format

The examples provided are for illustrative purposes and hence do not necessarily reflect a specific content
specification. Specifically, these examples do not represent valid CABLELABS VOD 1.0 instances.

<!-- DTD for Package-->
<!--CableLabs Asset Distribution Interface version 1.1 -->
<!-- <!ENTITY amp "&#38;"> -->
<!ELEMENT ADI (Metadata, Asset*)>
<!ELEMENT Asset (Metadata, Asset*, Content?)>
<!ELEMENT Metadata (AMS, App_Data*)>
<!ELEMENT AMS (#PCDATA)>
<!ATTLIST AMS

Asset_Name CDATA #REQUIRED
Asset_ID CDATA #REQUIRED
Asset_Class CDATA #REQUIRED
Provider CDATA #REQUIRED
Provider_ID CDATA #REQUIRED
Product CDATA #REQUIRED
Version_Minor CDATA #REQUIRED
Version_Major CDATA #REQUIRED
Description CDATA #REQUIRED
Creation_Date CDATA #REQUIRED
Verb CDATA #IMPLIED

>
<!ELEMENT App_Data (#PCDATA)>
<!ATTLIST App_Data

App CDATA #REQUIRED
Name CDATA #REQUIRED
Value CDATA #REQUIRED

>
<!ELEMENT Content (#PCDATA)>
<!ATTLIST Content

Value CDATA #REQUIRED
>

CableLabsAsset Distribution Interface Version 1.1 MD-SP-ADI1.1-I01-020927

09/27/02 CableCableCableCableLabs 13

Appendix II – Example ADI XML Documents

II.1 Initial pitch of Assets
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE ADI SYSTEM 'ADI.DTD'>

<ADI>
<Metadata>

<AMS Asset_Name="CaptainCorellisMandolinpackage"
Provider="iN DEMAND"
Product="MOD" Version_Major="1" Version_Minor="0"
Description="Captain Corellis Mandolin asset package"
Creation_Date="2002-03-05"
Provider_ID="indemand.com"
Asset_ID="UNVA2001081701003000"
Asset_Class=”package” />
</Metadata>

<Asset>
<Metadata>

<AMS Asset_Name="Captain Corellis Mandolin title"
Provider="iN DEMAND" Product="MOD" Version_Major="1" Version_Minor="0"
Description="Captain Corellis Mandolin title asset"
Creation_Date="2002-03-05"
Provider_ID="indemand.com"
Asset_ID="UNVA2001081701003001"
Asset_Class="title" />

<App_Data App="MOD" Name="Title"
Value="Captain Corellis Mandolin" />

<App_Data App="MOD" Name="Summary_Short" Value="On a Greek island
during World War II, a young woman falls for an invading Italian
soldier while her lover is away fighting for the Greek army. Nicolas
Cage, Penelope Cruz. Directed by John Madden. (New Release, 2001,
Romantic Drama)" />

<App_Data App="MOD" Name="Rating" Value="R" />
<App_Data App="MOD" Name="Display_Run_Time" Value="02:08" />
<App_Data App="MOD" Name="Run_Time" Value="02:08:00" />
<App_Data App="MOD" Name="Year" Value="2001" />
<App_Data App="MOD" Name="Actors" Value="Nicholas,Cage” />
<App_Date App=”MOD” Name="Actors" Value="Cruz,Penelope” />
<App_Date App=”MOD” Name="Actors" Value="Bale,Christian” />
<App_Data App=”MOD” Name=”Actors” Value=”Hurt,John” />
<App_Data App="MOD" Name="Director" Value="Madden,John" />
<App_Data App="MOD" Name="Studio”_Value="Universal Studios" />
<App_Data App="MOD" Name="Genre" Value="Drama" />
<App_Data App=”MOD” Name=”Category” Value=” New Releases/Drama,

New Releases/Movies A to Z” />
<App_Data App="MOD" Name="Provider_Asset_ID" Value="40600" />
<App_Data App="MOD" Name="Licensing_Window_Start" Value="22-03-2002" />
<App_Data App="MOD" Name="Licensing_Window_End" Value="05-07-2002" />
<App_Data App="MOD" Name="Contract_Name" Value="Contract Name" />
<App_Data App="MOD" Name="Royalty_Percent" Value="0" />
<App_Data App="MOD" Name="Royalty_Minimum" Value="0" />
<App_Data App="MOD" Name="Royalty_Flat_Rate" Value="0" />
<App_Data App="MOD" Name="Box_Office" Value="26" />
<App_Data App="MOD" Name="Suggested_Price" Value="3.95" />
<App_Data App="MOD" Name="Maximum_Viewing_Length" Value="24:00:00" />

