CableLabs® Specifications

Web Services Recommended Practices

CL-SP-WSRP-101-091023

ISSUED

Notice

This CableLabs specification is the result of a cooperative effort
undertaken at the direction of Cable Television Laboratories, Inc. for the
benefit of the cable industry and its customers. This document may
contain references to other documents not owned or controlled by
CableLabs. Use and understanding of this document may require
access to such other documents. Designing, manufacturing, distributing,
using, selling, or servicing products, or providing services, based on this
document may require intellectual property licenses from third parties for
technology referenced in this document.

Neither CableLabs nor any member company is responsible to any party
for any liability of any nature whatsoever resulting from or arising out of
use or reliance upon this document, or any document referenced herein.
This document is furnished on an "AS IS" basis and neither CableLabs
nor its members provides any representation or warranty, express or
implied, regarding the accuracy, completeness, noninfringement, or
fitness for a particular purpose of this document, or any document
referenced herein.

© Copyright 2009 Cable Television Laboratories, Inc.

All rights reserved.

CL-SP-WSRP-101-091023 CableLabs® Specifications

Document Status Sheet

Document Control Number: CL-SP-WSRP-101-091023
Document Title: Web Services Recommended Practices
Revision History: 101 — Released 10/23/09

Date: October 23, 2009

Status: Work-in Draft Issued Closed
Procrecs
Distribution Restrictions: AutherOnly CL/Member CL-Member! Public
Vendor

Key to Document Status Codes

Work in Progress An incomplete document, designed to guide discussion and generate
feedback that may include several alternative requirements for consideration.

Draft A document in specification format considered largely complete, but lacking
review by Members and vendors. Drafts are susceptible to substantial change
during the review process.

Issued A stable document, which has undergone rigorous member and vendor review
and is suitable for product design and development, cross-vendor
interoperability, and for certification testing.

Closed A static document, reviewed, tested, validated, and closed to further
engineering change requests to the specification through CableLabs.

Trademarks

CableLabs®, DOCSIS®, EuroDOCSIS™, eDOCSIS™, M-CMTS™, PacketCable™, EuroPacketCable™,
PCMM™, CableHome®, CableOffice™, OpenCable™, OCAP™, CableCARD™, M-Card™, DCAS™, tru2way™,
and CablePC™ are trademarks of Cable Television Laboratories, Inc.

i CableLabs® 10/23/09

Web Services Recommended Practices CL-SP-WSRP-101-091023

Contents

T O 1 = RO 1
1.1 =TT 1] = 1
1.2 TN 200] 510 o4 1 o] N TSRS 1
1.3 = T = Y 1= N U 2

2 REFERENCES ... oottt ettt ettt ettt e e sttt e e ettt e e s bt e e e s et b teeseateeeesabaeee st besesaseteessabenessatbeeenanes 3
2.1 NORMATIVE REFERENCESccitviieiettitesiiteieesitteessestessssbseassessesessssessesssassssssssessassessessessssassesesassessssssenessssenesns 3
2.2 INFORMATIVE REFERENGCESuttttiiiiiiiiitttitteeessiettetteesessiatsssesasesssassbesssssesssasssssesssesssassbesssesesssasssssesssesssasssnnes 3
2.3 REFERENCE ACQUISITION .1titiiiiiitttttiteeeesiiitbttieesesssabbatesesesssabbabasssesssassbsbasssasssassbtbaessesssassbbbasssesssesbbbanssesesses 3

3 TERMS AND DEFINITIONSottt ettt e ettt e e s et e e s et e e e e ba e e s sbaeeesebbesesanbeesessbenessbeeeeanes 4
4 ABBREVIATIONS AND ACRONYMS.... .ottt ettt sttt e e et e s e s e e e s ebte e e s sbtae s e enbaeessabeeeaas 5
5 WEB SERVICES OVERVIEWV ...ttt ettt ettt e et e sate e e s st e e s aaee e e s sbbeeeesbbeeeannes 6
L B N 1N 1Y, [] 1= SRR 7
6.1 PROFILE XIML SCHEMA . ..11tiiiii ittt ettt ettt e s e e s s e bbb e e e s e e s s e bbb b e e e s e e s s e bbb b e e s e e e e e e sbbbbaseeeessssabbbaeeeeesenans 7
6.1.1 XML NBIMIESPACES ...vvevveteeteesieesiesseesteesteeseeeseeaseeaseesseesseesseasseaseeaseesseesteeseeaseeaneesseesseesseenseensessenssenssenssens 7
6.1.2 Elements, Attributes and SChEMA TYPESoviirieiiirieiie e 8
6.1.3 SCNEMA VEISIONING ...ttt et bbbt b et b e b ekt b e et e e meene e e e ebesbesbesbeaneeneennen 9
6.1.4 (@] 0T £ PSS 10
6.1.5 A T T o1 1 SR SSS 13
6.1.6 MISCEIANEOUS GUITRIINESeeeiieiie ettt ettt e ettt e s et e e s st e e e st b e e e saabtaessabanessbaeeesanes 14

7T WEB SERVICES CONTRACT oottt ettt ettt st e s ettt s et e e s sab e e s s s st b e s s sbaaesssbbaeesssbaesssbeeesssbbanesas 15
7.1 WEB SERVICES DESCRIPTION LANGUAGE PROFILE ..vviiiiiiiiiiiiiiiiie ettt sibtbae s saabbaaa s e s nen 15
7.1.1 TR B I o5 1 = (o1 A o= T TR 15
7.1.2 LT B I o] g o] = C= I o= g R 16

I |V | SIS Y AN € 1 N[TSR 19
8.1 SOAP MESSAGING PROFILE ...cviiiiiiiittiiiiiee e e s ittt it e e e e s sttt teesesssabbbbasesesssasabbbaeasesssssaabbasseasesssabbeseeesesssasreres 19
8.1.1 1Y) (o] L OO ST URURPRURTRN 19
8.1.2 [[T 10] R 19
8.1.3 200 SRS 20
8.14 [t LU] | TSR RRTRR 20

LS I o N NN I @ = R 22
9.1 HTTP TRANSPORT PROFILEcoiiiutttiiiiee i i eiitieii e e e s e s sibbatt s e s s s s seab bbbt e e s e s s s e bbb b e s e s e e s s abbb b e e s s e e s s s sabbbbbesaeesssabbabaeesas 22
9.1.1 L I I = T2 To 1o SRS 22

10] (O U T I 1 TR 23
10.1 SECURITY HTTPS AND VPN PROFILE.......uuiiiitiie e it eetee st e ettt eeatee s st e e s st e e s sentas s s snbeeesssnbesesanreeeesnrenas 23
10.1.1 AUItING AN LOGGING -+nvtttitiieiiiteiieiisie ettt eb ettt b e et sb et eb e et b e et e ebe e et e abe e ebeaneneete s 23

O T 0 (0] Y O] g Y [0 (< = (0] TR 23

11 LN S RO g R ¥ 2N = 1 I I I 24
00 R 1o =1V =T = N o] =S OO 24
I VLV O N T] =11 | N 24
O R € 1U [o [=] [L= TR 24
10/23/09 CableLabs® ii

CL-SP-WSRP-101-091023

CableLabs® Specifications

APPENDIX | USE CASE EXAMPLE (INFORMATIVE)ccoiiiiitiiiiesee et 26

1.1 SERVICE MEASUREMENT SUMMARY (SIMIS) ...ttt st 26

1.1.1 SIMS SCREBMA ...ttt sttt b e ettt be s b et et st et e b e s b et et bt et ettt b ne e 26

1.1.2 SIMS XML SAMPIE ...ttt bbbt b et b e 29

1.1.3 SIMS WSDLL .ttt bbbkt bR bbb bbb bbbt e 30

APPENDIX Il ACKNOWLEDGEMENTS ..ottt sttt ena s sne s 32
Figures

FIGUIE 1 - WED SEIVICES OVEIVIEW ...c.viiiiiiciieiieie ittt sttt e et e e et et st e s te s teeae et e e e et e st e besbeebeeteeneesee s entestesaestesneeneeseenes 6
Tables

Table 1 - Key Characteristics of SOAP and RESTTUI SEIVICEScviveiiieieieic st 6

iv CableLabs” 10/23/09

Web Services Recommended Practices CL-SP-WSRP-101-091023

1 SCOPE

1.1 Purpose

The purpose of this document is to create an extensible set of recommended practices and conventions for web services
and other protocols utilized in the Cable environment. This Web Services Recommended Practices (WSRP)
specification should be complete enough to be applied to any messaging interface that will benefit by specifying the use
of web services or other similar message exchange protocols.

The Web Services Recommended Practices is initially leveraged by a number of the Stewardship and Fulfillment
Interfaces (SaFl) specifications, but should not be considered specific to these efforts. This WSRP specification should
be complete enough to meet the SaFI needs while remaining abstract enough to be applied to any messaging interface
either directly for interfaces that follow a similar model or indirectly through modular extensions and additional
profiles.

