

OpenCable™ Application Platform Specifications
OCAP Extensions

OCAP Digital Video Recorder (DVR)

OC-SP-OCAP-DVR-I09-130530

ISSUED

Notice

This OpenCable specification is the result of a cooperative effort
undertaken at the direction of Cable Television Laboratories, Inc., for
the benefit of the cable industry and its customers. This document may
contain references to other documents not owned or controlled by
CableLabs®. Use and understanding of this document may require
access to such other documents. Designing, manufacturing,
distributing, using, selling, or servicing products, or providing services,
based on this document may require intellectual property licenses from
third parties for technology referenced in this document.

Neither CableLabs nor any member company is responsible to any
party for any liability of any nature whatsoever resulting from or arising
out of use or reliance upon this document, or any document referenced
herein. This document is furnished on an "AS IS" basis and neither
CableLabs nor its members provides any representation or warranty,
express or implied, regarding the accuracy, completeness,
noninfringement, or fitness for a particular purpose of this document, or
any document referenced herein.

 Cable Television Laboratories, Inc., 2004-2013

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

ii CableLabs 5/30/13

DISCLAIMER

This document is published by Cable Television Laboratories, Inc. ("CableLabs®").

CableLabs reserves the right to revise this document for any reason including, but not limited to, changes in laws,
regulations, or standards promulgated by various agencies; technological advances; or changes in equipment design,
manufacturing techniques, or operating procedures described, or referred to, herein. CableLabs makes no
representation or warranty, express or implied, with respect to the completeness, accuracy, or utility of the document
or any information or opinion contained in the report. Any use or reliance on the information or opinion is at the risk
of the user, and CableLabs shall not be liable for any damage or injury incurred by any person arising out of the
completeness, accuracy, or utility of any information or opinion contained in the document.

This document is not to be construed to suggest that any affiliated company modify or change any of its products or
procedures, nor does this document represent a commitment by CableLabs or any cable member to purchase any
product whether or not it meets the described characteristics. Nothing contained herein shall be construed to confer
any license or right to any intellectual property, whether or not the use of any information herein necessarily utilizes
such intellectual property. This document is not to be construed as an endorsement of any product or company or as
the adoption or promulgation of any guidelines, standards, or recommendations.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs iii

Document Status Sheet

Document Control Number: OC-SP-OCAP-DVR-I09-130530

Document Title: OCAP Digital Video Recorder (DVR)

Revision History: I01 – Released 5/24/04

I02 – Released 5/24/05

I03 – Released 5/9/07

I04 – Released 12/20/07

I05 – Released 6/12/09

I06 – Released 6/3/10

I07 – Released 5/12/11

I08 – Released 1/12/12

I09 – Released 5/30/13

Date: May 30, 2013

Status: Work in
Progress

Draft Issued Closed

Distribution Restrictions: Author Only CL/Member CL/ Member/
Vendor

Public

Key to Document Status Codes:

Work in Progress An incomplete document, designed to guide discussion and generate feedback that
may include several alternative requirements for consideration.

Draft A document in specification format considered largely complete, but lacking review
by Members and vendors. Drafts are susceptible to substantial change during the
review process.

Issued A stable document, which has undergone rigorous member and vendor review and
is suitable for product design and development, cross-vendor interoperability, and
for certification testing.

Closed A static document, reviewed, tested, validated, and closed to further engineering
change requests to the specification through CableLabs.

Trademarks:

CableLabs® is a registered trademark of Cable Television Laboratories, Inc. Other CableLabs marks are listed at
http://www.cablelabs.com/certqual/trademarks. All other marks are the property of their respective owners.