</Metadata>

<Asset>

MD-SP-ADI1.1-I01-020927 Metadata Specification

14 CableCableCableCableLabs 09/27/02

<Metadata>
<AMS Asset_Name="Captain Corellis Mandolin feature"
Provider="iN DEMAND"
Product="MOD" Version_Major="1" Version_Minor="0" Description="Captain Corellis
Mandolin feature asset" Creation_Date="2002-03-05"
Provider_ID="indemand.com"
Asset_ID="UNVA2001081701003002"
Asset_Class="movie" />

</Metadata>
<Content Value="Mandolin.mpg" />

</Asset>

<Asset>
<Metadata>

<AMS Asset_Name="Captain Corellis Mandolin trailer"
Provider="iN DEMAND"
Product="MOD" Version_Major="1" Version_Minor="0" Description="Captain Corellis
Mandolin trailer asset" Creation_Date="2002-03-05"
Provider_ID="indemand.com"
Asset_ID="UNVA2001081701003003"
Asset_Class="preview" />

<App_Data App="MOD" Name="Rating_Type" Value="MPAA" />
<App_Data App="MOD" Name="Rating" Value="R" />
<App_Data App="MOD" Name="Run_Time" Value="00:01:30" />

</Metadata>
<Content Value="MandolinTR.mpg" />

</Asset>

<Asset>
<Metadata>

<AMS Asset_Name="Captain Corellis Mandolin artwork"
Provider="iN DEMAND"
Product="MOD" Version_Major="1" Version_Minor="0" Description="Captain Corellis
Mandolin artwork asset"
Creation_Date="2002-03-05"
Provider_ID="indemand.com"
Asset_ID="UNVA2001081701003004"
Asset_Class="poster"/>

</Metadata>
<Content Value="captaincorellis.bmp" />

</Asset>
</Asset>
</ADI>

II.2 Replace the Asset Metadata

The structure for metadata replacement is to nest the asset being modified within its parent asset.
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE ADI SYSTEM 'ADI.DTD'>
<ADI>
<Metadata>

<AMS Asset_Name="CaptainCorellisMandolinpackage"
Provider="iN DEMAND"
Product="MOD" Version_Major="1" Version_Minor="0"
Description="Captain Corellis Mandolin asset package"
Creation_Date="2002-03-05"
Provider_ID="indemand.com"
Asset_ID="UNVA2001081701003000"
Asset_Class=”package” />

</Metadata>

<Asset>

CableLabsAsset Distribution Interface Version 1.1 MD-SP-ADI1.1-I01-020927

09/27/02 CableCableCableCableLabs 15

<Metadata>
<AMS Asset_Name="Captain Corellis Mandolin title"

Provider="iN DEMAND" Product="MOD" Version_Major="1" Version_Minor="0"
Description="Captain Corellis Mandolin title asset"
Creation_Date="2002-03-05"
Provider_ID="indemand.com"
Asset_ID="UNVA2001081701003001"
Asset_Class="title" />
</Metadata>

<Asset>
<Metadata>

<AMS Asset_Name="Captain Corellis Mandolin trailer"
Provider="iN DEMAND"
Product="MOD" Version_Major="1" Version_Minor="0" Description="Captain Corellis
Mandolin trailer asset" Creation_Date="2002-03-10"
Provider_ID="indemand.com"
Asset_ID="UNVA2001081701003003"
Asset_Class="preview" />

<App_Data App="MOD" Name="Rating_Type" Value="MPAA" />
<App_Data App="MOD" Name="Rating" Value="G" />
<App_Data App="MOD" Name="Run_Time" Value="00:01:29" />

</Metadata>
</Asset>
</Asset><!-- end of title asset -->
</ADI>

MD-SP-ADI1.1-I01-020927 Metadata Specification

16 CableCableCableCableLabs 09/27/02

II.3 Add an additional Asset

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE ADI SYSTEM 'ADI.DTD'>

<ADI>
<Metadata>
<AMS Asset_Name="CaptainCorellisMandolinpackage"
Provider="iN DEMAND"
Product="MOD" Version_Major="1" Version_Minor="0"
Description="Captain Corellis Mandolin asset package"
Creation_Date="2002-03-05"
Provider_ID="indemand.com"
Asset_ID="UNVA2001081701003000"
Asset_Class=”package” />
</Metadata>
<Asset>
<Metadata>