This WSRP specification defines a framework from which all CableLabs defined web services will be derived. Other
web services defined outside of CableLabs may also leverage the specification. Any particular web service definition
will completely describe an interface in a way that ensures interoperability by drawing on guidelines, rules, and profiles
defined within the specification framework.

The practices defined here should drive interoperability as the primary objective. Every implementation of an interface
derived from the resulting specification is intended to seamlessly interoperate with all other derived implementations.

1.2 Introduction

By specifying common guidelines and best practices for protocols used for integration, the Cable industry and its
suppliers can focus on implementing value added services. The protocols in this specification support interoperability
between distributed systems. For example, the processes or machines may reside on the same network (e.g., within an
MSO data center) or cross from one network to another (e.g., MSO communication and messaging with an external
third party system).

Recommended practices for Web Services are specified in this document through a collection of predefined and
extensible technology profiles. These profiles are intended to be collected together in many ways in order to address a
range of implementation needs and constraints. The profiles are intended to provide options in choosing a messaging,
data model, transport and security implementation that meet specific performance, security and/or other constraints.
Additional profiles will be added as required to support future industry needs.

This specification is expected to be foundational to other application-specific API specifications. These additional
specifications may be provided by CableLabs, other external organizations, and MSOs for both internal and external
use.

10/23/09 CableLabs® 1

CL-SP-WSRP-101-091023 CableLabs® Specifications

1.3 Requirements

Throughout this document, the words that are used to define the significance of particular requirements are capitalized.
These words are:

"MUST" This word means that the item is an absolute requirement of this specification.
"MUST NOT" This phrase means that the item is an absolute prohibition of this specification.
"SHOULD" This word means that there may exist valid reasons in particular circumstances to

ignore this item, but the full implications should be understood and the case carefully
weighed before choosing a different course.

"SHOULD NOT" This phrase means that there may exist valid reasons in particular circumstances when
the listed behavior is acceptable or even useful, but the full implications should be
understood and the case carefully weighed before implementing any behavior
described with this label.

"MAY" This word means that this item is truly optional. One vendor may choose to include
the item because a particular marketplace requires it or because it enhances the
product, for example; another vendor may omit the same item.

2 CableLabs® 10/23/09

Web Services Recommended Practices CL-SP-WSRP-101-091023

2 REFERENCES

2.1 Normative References

In order to claim compliance with this specification, it is necessary to conform to the following standards and other
works as indicated, in addition to the other requirements of this specification. Notwithstanding, intellectual property
rights may be required to use or implement such normative references.

[ITU-T X.509] ITU-T X.509, Information technology - Open Systems Interconnection - The Directory:
Public-key and attribute certificate frameworks, November 2008.

[RFC 2616] IETF RFC 2616, Hypertext Transfer Protocol -- HTTP/1.1,
http://www.w3.0rg/Protocols/rfc2616/rfc2616.txt

[RFC 2617] IETF RFC 2617, HTTP Authentication: Basic and Digest Access Authentication

[SOAP 1.2] W3C Recommendation, SOAP Version 1.2 Part 1: Messaging Framework (Second Edition),
27 April 2007, http://www.w3.0rg/TR/soap12-partl/

[WSDL] W3C Technical Report, Web Services Description Language (WSDL) 1.1, W3C Note 15
March 2001, http://www.w3.org/TR/wsdl

[WS-1] The Web Services-Interoperability Organization (WS-1), Basic Security Profile Version 1.0,
Final Material, 2007-03-30, http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

[XML Schema] W3C Recommendation, XML Schema, 28 October 2004, http://www.w3.org/XML/Schema

[XML W3C Recommendation, Namespaces in XML 1.0 (Second Edition), 16 August 2006,
Namespaces] http://www.w3.org/TR/REC-xml-names/

2.2 Informative References

This specification does not use any informative references.

2.3 Reference Acquisition

o |ETF Secretariat, c/o Corporation for National Research Initiatives, 1895 Preston White Drive, Suite 100, Reston,
VA 20191-5434. Phone +1-703-620-8990; Fax +1-703-620-9071. http://www.ietf.org.

e |TU-T, International Telecommunication Union T Sector, Place des Nations, CH-1211, Geneva 20, Switzerland.
Phone +41-22-730-51-11; Fax +41-22-733-7256. http://www.itu.int.

e WS3C, World Wide Web Consortium, www.w3.0rg

10/23/09 CableLabs® 3

http://www.w3.org/Protocols/rfc2616/rfc2616.txt�
http://www.w3.org/TR/soap12-part1/�
http://www.w3.org/TR/wsdl�
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html�
http://www.w3.org/XML/Schema�
http://www.w3.org/TR/REC-xml-names/�
http://www.w3.org/�

CL-SP-WSRP-101-091023 CableLabs® Specifications

3 TERMS AND DEFINITIONS

This specification does not define any new terms nor definitions.

4 CableLabs® 10/23/09

Web Services Recommended Practices CL-SP-WSRP-101-091023

4 ABBREVIATIONS AND ACRONYMS

This specification uses the following abbreviations:

HTTP Hyper Text Transport Protocol

REST/ful REST is a term coined by Roy Fielding in his Ph.D. dissertation
[http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm] to describe an
architecture style of networked systems. REST is an acronym standing for
Representational State Transfer.

SaFl Stewardship and Fulfillment Interfaces
SOAP Simple Object Access Protocol
WSDL Web Services Description Language
WSRP Web Services Recommended Practices

10/23/09 CableLabs® 5

CL-SP-WSRP-101-091023 CableLabs® Specifications

5 WEB SERVICES OVERVIEW

A Web Service is a self-describing, platform and language independent software component or module designed to
support computer-to-computer network communication. In a way, web services can be thought of as a distributed
computing platform.

Web Services can take many forms but generally fall into two categories, SOAP based or RESTful. Some key
characteristics of SOAP and RESTful services are identified in the table below.

Table 1 - Key Characteristics of SOAP and RESTful Services

Web Messaging Message Payload RPC mapping Standards Tool Support
Service
SOAP Support for many | XML Modeled within HTTP | Many standard bodies, Many new tools both
messaging header, SOAP standards, best open source and
models including envelope and practices, etc. commercial. Very few
JMS, SMTP, and message tools that support
HTTP complete standard.
RESTful Uses HTTP Any HTTP message Modeled within HTTP | Leverages existing web | No new tools required.
payload including action and message | standards. No new
XML, JSON, ATOM payload standards required.

Initially the Web Services Recommended Practices specification addresses SOAP based web services but may
subsequently be enhanced to include RESTful communications and other similar models.

At the highest level, a web service is comprised of several layers. In the Figure 1 below, a complete end-to-end web
service from input/output messages through service logic is shown. It’s important to note that this effort is only
concerned with the outward facing service contract and messages. However, some of the recommended practices are
put in place to facilitate efficient message processing by commonly used web services stacks. It is out of scope to try to
address any practices around internal application business or service logic.

Message

? Service Contract
Processing

Service Logic

Message

Figure 1 - Web Services Overview

6 CableLabs® 10/23/09

Web Services Recommended Practices CL-SP-WSRP-101-091023

6 DATA MODEL

6.1 Profile XML Schema

[XML Schema] is a W3C standard used to define the structure and constraints of an XML document. It allows a clean
separation between the declaration of elements and their types. It generally follows an object-oriented model where
types are similar to classes and elements are instances of a type.

It should also be noted that the lower case "XML schema" is used to refer to a particular schema document, not to the
specification.

6.1.1 XML Namespaces

XML Namespaces are used to package or group XML Schema components including elements, attributes and types. By
packaging XML Schemas into a namespace identified by a Uniform Resource Identifier (URI), naming collisions or
ambiguities across systems can be avoided.

6.1.1.1 XML Namespace Usage

All XML schemas SHOULD be defined within a valid XML Namespace [XML Namespaces]. Each XML schema is
not required to have a unique namespace so that related components that might be physically separated by files may
still share a common namespace. However, components that make up an entire solution but which are functionally
distinct are not required to share a namespace. All new namespaces MUST adopt a common format using all lowercase.
The format to be used for CableLabs specifications MUST follow the following pattern:

http://www.cablelabs.com/namespaces/<ProjectName>/<xsd|wsdl>/<ComponentSchemaNames>/<MajorVersions>

Namespace Variable Definition Example
<ProjectName> Name or abbreviation of the http://www.cablelabs.com/namespaces/advads
Project in which this namespace
is defined.
<xml/wsdI> Provides additional specifics http://www.cablelabs.com/namespaces/advads/xsd

around if the namespace applies
to a data model (xsd) or to a
service contract (wsdl).

<ComponetSchemaName> | Provides the specific component | http://www.cablelabs.com/namespaces/advads/xsd/sms
name within Project.