<AMS Asset_Name="Captain Corellis Mandolin title"
Provider="iN DEMAND" Product="MOD" Version_Major="1" Version_Minor="0"
Description="Captain Corellis Mandolin title asset"
Creation_Date="2002-03-05"
Provider_ID="indemand.com"
Asset_ID="UNVA2001081701003001"
Asset_Class="title" />
</Metadata>

<Asset>
<Metadata>

<AMS Asset_Name="Captain Corellis Mandolin artwork2"
Provider="iN DEMAND"
Product="MOD" Version_Major="1" Version_Minor="0" Description="Captain Corellis
Mandolin artwork asset2"
Creation_Date="2002-11-03"
Provider_ID="indemand.com"
Asset_ID="UNVA2001081701003005"
Asset_Class="poster"
/>

<App_Data App="MOD" Name="Asset_Type" Value="poster" />
</Metadata>
<Content Value="captaincorellis2.bmp" />

</Asset>
</Asset>

</ADI>

II.4 Delete an Asset

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE ADI SYSTEM 'ADI.DTD'>

<ADI>
<Metadata>

<AMS Asset_Name="CaptainCorellisMandolinpackage"
Provider="iN DEMAND"
Product="MOD" Version_Major="1" Version_Minor="0"
Description="Captain Corellis Mandolin asset package"
Creation_Date="2002-05-03"
Provider_ID="indemand.com"
Asset_ID="UNVA2001081701003000"
Asset_Class=”package” />
</Metadata>
<Asset>
<Metadata>

<AMS Asset_Name="Captain Corellis Mandolin title"

CableLabsAsset Distribution Interface Version 1.1 MD-SP-ADI1.1-I01-020927

09/27/02 CableCableCableCableLabs 17

Provider="iN DEMAND" Product="MOD" Version_Major="1" Version_Minor="0"
Description="Captain Corellis Mandolin title asset"
Creation_Date="2002-03-05"
Provider_ID="indemand.com"
Asset_ID="UNVA2001081701003001"
Asset_Class="title" />
</Metadata>
<Asset>

<Metadata>
<AMS Asset_Name="Captain Corellis Mandolin feature"
Provider="iN DEMAND"
Product="MOD" Version_Major="1" Version_Minor="0" Description="Captain Corellis
Mandolin feature asset" Creation_Date="2002-03-05"
Provider_ID="indemand.com"
Asset_ID="UNVA2001081701003002"
Asset_Class="movie"
Verb="DELETE" />

</Metadata>
</Asset>

</Asset><!-- end of title asset -->
</ADI>

MD-SP-ADI1.1-I01-020927 Metadata Specification

18 CableCableCableCableLabs 09/27/02

Appendix III – Reference Messaging Protocol Implementation

This appendix captures a reference implementation of ADI which utilizes a subset of the Interactive Services
Architecture (ISA), which is a specification based on CORBA. This appendix describes the subset of ISA relating to
the management of Package objects, which is a function of the ADS. The AMS implements the Package object and
PackageFactory objects. The ADS creates and provisions the Package object by making CORBA calls on the AMS.
The ADS transfers a package of assets by asking the PackageFactory object to create a Package object, and then
provisioning that Package object with the information needed for the AMS to transfer all of the assets contained in it
from the ADS to the appropriate locations.

III.1 Locating the PackageFactory

The ADS must first locate the PackageFactory object, which is responsible for creating and managing Packages in
the system. This is done by calling the resolve() function of the Naming Service. This is expected to be done
once when the ADS is first initialized.

Object resolve (in Name)

This returns an object reference to a Package Factory that will be used to locate and or create packages.

III.2 Locating a Package

The ADS should first determine if the Package to be processed already exists on the AMS. The ADS will determine
if the Package already exists by calling the find() function on the PackageFactory.

ServantBase find (in Name)

The ADS should provide the Provider_ID and Asset_ID as the name. Specifically, the format of the name provided
should be a concatenation of the Provider_ID, ‘/’ and the Asset_ID taken from the AMS metadata element of the
XML instance document.

This returns an object reference to the Package that will be provisioned if the Package already exists.

III.3 Creating a Package

If the result of the ADS performing 6.2.1 fails to result in a Package object reference, the ADS should create a
Package object to be provisioned.

Using the PackageFactory object located from the naming service, the ADS should use the createServant()
function on the PackageFactory to instantiate a Package object. An object reference to the newly created Package
object is returned.

ServantBase createServant (in string name)

The ADS should provide the Provider_ID and Asset_ID as the name. Specifically, the format of the name provided
should be a concatenation of the Provider_ID, ‘/’ and the Asset_ID taken from the AMS metadata element of the
XML instance document.

This returns an object reference to the Package that will be provisioned.