6.1.1.2 Namespace Hiding Versus Exposing

All but the simplest XML schemas are often made up of several individual schema definitions. A major design decision
that must be made up front and which has impacts on other schema design decisions is if the various namespaces used
within a schema should be exposed within XML instance documents. Exposing these namespaces allows common
component names to be used and easily identified back to their source but creates a more verbose instance document.
While hiding the namespace allows clean and simple instance documents, hiding the namespace is only an option for
local elements as all global elements must be namespace qualified. The main way in which the namespace qualification
is determined is by the value of elementFormDefault, as denoted below, where qualified means that local elements
must be namespace qualified just like global elements and unqualified means namespace qualification is not required.

elementFormDefault=""qualified]unqualified"

The same capability is available for attributes in the following form:
attributeFormDefault=""qualified]unqualified"”

10/23/09 CableLabs® 7

CL-SP-WSRP-101-091023 CableLabs® Specifications

In order to disambiguate elements while maintaining a readable format it is recommended that all but the simplest
schemas expose element namespaces and hide attribute namespaces by setting the following values:

<xs:schema elementFormDefault="qualified"attributeFormDefault="unqualified"/>

In addition all schemas imported or included within a single solution SHOULD adopt the same value for both
elementFormDefault and attributeFormDefault and SHOULD limit the number of globally defined elements so that
elementFormDefault and attributeFormDefault can be used as an exposure switch when required.

6.1.2 Elements, Attributes and Schema Types

6.1.2.1 Naming Conventions

Each schema MUST adhere to the following naming conventions. Names SHOULD prefer readability to brevity and
only well-known acronyms and abbreviations that are clearly recognizable should be used. Elements and Schema types
MUST adopt a capital camel case convention (also known as "camel case, leading upper"). Schema types SHOULD
generally follow element names with the additional postfix of "Type".

e Acronyms MUST be treated as a single character and, therefore, all characters in the acronyms MUST share
the same case as defined by the element and attribute rules.

e Abbreviations MUST be treated as normal phases in a name and follow general element and attribute naming
rules.

e All names, abbreviations, and acronyms MUST only contain alpha-numeric characters.

Attributes MUST adopt a lower camel case (also known as "camel case, leading lower") convention.

Naming Examples

Schema Component Examples
Complex/Simple Type Names HeadEndType, CustomerAccountType, OCAPDeviceType, AcknowledgementMsgType
Element Names HeadEnd, CustomerAccount, OCAPDevice, AcknowledgementMsg
Attribute Names iSOCAPReady, customerld, type, ocapDevice

6.1.2.2 Elements Versus Attributes

Elements MUST be used to represent core base values or data objects. These core base value types are typically easy to
distinguish within a given data model, however it becomes much more difficult to decide if a related value should be
represented as a child element or an attribute of the base element. This is largely left as an engineering design decision
to be made using the following guidelines.

e Elements SHOULD be considered the default model.

If size of the instance document is of concern, prefer attributes as they produce more concise documents.

If the value has no children and describes an attribute / characteristic of an element, then make it an attribute.
If the value might repeat, then it should be a child element since attributes cannot repeat.

If the related value might need to be extended in the future, make it a child element.

6.1.2.3 Global Versus Local Element and Type Definition

There are a number of competing design patterns or models which have been identified to provide guidance in
developing XML Schemas. The goal is to promote reuse through global type definitions while keeping the overall
schema simple and uncluttered with redundant global element definitions. For reference, a global element or type is one
that is declared as a direct child of the <schema> tag while local elements and types are declared within another
component. Complex and Simple types that could be reused MUST be defined as global types. Global elements MUST
be limited to standalone root level data types and containers.

8 CableLabs® 10/23/09

Web Services Recommended Practices CL-SP-WSRP-101-091023

The recommended practice most closely resembles the Venetian Blind* model, which defines reusable components as
global complex or simple types while allowing local types to be defined in the case where the local type is only valid
within its local scope. The globally defined complex and simple types are then available for reuse and extension. Only
top-level or root elements are defined globally, keeping the schema simple and easy to comprehend. In addition, the
elementFormDefault can be used as a switch to hide or expose component namespaces like a Venetian Blind.

Example:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema "http://www.w3.0rg/2001/XMLSchema" >
<!-- Only root element defined globally, acts a container for all other elements -->
<xsd:element "SetTopBox" "SetTopBoxType"/>
<xsd:complexType "SetTopBoxType" >
<xsd:sequence>
<!-- Brand is declared based on common naming conventions not referenced -->
<xsd:element "Brand" "BrandType"/>
<!-- Incorrect declaration for OCAPDevice -->
<!-- xsd:element name="OCAPDevice" type="xsd:boolean"/ -->
<!-- Correct declaration for OCAPDevice -->
<!-- Assuming OCAPDevice is declared in several places now there is one Type
definition to maintain -->
<xsd:element "OCAPDevice" "OCAPDeviceType"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType "DVDBoxType" >
<xsd:sequences>
<!-- Brand is declared based on common naming conventions not referenced -->
<xsd:element "Brand" "BrandType"/>
</xsd:sequence>
<xsd:attribute "isUpScaleCapable" "xsd:boolean"/>
</xsd:complexType>
<xsd:simpleType "BrandType" >
<xsd:restriction "xsd:string">
<xsd:minLength /s
<xsd:maxLength "20"/>

</xsd:restriction>
</xsd:simpleType>

<!-- Although simply defined now we anticipate future changes and updates so instead
of declaring the boolean type directly in all instances we define a global type so that
all instances can be centrally managed -->
<xsd:simpleType "OCAPDeviceType">
<xsd:restriction "xsd:boolean"/>
</xsd:simpleType>

</xsd:schemas>

6.1.3 Schema Versioning

Each schema MUST define both a major and minor version. The major version MUST be defined within the
namespace identifier, while the minor version MUST be defined by the Schema version attribute. Major versions
MUST start at "1" and in general may not be fully backwards compatible with previous major versions. Minor versions
MUST start at "0" and MUST be backwards compatible with other minor versions within the same major version. In
addition an optional data element can be defined <MinSchemaVersion> to denote compatibility within major versions.
It is left to specific implementations to define the details of this data element.

! Other XML Schema design patterns considered were the Russian Doll (fully nested, with hidden inner types) and the Salami Slice
(composite elements assembled from granular element definitions)

10/23/09 CableLabs® 9

http://www.xfront.com/GlobalVersusLocal.html#ThirdDesign�

CL-SP-WSRP-101-091023 CableLabs® Specifications

Versioning Example:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema "http://www.w3.0rg/2001/XMLSchema’
"http://www.cablelabs.com/namespaces/safi/xsd/sms/1" <!-- major version -->

xmIns:com="http://www.cablelabs.com/namespaces/safi/xsd/com/2"
targetNamespace=""http://www.cablelabs.com/namespaces/safi/xsd/sms/1"
elementFormDefault=""qualified"
attributeFormDefault=""unqualified” version="0"> <I!-- minor version -->

</Xs:schema>

As a general guiding principal, schema revisions SHOULD be made backwardly compatible whenever practical, while
preserving the clarity and function of the message. The most common example of a backwardly compatible change is
the addition of an optional element (i.e., minOccurs="0") or attribute (use="optional"). Backwardly incompatible
changes, which SHOULD be avoided in most cases, include re-ordering elements in a sequence, adding required
elements or attributes, and changing the type of a data element.

6.1.4 Objects

This section provides some general guidelines for using XML Schema to create object oriented data models.

6.1.4.1 Object Inheritance and Composition

The general guideline is to develop a logical structuring and encapsulation of data elements, as they exist in their
business context. As a general rule, object composition SHOULD be favored over inheritance as it provides a more
loosely coupled structure and better data encapsulation. The level of structural granularity is left to the designer but
consideration should be given to ensure the structure provides as much contextual understanding as possible.

Example Containment Schema:

<xs:schema "http://www.w3.0rg/2001/XMLSchema" >
<xs:complexType "ContentIdentifierType">
<XS:sequence>
<xs:element "ContentName" "xs:string"/>
</xs:sequence>
<xs:attribute "providerID" "xs:string"/>

</xs:complexType>

<xs:complexType "MovieContentType">

<XSs:sequencex
<xs:element "ContentIdentifier" "ContentIdentifierType"/>
<xs:element "MovieSpecificElement" "xs:string"/>
<!-- more movie data elements added by containment here -->

</xs:sequence>

<xs:attribute "movieSpecificAttribute" "xXg:int"/>

<!-- more movie attributes added here -->

</xs:complexType>

<xs:complexType "MusicContentType">
<XS:sequencex
<xs:element "MusicSpecificElement" "xXs:string"/>
<!-- more music data elements added by containment here -->
</xs:sequence>
<xs:attribute "MusicSpecificAttribute" "Xg:int"/>
<!-- more music attributes added here -->

</xs:complexType>

<xs:complexType "ContentContainerType">
<Xs:sequence>
<xs:element "MovieContent" "MovieContentType" nyn
"unbounded" />
<xs:element "MusicContent" "MusicContentType" non

"unbounded" />
</xs:sequence>

10 CableLabs® 10/23/09

Web Services Recommended Practices CL-SP-WSRP-101-091023

</xs:complexType>
</xs:schemas>

Example Inheritance Schema:

<Xs:schema "http://www.w3.0rg/2001/XMLSchema" >
<xs:complexType "ContentBaseType" "true"s>
<xXs:sequence>
<xs:element "ContentName" "xs:string"/>
</xs:sequence>
<xs:attribute "providerID" "xs:string"/>

</xs:complexType>

<xs:complexType "MovieContentType">
<xs:complexContent>
<xs:extension "ContentBaseType">
<XS:sequences
<xs:element "MovieSpecificElement" "xs:string"/>
<!-- more movie elements added here -->
</xs:sequence>
<xs:attribute "movieSpecificAttribute" "Xg:int"/>
<!-- more movie attributes added here -->
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:complexType "MusicContentType">
<xs:complexContent>
<xs:extension "ContentBaseType" >
<Xs:sequence>
<xs:element "MusicSpecificElement" "xs:string"/>
<!-- more music elements added here -->
</xs:sequence>
<xs:attribute "MusicSpecificAttribute" "Xg:int"/>
<!-- more music attributes added here -->
</xXs:extension>
</xs:complexContent>
</xs:complexType>

<xs:complexType "ContentContainerType">
<Xs:sequence>
<xs:element "MovieContent" "MovieContentType" nn
"unbounded" />
<xs:element "MusicContent" "MusicContentType" "o

"unbounded" />
</xs:sequence>
</xs:complexType>
</xs:schema>

6.1.4.2 Polymorphic Behavior

Polymorphic behavior SHOULD favor object inheritance designs over alternatives like substitution groups where
possible. Advantages of inheritance based polymorphism:

e Provides hierarchies of types rather than of elements (Substitution groups provide hierarchies of
instances/elements rather than types).

e Supported through class inheritance and casting in tool chains.

e Shorter and cleaner schema (only one global element defined, the container Items with all other elements
locally defined).

Example Schema:

<?xml version="1.0" encoding="UTF-8"7?>
<xsd:schema "http://www.w3.0rg/2001/XMLSchema" >

<xsd:element "ITtems" "ItemsType"/>

10/23/09 CableLabs® 11

CL-SP-WSRP-101-091023

CableLabs® Specifications

<xsd:complexType
<xsd:sequences>
<xsd:element
</xsd:sequence>
</xsd:complexType>

"ItemsType">
"Product" "ProductType"

<xsd:complexType
<xsd:sequences>

"ProductType">

<xsd:element "Number" "xsd:int"/>
<xsd:element "Name" "xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType "Shirt">

<xsd:complexContent>
<xsd:extension
<xsd:sequence>
<xsd:element
<xsd:element
</xsd:sequence>
</xsd:extensions>
</xsd:complexContent>
</xsd:complexType>

"ProductType">

nsizeu
"Color"

<xsd:simpleType
<xsd:restriction
<xsd:maxLength
</xsd:restriction>

</xsd:simpleType>

"ColorType">
"xsd:string">
"10"/>

<xsd:simpleType
<xsd:restriction
<xsd:minInclusive
<xsd:maxInclusive
</xsd:restriction>
</xsd:simpleType>

"ShirtSizeType">

"xsd:int">
non/>
"10”/>

<xsd:complexType "Hat">
<xsd:complexContent>
<xsd:extension
<xsd:sequence>
<xsd:element
</xsd:sequence>
</xsd:extension>
</xsd:complexContent >
</xsd:complexType>

"ProductType">

nsizeu

<xsd:simpleType
<xsd:restriction

"HatSizeType">
"xsd:string">

<xsd:enumeration "sv/>
<xsd:enumeration ™"/ >
<xsd:enumeration "L/ >

</xsd:restrictions>
</xsd:simpleType>

</xsd:schema>

Example XML Instance:

<?xml version="1.0" encoding="UTF-8"?>

"unbounded" />

"ShirtSizeType"/>
"ColorType"/>

"HatSizeType"/>

<Items "http://www.w3.0rg/2001/XMLSchema-instance" >
<Product>
<Number>999</Number>
<Name>Special Seasonal</Name>
</Product>
<Product "Hat">
<Number>563</Number>
<Name>Ten-Gallon Hat</Name>
<Size>L</Size>
</Product>
12 CableLabs” 10/23/09

Web Services Recommended Practices CL-SP-WSRP-101-091023

<Product "Shirt">
<Number>557</Number>
<Name>Short-Sleeved Line Blouse</Names>
<Size>10</Size>
<Colors>blue</Color>
</Product>
</Items>

6.1.5 Extensibility

Extensibility occurs in two flavors: provisions to enable the standard to grow (and be backward compatible) and private
extensions. Private extensions are always outside the scope of the specification, however, controlling their location and
occurrence is within the specification's scope. Private extensions MUST always conform to the standard's extensibility
guidelines.

6.1.5.1 Attribute Wildcards

Attribute wildcards allow additional attributes to appear in a complex type. Only complex type definitions include
attribute extensibility (i.e., attribute wildcards). Attribute wildcarding is implemented using the anyAttribute syntax.
The namespace attribute in the schema declaration SHOULD be set to "##any" attribute. This allows attributes to be
included from any namespace. Any namespace is the best choice for both backward compatibility and private
namespace inclusion as any namespace allows needed attributes to be added without negatively impacting the existing
document.

The processContents as "lax" does not force schemas to be present for attribute validation. This allows attributes to be
received and ignored rather than causing exceptions.

The attribute wildcard SHOULD typically be included on every global complex type. Thus, every global element is
extensible.

Example:

<xsd:anyAttribute " processContents="lax"/>
6.1.5.2 Element Extensibility

If extensibility is desired or allowed, a single well known and easily recognized complex type SHOULD be globally
defined and used. This complex type SHOULD be named “ExtType” and each extensibility point SHOULD be
declared with an element named "Ext". The extensibility type SHOULD allow for both attribute wildcarding and
element wildcarding and SHOULD allow for any number of elements to be included. Element wildcarding is enabled
via the xsd:any element and SHOULD allow elements from all namespaces with a lax validation processing
requirement.

The Ext element SHOULD be included in strategic locations in a complex type object hierarchy where private
expansion and/or growth are anticipated. It SHOULD NOT be used in every complex type and it SHOULD typically be
the last element included in a complex type declaration.

Example:

<xsd:element "Ext" "ExtType">
<xsd:annotations>
<xsd:documentation>Extensibility - elements from any
namespace.</xsd:documentation>
</xsd:annotation>
</xsd:element>

<xsd:complexType "ExtType">

10/23/09 CableLabs® 13

CL-SP-WSRP-101-091023 CableLabs® Specifications

<xsd:sequence>
<xsd:any "#Hany" "lax" "o"
"unbounded" />
</xsd:sequence>
<xsd:anyAttribute "##any" "lax"/>
</xsd:complexType>

6.1.5.3 Private Extensibility

Private extensions to either attributes or elements MUST always be identified using a private namespace. The private
namespace MUST never be the default target namespace. Attributes MUST be prefixed using the included private
namespace prefix and MUST only appear when an element includes an extensible form of the <any> attribute
expansion. Elements MUST be prefixed using the private namespace prefix and MUST only appear inside of the
allowed expansion element (i.e., the Ext element).

6.1.6 Miscellaneous Guidelines

6.1.6.1 <Choice>

In general the <choice> SHOULD be avoided due to lack of full support across tool chains. In many cases the
following two examples generate the exact same code even though the intention is very different.

Example:
<xsd:complexType "ExampleType">
<xsd:sequences>
<xsd:element "FirstElement" "xsd:string"/>
<xsd:choice>
<xsd:element "Choicel™" "Typel"/>
<xsd:element "Choice2" "Type2"/>

</xsd:choice>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType "ExampleType">
<xsd:sequences>
<xsd:element "FirstElement" "xsd:string"/>
<xsd:element "Choicel" "Typel" "o/ >
<xsd:element "Choice2" "Type2" />

</xsd:sequence>
</xsd:complexType>

6.1.6.2 <All>

The XML Schema tag <all> is misleading in that it does not imply inclusion of all contained or child items. Items
contained within an <all> allow any order and each child can occur zero or one time. In order to promote clarity of
intent, the use of <all> SHOULD be avoided and replaced with the <sequence>. The <sequence> avoids most of the
ambiguity by enforcing element order and ensuring explicit rules around required, optional, and repeating elements.

6.1.6.3 Required and Optional Ordering

For clarity, consistency, and ease of reading, required attributes and elements SHOULD be listed before optional
attributes and elements.

14 CableLabs® 10/23/09

Web Services Recommended Practices CL-SP-WSRP-101-091023

7 WEB SERVICES CONTRACT

7.1 Web Services Description Language Profile

The Web Services Description Language [WSDL] provides a metadata structure for describing what a service does,
how the service can be accessed and where the service can be accessed. It is broken into both abstract and concrete
descriptions which are discussed in detail below.

7.1.1 WSDL Abstract Parts

The Abstract part provides a description around what a service does. In essence, this is the public interface or
Application Programming Interface (API) of the service. The term abstract is somewhat misleading in that the abstract
portion fully describes the interface but it is abstract in that the same interface could have multiple concrete
implementations at the messaging and transport layer.