CableLabsAsset Distribution Interface Version 1.1 MD-SP-ADI1.1-I01-020927

09/27/02 CableCableCableCableLabs 19

III.4 Provisioning the Package

In ISA, a newly created object is in an unprovisioned state, and is considered to be out of service. This means the
Package object must be provisioned with the package information in the ADS. This is done by calling the
provision function on the Package object. The arguments passed to this function should be the URL of the XML
file on the ADS, and a value that sets the state of the object to in service.

void provision (in AdministrativeState theAdministrativeState, in
string theUrl)

The URL passed in the provision function should contain the protocol that the AMS may use to copy the files
from the ADS, the authentication credentials (login and password) and a hostname for the ADS that can be resolved
by the AMS, and the path and file name of the XML asset file.

The provision message will cause the content files to be fetched from the ADS as described below. Completion
of the provision function will not occur until all the content files have been transferred.

During processing of the provision message, the AMS may encounter an error. In such an event, the AMS will
provide an Exception which indicates the source of the failure. The following exceptions should be provided:

XMLProcessingException

An invalid XML document was provided.

TransferException

A TransferException will contain a code indicating one of the following conditions: NotEnoughSpace,
CheckSumMismatch, SizeMismatch, ConnectionRefused, NetworkTimeout, NoRoute, HostnameLookup.

VersionException

An update to a package and or asset could not be processed due to a version disparity.

All other failures should result in a ProvisioningException or InvalidStateException.

III.5 Transferring content

The protocol in the URL of the XML file determines the protocol that the AMS will use to fetch the XML file from
the ADS unless otherwise indicated by the content file URL. If the content file location URL is simply a filename,
the content files are assumed to be in the same relative location as the XML file. The ADS SHALL provide for one
of the following protocols:

• ftp

• http

• file

Specifically, the ADS should minimally support the “get”, “mode” operations for ftp.

The AMS should fetch the XML file, parse it, and then should fetch the content files described within it. When all of
the content has been transferred, or an error is encountered, the provision function will return.

III.6 ISA Package Distribution Event Trace Diagrams

MD-SP-ADI1.1-I01-020927 Metadata Specification

20 CableCableCableCableLabs 09/27/02

Figure 3, ‘Initial Package Propagation – ADS view’, illustrates an initial package propagation scenario for package
propagation. Figure 4, ‘Package Update Propagation – ADS view’, illustrates an update to package propagation
scenario.

Figure 3 – Initial Package Propagation - ADS view

CableLabsAsset Distribution Interface Version 1.1 MD-SP-ADI1.1-I01-020927

09/27/02 CableCableCableCableLabs 21

Figure 4 – Package Update Propagation - ADS View

MD-SP-ADI1.1-I01-020927 Metadata Specification

22 CableCableCableCableLabs 09/27/02

//Source file: c:/isaIdl/PackageComponent.idl

#ifndef __PACKAGECOMPONENT_DEFINED
#define __PACKAGECOMPONENT_DEFINED

/* CmIdentification
%X% %Q% %Z% %W% */

/*
* Copyright 2000, 2001, 2002 Time Warner Cable. All rights reserved.
*
* ISA version 1.4 PRELIMINARY 2
*/

#include "AssetComponent.idl"
#include "ServerComponent.idl"
#include "ProductComponent.idl"
#include "ContentComponent.idl"
#include "CosEventChannelAdmin.idl"

#pragma prefix "isa.twc.com"

/* The Pegasus Asset Distribution Interface (ADI) defines a Package to be a
specialization of the Asset. In ISA, a Package is a derived type of Asset. This module
defines the relationships and interfaces for the Package component. */

module PackageModule {
interface Package;

/* An event channel to publish Package-related events. */

interface PackageEventChannel : CosEventChannelAdmin::EventChannel {
};

exception VersionException {
string message;
ServerModule::CompletionCode theCompletionCode;

};

exception XmlProcessingException {
string message;
ServerModule::CompletionCode theCompletionCode;

};

enum TransferExceptionCode {

tec_NotEnoughSpace,
tec_CheckSumMismatch,
tec_SizeMismatch,
tec_ConnectionRefused,
tec_NetworkTimeout,
tec_NoRoute,
tec_HostNameLookup

};

exception TransferException {
string message;
ServerModule::CompletionCode theCompletionCode;
TransferExceptionCode theTransferExceptionCode;

};

/* Manages the lifecycle of Package objects. */

CableLabsAsset Distribution Interface Version 1.1 MD-SP-ADI1.1-I01-020927

09/27/02 CableCableCableCableLabs 23

interface PackageFactory : AssetModule::AssetFactory {
typedef sequence <PackageModule::Package> aPackage_def;

attribute aPackage_def aPackage;
};

/* The Package maintains the relationship between all the Assets in a given
distribution. In some ways it is similar to a bill of lading. But it has the
additional responsibility of managing the process of installing the assets delivered
in the Package. This requires it to parse XML metadata and allocate ISA metadata
objects, and to interact with Application objects and ContentStore and Content objects
to provide for the storage of the Assets.