7.1.1.1 Abstract Port Type

A port type is the entry point to the web service and is sometimes referred to as the interface definition. The port type
provides a container for a set of related Operation definitions. Any particular web service could define any number of
port types. All port type definitions MUST use upper camel case to name the port type and be prefixed with a lower
case 'pt'. The name should be descriptive of the interface or service being provided.

Example:
<wsdl :portType "ptServiceName"/>

7.1.1.2 Abstract Operation Definition

The Operation definition provides the detailed description of the public interface. It is very similar to a class's method
signature as the operation defines the available messages that are sent and received over an interface. These messages
are defined within the Message Definition. All operation definitions MUST use upper camel case and be prefixed by
‘op". The name of the operation SHOULD begin with a verb and be consistent with the port type name.

Example:

<wsdl :operation "opGetServiceName"/>
7.1.1.3 Abstract Message Definition

The Message Definition provides a high-level structure for the data that will be exchanged over a web service
operation. Operations can be made up of one or more of the following message definition types. Typically if an
operation is comprised of only one message type that type is of Input. The name of the message MUST use upper
camel case and be prefixed with 'msg'. The name SHOULD be consistent with the port type name.

e Input - Messages that will be sent to the web service as "input” by the client.
e Output - Messages that the web will send to the client.
e Fault - Error messages sent by web service to the client.

Example:

<wsdl :message "'msgServiceName"/>

10/23/09 CableLabs® 15

CL-SP-WSRP-101-091023 CableLabs® Specifications

7.1.1.4 Abstract Type Definition

The Type Definition provides the low level data type information for input, output and fault messages used within a
web service. Types MUST be defined external to the WSDL and then imported or included within the type definition.

Example:

<wsdl:types>
<xs:schemas>
<x8:import "http://www.cablelabs.com/namespaces/project/xsd/comp/1"
"SchemaFileName.xsd"/>
</xs:schema>
</wsdl:types>

7.1.1.5 Abstract Policy Definition

The policy definition provides a standard way to describe any behavioral constraints on both the abstract and concrete
definition types. A web service can have any number of policies defined. It SHOULD include a WS-Addressing policy
definition. Details of the WS-Addressing can be found within Section 11.2 of this document.

Example:

<wsp:Policy "addressing-policy" "true"s>
<wsam:Addressing>
<wsp:Policy>
<wsam:AnonymousResponse/>
<wsam:MessageId/>
</wsp:Policy>
</wsam:Addressing>
</wsp:Policy>

7.1.2 WSDL Concrete Parts

The concrete portion of the WSDL provides the details required to access an implementation of the web service as
defined within the abstract definition. A single abstract definition of a service may have multiple concrete definitions
specifying multiple transport and messaging protocols. The concrete part has two major areas that identify the how and
where a service can be reached. How to reach the service is addressed by the Port Type Binding definition, while “the
where” is addressed in the Service Binding Definition.

7.1.2.1 Concrete Port Type Binding Definition

The port type binding provides both the messaging protocol binding and transport protocol binding. The web service
MUST provide a message binding for SOAP1.2 using document literal as the style and HTTP as the transport.

Example:

<wsdl:binding "bdComp-SOAP12HTTP" "ptServiceName" >
<wsp:PolicyReference "#policy"/>
<wsoapl2:binding "document"
"http://www.w3.0rg/2003/05/socap/bindings/HTTP/" />
<wsdl:operation "opServiceMessage">
<wsoapl2:operation
"http://www.cablelabs.com/namespaces/project/wsdl/comp/1l/opServiceMessage/msgS

erviceMessage" "true" "true"/>
<wsdl:inputs>
<wsoapl2:body "literal"/>

</wsdl:input>
<wsdl :output>
<wsoapl2:body "literal"/>

16 CableLabs® 10/23/09

Web Services Recommended Practices CL-SP-WSRP-101-091023

</wsdl:output>
</wsdl:operation>
</wsdl:binding>

7.1.2.1.1 Operation Binding Definition

The operation binding definition, like the port type binding, is used to specify message and transport binding protocols.
Alternatively if not specified, the operation binding will inherit bindings from the port type binding definition.

Example:

<wsdl :operation "opServiceMessage"'>
<wsoapl2:operation

"http://www.cablelabs.com/namespaces/project/wsdl/comp/1/opServiceMessage/msgServiceMessa
ge" "true" “true'/>

</wsdl :operation>

7.1.2.1.2 Message Binding Definition

Message binding provides the capability for message or transport binding to be overloaded at each specific input,
output, or fault message levels. If it is not present, it will inherit binding definitions from either its parent operation or

port type.

Example:

<wsdl : input>

<wsoapl2:body “"literal"/>
</wsdl : input>
<wsdl zoutput>

<wsoapl2:body “"literal"/>
</wsdl :output>

7.1.2.1.3 Policy Binding Definition

As like with abstract parts, policies can be applied to the concrete parts of a service contract. In many cases policies
applied at the abstract level can have different outcomes depending on the messaging protocol or transport protocol
use. For this reason policies SHOULD be applied to specific concrete definitions in order to avoid any ambiguity.

Example:

<wsp:PolicyReference "#AbstractPolicy'/>
7.1.2.2 Concrete Service Binding Definition

The service binding definition provides a basic container for one or more end point definitions. The service binding
definition provides no additional configuration or definition.

Example:

<wsdl :service "'svServiceName'>
<wsdl :port "comp-soapl2-http" ""bdComp-SOAP12HTTP"" >
<wsoapl2:address "http://cablelabs.com/ServiceName.svc/'/>
</wsdl :port>
</wsdl :service>

7.1.2.2.1 End Point Definition

The endpoint definition provides a container to hold address definitions. Each port type binding definition needs at
least one endpoint definition.

10/23/09 CableLabs® 17

CL-SP-WSRP-101-091023 CableLabs® Specifications

Example:

<wsdl -port “'comp-soapl2-http” "bdComp-SOAP12HTTP"">
</wsdl :port>

7.1.2.2.2 Address Definition
The address definition provides the physical network address identifier corresponding to the appropriate transport

protocol defined within the port type binding definition either at the port type, operation or message layer. For services
using HTTP transport, this is typically a Uniform Resource Locator (URL).

Example:

<wsoapl2:address "http://cablelabs.com/ServiceName.svc/'"/>

7.1.2.2.3 Policy Definition
Allows policy definitions to be applied directly to the addressing layer of the concrete definition.

Example:
<wsp:PolicyReference “#policy"/>

18 CableLabs® 10/23/09

Web Services Recommended Practices CL-SP-WSRP-101-091023

8 MESSAGING

8.1 SOAP Messaging Profile

All messages to be transmitted between service endpoints MUST be a [SOAP 1.2] complaint message. A SOAP
message is an ordinary XML document containing the elements described in the sections below.

8.1.1 Envelope

The required SOAP Envelope element is the root element of a SOAP message. This element defines the XML
document as a SOAP message.

Example:

<soap:Envelope xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-encoding">
</soap:Envelope>

8.1.2 Header

A SOAP header is an extension mechanism that provides a way to pass information in SOAP messages that is not
application payload. The SOAP Header element contains application-specific information about the SOAP message,
such as WS-addressing or WS-security, etc.

Example:

<soap:Envelope "http://www.w3.0rg/2001/12/soap-envelope™
"http://www.w3.0rg/2001/12/soap-encoding" >

<soap:Headers>
</soap:Header>

</soap:Envelopes>

8.1.2.1 Must Understand Attribute

The SOAP mustUnderstand attribute can be used to indicate whether a header entry is mandatory or optional for the
recipient to process. If you add mustUnderstand="1" to a child element of the Header element it indicates that the
receiver processing the Header MUST recognize the element. If the receiver does not recognize the element it will fail
when processing the Header.

Example:

n0|1n

8.1.2.2 Actor Attribute

A SOAP message may travel from a sender to a receiver by passing different endpoints along the message path.
However, not all parts of a SOAP message may be intended for the ultimate endpoint; instead, it may be intended for
one or more of the endpoints on the message path. The SOAP actor attribute is used to address the Header element to a
specific endpoint.

10/23/09 CableLabs® 19

CL-SP-WSRP-101-091023 CableLabs® Specifications

Example:

"URI"

8.1.2.3 Encoding Style Attribute

The encodingStyle attribute is used to define the data types used in the document. This attribute may appear on any
SOAP element, and it will apply to that element's contents and all child elements. A SOAP message has no default
encoding.

Example:

"URI"

8.1.3 Body

The required SOAP Body element contains the actual SOAP message/playload intended for the ultimate endpoint of
the message.

Example:

<soap:Envelope "http://www.w3.0rg/2001/12/soap-envelope"
"http://www.w3.0rg/2001/12/soap-encoding">

<soap:Body>

</soap:Body>
</soap:Envelopes>

8.1.4 Fault

The optional SOAP Fault element is used to indicate error messages. If a Fault element is present, it MUST appear as a
child element of the Body element. A Fault element can only appear once in a SOAP message.

Example:

<soap:Envelope "http://www.w3.0rg/2001/12/soap-envelope"
"http://www.w3.0rg/2001/12/soap-encoding">

<soap:Body>
<soap:Fault> </soap:Fault>

</soap:Body>
</soap:Envelopes>

The SOAP Fault element has the following sub elements:

Sub Element Description

<faultcode> A code for identifying the fault

<faultstring> A human readable explanation of the fault
<faultfactor> Information about who caused the fault to happen

20 CableLabs® 10/23/09

Web Services Recommended Practices CL-SP-WSRP-101-091023

<detail>

Holds application specific error information related to the Body element

The faultcode values defined below MUST be used in the faultcode element when describing faults:

Error

Description

<VersionMismatch>

Found an invalid namespace for the SOAP Envelope element

<MustUnderstand> | An immediate child element of the Header element, with the mustUnderstand attribute set
to "1", was not understood

<Client> The message was incorrectly formed or contained incorrect information

<Server> There was a problem with the server so the message could not proceed

10/23/09

CableLabs® 21

CL-SP-WSRP-101-091023 CableLabs® Specifications

9 TRANSPORT

9.1 HTTP Transport Profile

Hypertext Transport Protocol (HTTP) is an application layer request/response messaging protocol used in many client
server applications. The World Wide Web Consortium (W3C) and the Internet Engineering Task Force (IETF) jointly
developed the HTTP specification. It is currently maintained by the IETF as [RFC 2616]. HTTP is the protocol used by
the World Wide Web and, therefore, has a number of advantages.

Proven scalability

High level of interoperability

Almost universal support across platforms, tools and operating system
Simplicity - small number of operations

9.1.1 HTTP Binding

The binding construct of the WSDL is used to define a transport protocol. There MUST be a binding construct for each
web service operation that is defined. In addition, each message construct (input, output, fault) declared in the
corresponding operation MUST be specified in the binding. An HTTP SOAP 1.2 binding MUST be declared.

9.1.1.1 HTTP SOAP 1.2 Binding

<soapl2:binding "document"
"http://www.w3.0rg/2003/05/soap/bindings/HTTP/" />

9.1.1.2 SOAP Action

When using HTTP as a transport protocol, the soapAction MUST also be defined within the operation binding. This
ensures that the soapAction HTTP header is added to all messages transmitting a SOAP payload. The soapAction
provides message routing capability to the message recipient. The soapAction MUST be defined as follows where the
soapAction attribute is defined by the WSDL namespace plus the operation name.

Example:

<soapl2:operation "<namespace + operationName>" soapActionRequired="true"
wsdl:required="true"/>

The addition of the soapAction results in an HTTP message with the following additional header:

Example:

SOAPAction: http://www.cablelabs.com/namespaces/wsdl/project/component/operationName

22 CableLabs® 10/23/09

Web Services Recommended Practices CL-SP-WSRP-101-091023

10 SECURITY

Different applications and messages require different levels/forms of security. Not everything requires securing, and
exchanging messages that do not require security is always safer than any form of security technology. Where security
is required, the subset of the WS-1 Basic Security Profile 1.0 [WS-I] MUST be used, as specified below.

10.1 Security HTTPS and VPN Profile

The message exchange MUST be secured using either transport encryption (HTTPS) or a virtual private network (ESP
Security or IPSec). The recommended practice does not preclude the use of both HTTPS and VPN together if deemed
necessary.

e Ifusing HTTPS, it MUST be either SSL 3.0 or TLS 1.0, and it MAY use mutual client/server authentication.

e Asymmetric encryption for authentication and key exchange MUST use the RSA algorithm with at least 1024-
bit keys, with 2048-bit keys preferred.

e Symmetric encryption for bulk encryption MUST use at least 128-bit keys, with 256-bit keys preferred. The
algorithm SHOULD be AES.

Authentication MUST be done with at least HTTP Basic Authentication, with either HTTP Digest [RFC 2617] or
X.509 [ITU-T X.509] being preferred.

10.1.1 Auditing and Logging

While not part of interoperability, and therefore not a part of this specification, it is strongly encouraged that the usage
of secured resources be logged. At minimum, the following SHOULD be logged:

e User authentication failure and success
e User privilege change failure and success
e User audit log access failure and success

10.1.2 Future Considerations

Topics not currently being addressed are considerations such as data encryption and signatures multi-system
authentication (single sign on, PKI registry, etc.), trust between systems, transactions, guaranteed delivery, and related
concerns. Those issues are currently not seen as significant problems in the implementation environments, and
therefore, are being set aside until it is determined what the needs of the entities are.

10/23/09 CableLabs® 23

CL-SP-WSRP-101-091023 CableLabs® Specifications

11 INTEROPERABILITY

11.1 Idempotence

As much as possible, services SHOULD be designed to be idempotent. (In other words, multiple invocations with the
same data are functionally the same as one invocation.) This dramatically eases transactional, delivery and data
integrity requirements because if there is ever a doubt (such as not receiving an ACK), then the message can reliably be
resent without causing duplication problems.

11.2 WS-Addressing

Message exchanges complying with this specification MAY adhere to WS-Addressing standards as recommended by
the W3C. WS-Addressing is therefore currently optional, but if used, messages MUST conform to the W3C standard
as indicated below.

When using WS-Addressing, in accordance with the specification, the message sender MUST provide:

¢ An endpoint reference identifying the destination, <wsa:To>.
e A message information block conveying the action to be performed, <wsa:Action>.

In addition, the message sender SHOULD provide:
e A unique message identifier, <wsa:MessagelD>.
Finally, the message sender MAY provide:

An endpoint reference identifying the message source, <wsa:From>.

Add to the possibly null list of elements identifying related messages, <wsa:RelatesTo>.

An endpoint reference identifying the destination of a reply message, <wsa:ReplyTo>.

An endpoint reference identifying an alternate destination, in the event of a message fault, <wsa:FaultTo>.

As described in the WS:Addressing specification, the following semantic rules MUST be observed:

o If the message is a reply, <wsa:ReplyTo> and <wsa:RelatesTo> MUST be provided
o If the message includes a reply destination <wsa:ReplyTo> or a fault destination <wsa:FaultTo>, then
.<wsa:MessagelD> MUST be provided.

11.2.1 Guidelines

For near term implementations that will utilize HTTP as the transport, use of WS-Addressing is optional. However, it is
described here with the understanding that in the future, compliance with the WS-Addressing standards can provide
the benefits listed below.

e Ability to audit and track message traffic through the use of <wsa:MessagelD>, which factors out the message
id from a particular message schema.

e Facilitation of message dispatch through the use of <wsa:Action>, which provides a protocol agnostic means
of conveying high-level message semantics in the absence of (1) the SOAPAction header field which is
HTTP-specific and (2) service method name which is not present in the message body in the case of the
document/literal style binding.

e Ensures addressing information is retained through potential intermediate endpoints which may not be using
HTTP.

24 CableLabs® 10/23/09

Web Services Recommended Practices CL-SP-WSRP-101-091023

Example:

<env:Envelope "http://www.w3.0rg/2003/05/soap-envelope"
"http://schemas.xmlsoap.org/ws/2004/08/addressing" >

<env:Header>
<wsa:MessagelD></wsa:MessageID>
<wsa:ReplyTo>
<wsa:Address>http://site.client.endpoint/client</wsa:Address>
</wsa:ReplyTo>
<wsa:To>http://site.server.endpoint/Server</wsa:To>
<wsa:Action>http://site.server.endpoint/ActionName</wsa:Action>
</env:Header>

<env:Body>
....so0ap body goes here...
</env:Body>

</env:Envelope>

10/23/09 CableLabs® 25

CL-SP-WSRP-101-091023 CableLabs® Specifications

Appendix I Use Case Example (Informative)

1.1 Service Measurement Summary (SMS)

1.1.1 SMS Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.cablelabs.com/namespaces/AdvAds/xsd/sms/0.3"
xmlns:common="http://www.cablelabs.com/namespaces/AdvAds/xsd/com/0.2"
targetNamespace="http://www.cablelabs.com/namespaces/AdvAds/xsd/sms/0.3"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<Xs:import namespace="http://www.cablelabs.com/namespaces/AdvAds/xsd/com/0.2"
schemalocation="CLP-SP-AA-COM-D02-090505.xsd"/>
<!-- Service Measurement Message containers -->
<xs:element name="ServiceMeasurementMessage" type="ServiceMeasurementMessageType"/>
<xs:element name="AcknowledgementMessage" type="common:AcknowledgementMessageType"/>
<!-- Message Type Definitions -->
<xs:complexType name="ServiceMeasurementType">
<XSs:sequencex
<xs:element name="SMTimeRange" type="common:TimeRangeType"/>
<xs:element name="GeoCode" type="common:GeographicCodeType"/>
<xs:element name="Measurement" type="MeasurementType" maxOccurs="unbounded"/>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="ServiceMeasurementMessageType">
<Xs:sequence>
<xs:group ref="ServiceMeasurementMessageHeaderGroup"/>
<xs:element name="ServiceMeasurement" type="ServiceMeasurementType"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
<!-- Measurement Types Definitions -->
<xs:complexType name="MeasurementType" abstract="true'"s>
<Xs:sequence>
<xs:annotations
<xs:documentation>Type placeholder for extension</xs:documentations
</xs:annotations>
</xs:sequence>
<xs:attribute name="process" type="MessageProcessingType" use="required"/>
<xs:attribute name="reporting" type="MessageReportingStatusType" use="required"/>
</xs:complexType>
<xs:complexType name="InteractiveResponseType">
<xs:complexContent>
<xs:extension base="MeasurementType">
<XS:sequencex
<xs:element name="InteractivePackage" type="InteractivePackageType"
maxOccurs="unbounded" />
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="AdPlacementSummaryType">
<xs:complexContent>
<xs:extension base="MeasurementType">
<XS:sequencex>
<xs:element name="AdPlacementSummaryPackage"
type="AdPlacementSummaryPackageType" maxOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="AdPlacementSessionDataType">
<xs:complexContent>
<xs:extension base="MeasurementType">
<XS:sequencex>