The Package metadata is specified in the ADI spec. The content for a Package
asset is defined to be the install script for the package. */

interface Package : AssetModule::Asset {
typedef sequence <ProductModule::Product> aProduct_def;

/* theDirectoryUrl is the location on the Asset Distribution System of
the directory that contains the ADI metadata and all the individual content media
files. */

attribute string theDirectoryUrl;
attribute PackageFactory thePackageFactory;
attribute aProduct_def aProduct;

/* For the Package, the provision operation not only provides for
configuration of the object, but also is the instruction to the Package to begin its
function of installing the Assets that are collateral with the Package. When the
Provision operation returns, all Assets are installed in their final repositories.
Provision should raise exceptions if there is any failure in the installs. Presently
the entire model needs identification and definition of a great many exceptions.

@roseuid 39049CAF0050 */
void provision (

in ServerModule::AdministrativeState theAdministrativeState,
in string theUrl
)
raises

(ServerModule::ProvisioningFailed,ServerModule::UnspecifiedException,ServerModule::Inv
alidStateChange,PackageModule::TransferException,PackageModule::VersionException,Packa
geModule::XmlProcessingException);

/* getProvisioning allows the provisioning of a Package to be retrieved.
Package Provisioning is not extremely interesting, in general.

@roseuid 394E86DA035C */
void getProvisioning (

out string name,
out ProductModule::ProductList Products,
out MetadataModule::MetadataList theMetadataList,
out ContentModule::ContentList theContents,
out AssetModule::AssetList ChildAssets,
out AssetModule::Asset theParentAsset,
out string theDirectoryUrl,
out ServerModule::AdministrativeState theAdministrativeState,
out ServerModule::OperationalState theOperationalState
)
raises

(ServerModule::ServantNotProvisioned,ServerModule::UnspecifiedException);

};

};

#endif

MD-SP-ADI1.1-I01-020927 Metadata Specification

24 CableCableCableCableLabs 09/27/02

III.7 Provision Functions

The possible exceptions thrown by the provision function of the Package object are:

Table 2 – Provision Functions

Exception Description

XMLProcessingException An invalid XML document was provided.

TransferException
A TransferException will contain a code indicating one of the following
conditions: NotEnoughSpace, CheckSumMismatch, SizeMismatch,
ConnectionRefused, NetworkTimeout, NoRoute, HostnameLookup.

VersionException An update to a package and or asset could not be processed due to a
version disparity.

ProvisioningFailed Generalized failure.

InvalidStateException Package could not be placed into service.
UnspecifiedException Other failure, not stated in this specification.

	1. INTRODUCTION
	1.1 Purpose
	1.2 Scope
	1.3 Requirements

	2. REFERENCES
	2.1 Normative References
	2.2 Informative References
	2.3 Reference Acquisition

	3. TERMS AND DEFINITIONS
	4. ABBREVIATIONS AND ACRONYMS
	5. DATA TYPES
	5.1 Asset
	5.2 Metadata
	5.2.1 AMS metadata
	5.2.2 Application metadata

	5.3 Content

	6. FILE FORMATS
	6.1 ADS Directory Format
	6.1.1 Structure

	6.2 File Formats
	6.2.1 XML asset file
	6.2.2 Content files
	6.2.3 File Size

	7. MESSAGING PROTOCOL
	8. EXPECTED BEHAVIORS
	8.1 Instantiation of a Package
	8.2 Assignment of a Child Asset to a Parent Asset
	8.3 Assignment of Application Metadata and Content to an Asset
	8.4 Delete an Asset

	Appendix I. DTD file format
	Appendix II. Example ADI XML Documents
	II.1 Initial pitch of Assets
	II.2 Replace the Asset Metadata
	II.3 Add an additional Asset
	II.4 Delete an Asset

	Appendix III. Reference Messaging Protocol Implementation
	III.1 Locating the PackageFactory
	III.2 Locating a Package
	III.3 Creating a Package
	III.4 Provisioning the Package
	III.5 Transferring content
	III.6 ISA Package Distribution Event Trace Diagrams
	III.7 Provision Functions