26 CableLabs® 10/23/09

Web Services Recommended Practices CL-SP-WSRP-101-091023

<xs:element name="AdPlacementSessionDataPackage"
type="AdPlacementSessionDataPackageType" maxOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<!-- General Complex Type Definitions -->
<xs:complexType name="EventType">
<XSs:sequence>
<xs:element name="PlacementCount" type="PlacementCountType"/>
<xs:element name="PlacementContext" type="PlacementContentType"/>
</xs:sequence>
<xs:attribute name="EventID" type="common:EventIDType" use="optional"/>
</xs:complexType>
<xs:complexType name="ResultType">
<xs:simpleContent>
<xs:extension base="xs:integer"s>
<xs:attribute name="Parameters" type="common:ParametersType"
use="required"/>
<xXs:attribute name="TotallInterval" type="xs:duration" use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="PlacementType">
<XS:sequence>
<xs:element name="Ad" type="ContentPackageType"/>
<xs:element name="PlacementTime" type="common:TimeRangeType"/>
<xs:element name="PlacementAction" type="PlacementActionType"/>
<xs:element name="TrackingId" type="common:TrackingType"/>
<xs:element name="SegmentationElements" type="SegmentationElementsType"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="EventID" type="common:EventIDType" use="optional"/>
</xs:complexType>
<!-- Complex Types providing proper "packaging" to support repeating groups of
elements -->
<xs:complexType name="ContentPackageType">
<XSs:sequence>
<xs:element name="ProviderId" type="ProviderIdType"/>
<xs:element name="AssetId" type="AssetIdType"/>
</xs:sequence>
<xXs:attribute name="type" type="ContentType"/>
</xs:complexType>
<xs:complexType name="ContentPackageSummaryType">
<xs:complexContent>
<xs:extension base="ContentPackageType">
<XSs:sequence>
<xs:element name="Event" type="EventType" maxOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="ContentPackageSessionDataType">
<xs:complexContent>
<xs:extension base="ContentPackageType">
<XS:sequence>
<xs:element name="SMSessionDataTime" type="common:TimeRangeType"/>
<xs:element name="Placement" type="PlacementType"
maxOccurs="unbounded" />
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="AdPlacementSummaryPackageType">
<XSs:sequence>
<xs:element name="ContentPackageSummary" type="ContentPackageSummaryType"
maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="PEID" type="common:PeidType" use="required"/>
<xXs:attribute name="EPSID" type="common:EpsidType" use="required"/>
</xs:complexType>
<xs:complexType name="AdPlacementSessionDataPackageType">

10/23/09 CableLabs® 27

CL-SP-WSRP-101-091023

CableLabs® Specifications

<XS:sequences>
<xs:element

"ContentPackageSessionDataType"

</xs:sequence>
<xs:attribute
<xs:attribute
</xs:complexType>
<xs:complexType
<XS:sequence>

n PEIDH
"EPSID"

"ContentPackageSessionData"
"unbounded" />

"required"/>
"required"/>

"common : PeidType"
"common : EpsidType"

"InteractivePackageType">

<xs:element "Result" "ResultType" "unbounded" />
</xs:sequence>
<xs:attribute "PEID" "common : PeidType" "required"/>
<xs:attribute "EPSID" "common : EpsidType" "required"/>
<xs:attribute "EventID" "common : Event IDType" "optional"/>
</xs:complexType>
<!-- Simple Type Definitions -->

<xs:simpleType
<xs:annotations>
<xs:documentation

Asset. The

providerID MUST be set to a registered Internet domain name restricted to

at most 20

lower-case characters and belonging to the provider.

providerID
for CableLabs
</xs:annotation>
<xs:restriction
<xs:minLength
<xs:maxLength
</xs:restriction>
</xs:simpleType>
<xs:simpleType
<xs:annotations>
<xs:documentation
within a

provider's assetID space.

"ProviderIdType">

"en">A unique identifier for the provider of the

For example a valid

is "cablelabs-films.com" (19 chars).</xs:documentations
"xs:string">

lllll/>

n2ou/>

"AssetIdType">

"en"> An identifier for the asset that is unique

combination of its providerID and assetID</xs:documentations

</xs:annotation>
<xs:restriction
<xs:length
</xs:restriction>
</xs:simpleType>
<xs:simpleType
<xs:annotations>
<xs:documentation

content of an

"xs:string">
||20||/>

"PlacementCountType">

"en">An integer count for all placements within

Agset for a designated time period.</xs:documentations

</xs:annotation>
<xs:restriction
<xs:minInclusive
</xs:restriction>
</xs:simpleType>
<xs:simpleType
<xs:annotations>

"xs:int">
uou/>

"PlacementContentType">

<xs:documentation>Represents content which was altered by

placement.</xs:documentations>
</xs:annotation>
<xs:restriction
<xs:enumeration
<xs:enumeration
</xs:restriction>
</xs:simpleType>
<xs:simpleType
<xs:annotations>

<xs:documentation>Represents how the avail was filled.

content replaced

"xs:string">
"VOd"/>
"linear"/>

"PlacementActionType">

Specifically was

or inserted.</xs:documentations>

</xs:annotation>

<xs:restriction
<xs:enumeration
<xs:enumeration

</xs:restriction>

"xs:string">
"replaced"/>
"inserted"/>

28

CableLabs® 10/23/09

The unique global identifier of an asset is the

Web Services Recommended Practices CL-SP-WSRP-101-091023

</xs:simpleType>
<xs:simpleType "SegmentationElementsType" >
<xs:annotations>
<xs:documentation>Addressable attributes.</xs:documentations>
</xs:annotation>

<xs:restriction "xs:string"/>
</xs:simpleType>
<xs:simpleType "ContentType" >

<xs:annotation>
<xs:documentation>Represents type of content being
identified.</xs:documentations>
</xs:annotation>

<xs:restriction "xs:string"s>
<xXs:enumeration "target"/>
<xs:enumeration "enhancement" />

</xs:restriction>
</xs:simpleType>
<xs:simpleType "MessageProcessingType" >
<xs:annotation>
<xs:documentation>Defines how this message should be processed in relation to

others.

Messages flagged with the "additive" attribute should be added to other
received

reports for same time period and identifiers. While messages with the
"overwrite"

attribute should replace records for the same time period and
identifiers</xs:documentations>
</xs:annotation>

<xs:restriction "xs:string"s>
<xs:enumeration "additive"/>
<xS:enumeration "overwrite"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType "MessageReportingStatusType" >
<xs:annotation>
<xs:documentation>Defines if this message contains final/complete data or if
it is a partial/incremental update.</xs:documentations
</xs:annotation>

<xs:restriction "xs:string"s>
<xs:enumeration "final"/>
<Xs:enumeration "partial"/>

</xs:restriction>
</xs:simpleType>

<!-- Group Definitions -->
<XS:group "ServiceMeasurementMessageHeaderGroup" >
<Xs:sequencex
<xs:element "MinSchemaVersion" "common :MinSchemaVersionType" />
<xs:element "MessageTime" "xs:dateTime" />

</xs:sequence>
</xs:group>
</xs:schema>

1.1.2 SMS XML Sample

<?xml version="1.0" encoding="UTF-8"?>
<ns2:ServiceMeasurementMessage
"http://www.cablelabs.com/namespaces/AdvAds/xsd/com/0.2"
"http://www.cablelabs.com/namespaces/AdvAds/xsd/sms/0.3"
"http://www.w3.0rg/2001/XMLSchema-instance">
<ns2:MinSchemaVersion>10</ns2:MinSchemaVersion>
<ns2:MessageTime>2009-05-21T18:13:51.0%Z</ns2:MessageTime>
<ns2:ServiceMeasurement >
<ns2:SMTimeRange "2009-05-21T18:13:51.02" "2009-05-
21T18:13:51.0Z2"/>
<ns2:GeoCode>
<nsl:Zipcode>80020</nsl:Zipcode>
</ns2:GeoCode>

<ns2:Measurement "additive" "partial"
"ns2:InteractiveResponseType" >
<ns2:InteractivePackage "PEID111111111111111111" "e7" "1t
<ns2:Result "An "PT3600M">13456</ns2:Result>

10/23/09 CableLabs® 29

CL-SP-WSRP-101-091023

CableLabs® Specifications

<ns2
<ns2
<ns2
<ns2

:Result
:Result
:Result
:Result

Parameters="B" Totallnterval="PT3600M">456</ns2:Result>
Parameters="C" Totallnterval="PT3600M">134</ns2:Result>
Parameters="TA" Totallnterval="PT3600M">234</ns2:Result>
Parameters="TO" Totallnterval="PT5670S">189</ns2:Result>

</ns2:InteractivePackage>
<ns2:InteractivePackage PEID="PEID111111111111111111" EPSID="67" EventID="2">

<ns2:
<ns2:
<ns2:
<ns2:
<ns2:

Result
Result
Result
Result
Result

Parameters="A" Totallnterval ="PT3600M">45456</ns2:Result>
Parameters="B" Totallnterval="PT3600M">1456</ns2:Result>
Parameters="C" Totallnterval="PT3600M">334</ns2:Result>
Parameters="TA" TotallInterval="PT3600M">34</ns2:Result>
Parameters="TO" Totallnterval="PT5670S">189</ns2:Result>

</ns2:InteractivePackage>
</ns2:Measurement>
<ns2:Measurement xsi:type="ns2:InteractiveResponseType" process="overwrite"

reporting="final">

<ns2:InteractivePackage PEID="PEID111111111111111112" EPSID="68" EventID="1">

<ns2
<ns2
<ns2
<ns2
<ns2

:Result
:Result
:Result
:Result
:Result

Parameters="A" Totallnterval="PT3600M">543</ns2:Result>
Parameters="B" Totallnterval="PT3600M">444</ns2:Result>
Parameters="C" Totallnterval="PT3600M">879</ns2:Result>
Parameters="TA" TotallInterval="PT3600M">23</ns2:Result>
Parameters="TO" Totallnterval="PT5670S">189</ns2:Result>

</ns2:InteractivePackage>
<ns2:InteractivePackage PEID="PEID111111111111111112" EPSID="68" EventID="2">

<ns2:
<ns2:
<ns2:
<ns2:
<ns2:

Result
Result
Result
Result
Result

Parameters="A" Totallnterval="PT3600M">5456</ns2:Result>
Parameters="B" Totallnterval="PT3600M">345</ns2:Result>
Parameters="C" Totallnterval="PT3600M">337</ns2:Result>
Parameters="TA" Totallnterval="PT3600M">54</ns2:Result>
Parameters="TO" Totallnterval="PT5670S">189</ns2:Result>

</ns2:InteractivePackages>

</ns2:Measurement>
</ns2:ServiceMeasurement>

</ns2:ServiceMeasurementMessage>

1.1.3 SMS WSDL

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions name="ServiceMeasurementService"
targetNamespace="http://www.cablelabs.com/namespaces/AdvAds/wsdl/sms/0.3"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:wsoapl2="http://schemas.xmlsoap.org/wsdl/soapl2/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlngs:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xmlns:sms="http://www.cablelabs.com/namespaces/AdvAds/xsd/sms/0.3"
xmlns="http://www.cablelabs.com/namespaces/AdvAds/wsdl/sms/0.3"
xmlns:wsam="http://www.w3.0rg/2007/05/addressing/metadata"
xmlngs:wsaw="http://www.w3.0rg/2006/05/addressing/wsdl"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-

utility-1.0.xsd"

xmlns:wsp="http://www.w3.org/ns/ws-policy">

<wsp:Policy wsu:Id="addressing-policy" wsdl:required="true">
<wsam:Addressing>
<wsp:Policy>
<wsam:AnonymousResponse/ >
<wsam:MessageId/>
</wsp:Policy>
</wsam:Addressing>

</wsp:Policy>

<wsdl:types>

<wsdl :documentation>This import provides access to the complete SMS data and

messaging

model</wsdl :documentations>

<XSs:schema>

<Xs:import namespace="http://www.cablelabs.com/namespaces/AdvAds/xsd/sms/0.3"
schemalLocation="CLP-SP-AA-SMS-D03-090505.xsd"/>

</xs:schemas>
</wsdl:types>

30

CableLabs® 10/23/09

Web Services Recommended Practices CL-SP-WSRP-101-091023

<wsdl :message name="msgServiceMeasurementMessageSubmit">
<wsdl :documentation/>
<wsdl:part name="ServiceMeasurementMessage"
element="gms:ServiceMeasurementMessage"/>
</wsdl:message>

<wsdl :message name="msgServiceMeasurementMessageAck">

<wsdl :documentation/>

<wsdl:part name="Acknowledgement" element="sms:AcknowledgementMessage"/>
</wsdl :message>

<wsdl :portType name="ptServiceMeasurement"s>
<wsdl:operation name="opSendServiceMeasurementMessage">
<wsdl:input

wgaw:Action="http://www.cablelabs.com/namespaces/AdvAds/wsdl/sms/0.3/opSendServiceMeasure
mentMessage/msgServiceMeasurementMessageSubmit"
message="msgServiceMeasurementMessageSubmit" />
<wsdl:output

wsaw:Action="http://www.cablelabs.com/namespaces/AdvAds/wsdl/sms/0.3/opSendServiceMeasure
mentMessage/msgServiceMeasurementMessageAck"
message="msgServiceMeasurementMessageAck"/>
</wsdl:operation>
</wsdl :portType>

<wsdl :binding name="bdSMS-SOAP12HTTP" type="ptServiceMeasurement"s>
<wsp:PolicyReference URI="#addressing-policy"/>
<wsoapl2:binding style="document"
transport="http://www.w3.0rg/2003/05/soap/bindings/HTTP/"/>
<wsdl:operation name="opSendServiceMeasurementMessage">
<wsoapl2:operation

soapAction="http://www.cablelabs.com/namespaces/AdvAds/wsdl/sms/0.3/opSendServiceMeasurem
entMessage/msgServiceMeasurementMessageSubmit"
soapActionRequired="true" wsdl:required="true"/>
<wsdl:inputs>
<wsoapl2:body use="literal"/>
</wsdl:input>
<wsdl:output>
<wsoapl2:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl :binding>

<wsdl:service name="svServiceMeasurementService">
<wsdl:port name="sms-soapl2-http" binding="bdSMS-SOAP12HTTP">
<!--<wsoapl2:address location="http://localhost:8080/sms/"/>-->
<wsoapl2:address
location="https://aggtest.cablelabs.com/ServiceMeasurementServiceD03.svc/"/>
<wsam:EndpointReferences>
<!--<wsam:Address>http://localhost:8080/sms/</wsam:Address>-->

<wsam:Address>https://aggtest.cablelabs.com/ServiceMeasurementServiceD03.svc/</wsam:Addre
ss>
</wsam:EndpointReference>
</wsdl:port>
</wsdl:service>

</wsdl:definitions>

10/23/09 CableLabs® 31

CL-SP-WSRP-101-091023

CableLabs® Specifications

Appendix Il Acknowledgements

We wish to thank the participants contributing directly to this document:
Name Company
Richard Field Cablevision
Jim Moore Canoe
Jason Li Cablevision
Walt Michel Comcast
Christopher Zarcone Comcast
Allen Broome CableLabs

John Kirby, CableLabs
32 CableLabs” 10/23/09

	1 SCOPE
	1.1 Purpose
	1.2 Introduction
	1.3 Requirements

	2 REFERENCES
	2.1 Normative References
	2.2 Informative References
	2.3 Reference Acquisition

	3 TERMS AND DEFINITIONS
	4 ABBREVIATIONS AND ACRONYMS
	5 WEB SERVICES OVERVIEW
	6 DATA MODEL
	6.1 Profile XML Schema
	6.1.1 XML Namespaces
	6.1.2 Elements, Attributes and Schema Types
	6.1.3 Schema Versioning
	6.1.4 Objects
	6.1.5 Extensibility
	6.1.6 Miscellaneous Guidelines

	7 WEB SERVICES CONTRACT
	7.1 Web Services Description Language Profile
	7.1.1 WSDL Abstract Parts
	7.1.2 WSDL Concrete Parts

	8 MESSAGING
	8.1 SOAP Messaging Profile
	8.1.1 Envelope
	8.1.2 Header
	8.1.3 Body
	8.1.4 Fault

	9 TRANSPORT
	9.1 HTTP Transport Profile
	9.1.1 HTTP Binding

	10 SECURITY
	10.1 Security HTTPS and VPN Profile
	10.1.1 Auditing and Logging
	10.1.2 Future Considerations

	11 INTEROPERABILITY
	11.1 Idempotence
	11.2 WS-Addressing
	11.2.1 Guidelines

	Appendix I Use Case Example (Informative)
	I.1 Service Measurement Summary (SMS)
	I.1.1 SMS Schema
	I.1.2 SMS XML Sample
	I.1.3 SMS WSDL

	Appendix II Acknowledgements