http://www.cablelabs.com/certqual/trademarks

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

iv CableLabs 5/30/13

Contents

1 SCOPE .. 1

1.1 OCAP DVR Purpose ... 1
1.2 OCAP DVR Requirements .. 1
1.3 OCAP DVR Application Areas (informative) ... 1

1.3.1 Personal Video Recorder (PVR) .. 1
1.3.2 Time Shift ... 1
1.3.3 Pushed Content .. 2

2 REFERENCES .. 3

2.1 Normative References .. 3
2.2 Reference Acquisition .. 4

2.2.1 OpenCable Bundle Requirements .. 4
2.2.2 Other References.. 4

3 DEFINITIONS AND ABBREVIATIONS ... 5

3.1 Definitions ... 5
3.2 Abbreviations ... 5

4 CONVENTIONS .. 6

4.1 Specification Language .. 6
4.2 Organization .. 6

5 GENERAL CONSIDERATIONS... 7

5.1 Introduction.. 7
5.2 Relationship with OCAP and GEM Specifications .. 7
5.3 Basic Architecture (Informative) ... 7

5.3.1 Limited Storage Profile .. 9
5.4 API Support Properties .. 9
5.5 EAS .. 10

6 RECORDING AND PLAYBACK PROCESS .. 11

6.1 DVB-GEM Specification Correspondence .. 11
6.2 OCAP DVR Specific Requirements .. 12

6.2.1 Extensions to [TS102817] MHP PVR/PDR Common Core .. 12

7 RECORDING AND PLAYBACK APIS .. 35

7.1 DVB-GEM Specification Correspondence .. 35
7.2 OCAP DVR Specific Requirements .. 35

7.2.1 Extensions to [TS102817] MHP PVR/PDR Common Core .. 35

8 SIGNALING .. 39

9 APPLICATION MODEL ... 40

10 SECURITY ... 41

10.1 DVB-GEM Specification Correspondence .. 41
10.2 OCAP DVR Specific Requirements .. 41

10.2.1 Extensions to [TS102817] MHP PVR/PDR Common Core .. 41

11 MINIMUM PLATFORM CAPABILITIES .. 43

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs v

11.1 DVB-GEM Specification Correspondence .. 43
11.2 OCAP DVR Specific Requirements .. 43

11.2.1 Extensions to [TS102817] MHP PVR/PDR Common Core .. 43

12 REGISTRY OF CONSTANTS ... 45

ANNEX A APPLICATION RECORDING DESCRIPTION (NORMATIVE) ... 46

A.1 DVB-GEM Specification Correspondence .. 46

ANNEX B RESPONSIBILITIES OF THIS SPECIFICATION (INFORMATIVE) 47

ANNEX C EXTERNAL REFERENCES; ERRATA, CLARIFICATIONS, AND EXEMPTIONS
(NORMATIVE) ... 49

C.1 DVB-GEM Specification Correspondence .. 49
C.2 org.ocap.shared.dvr.ServiceRecordingSpec ... 49
C.3 org.ocap.shared.dvr.LocatorRecordingSpec .. 49

ANNEX D OCAP DVR API (ORG.OCAP.DVR) .. 50

Package org.ocap.dvr ... 50
Package org.ocap.dvr Description ... 50
org.ocap.dvr Class BufferingRequest ... 51
org.ocap.dvr Interface OcapRecordedService .. 55
org.ocap.dvr Class OcapRecordingManager ... 57
org.ocap.dvr Class OcapRecordingProperties .. 65
org.ocap.dvr Interface OcapRecordingRequest .. 72
org.ocap.dvr Class PrivateRecordingSpec .. 75
org.ocap.dvr Class RecordingAlertEvent .. 77
org.ocap.dvr Interface RecordingAlertListener .. 79
org.ocap.dvr Interface RecordingPlaybackListener .. 80
org.ocap.dvr Interface RecordingResourceUsage ... 81
org.ocap.dvr Interface RequestResolutionHandler ... 82
org.ocap.dvr Interface SharedResourceUsage .. 83
org.ocap.dvr Interface TimeShiftBufferResourceUsage ... 84
org.ocap.dvr Class TimeShiftEvent .. 85
org.ocap.dvr Interface TimeShiftListener ... 88
org.ocap.dvr Interface TimeShiftProperties .. 89

ANNEX E OCAP DVR STORAGE API (ORG.OCAP.DVR.STORAGE) ... 94

Package org.ocap.dvr.storage .. 94
Package org.ocap.dvr.storage Description ... 94
org.ocap.dvr.storage Interface FreeSpaceListener .. 95
org.ocap.dvr.storage Interface MediaStorageEvent .. 96
org.ocap.dvr.storage Interface MediaStorageOption .. 97
org.ocap.dvr.storage Interface MediaStorageVolume... 100
org.ocap.dvr.storage Interface SpaceAllocationHandler... 104

ANNEX F OCAP SHARED DVR API (ORG.OCAP.SHARED.DVR) - SEE [TS102817] 105

ANNEX G OCAP SHARED DVR NAVIGATION API (ORG.OCAP.SHARED.DVR.NAVIGATION) -
SEE [TS102817] ... 106

ANNEX H OCAP SHARED MEDIA API (ORG.OCAP.SHARED.MEDIA) - SEE [TS102817] 107

ANNEX I (VOID) .. 108

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

vi CableLabs 5/30/13

ANNEX J OCAP DVR EVENT API (ORG.OCAP.DVR.EVENT) ... 109

Package org.ocap.dvr.event ... 109
org.ocap.dvr.event Interface LightweightTriggerHandler ... 110
org.ocap.dvr.event Class LightweightTriggerManager ... 111
org.ocap.dvr.event Interface LightweightTriggerSession ... 113
org.ocap.dvr.event Interface StreamChangeListener .. 118

APPENDIX I RECORDING USE CASES (INFORMATIVE).. 120

I.1 Use Case: In progress (or in-progress insufficient space) and CA revokes access..................................... 120
I.2 Use Case: In progress (or in-progress insufficient space) and signal is lost ... 120
I.3 Use Case: In progress (or in-progress insufficient space) and Resource Contention denies access to
resource for recording .. 121
I.4 Use Case: In progress (or in-progress insufficient space) and video/audio data is lost 121
I.5 Use Case: In progress (or in-progress insufficient space) and external drive is removed 121
I.6 Use Case: In progress and insufficient space detected or recording space is exhausted 122
I.7 Use Case: About to start and CA does not allow access .. 122
I.8 Use Case: About to start and cannot tune to frequency .. 123
I.9 Use Case: About to start and cannot find video/audio on frequency ... 123
I.10 Use Case: About to start and bandwidth for decode is not available ... 124
I.11 Use Case: About to start and insufficient space for recording ... 125
I.12 Use Case: Power restored and recording was previously in progress, scheduled end time has not been
reached ... 125
I.13 Use Case: Power restored and recording was previously in progress, scheduled end time has been reached
 126
I.14 Use Case: Power restored and recording was pending no conflict, scheduled start time has been
reached/exceeded, end time has not been reached ... 126
I.15 Use Case: Power restored and recording was pending no conflict, scheduled end time has been
reached/exceeded ... 127
I.16 Use Case: Power restored and recording was pending with conflict, scheduled start time has been
reached/exceeded ... 127
I.17 Use Case: Recording’s start time reached/exceeded, recording pending with conflict 127
I.18 Use Case: Recording in-progress is stopped by application (USER_STOP) ... 128

APPENDIX II REVISION HISTORY (INFORMATIVE) .. 129

II.1 ECNs included in OC-SP-OCAP-DVR-I02-050524 ... 129
II.2 ECNs included in OC-SP-OCAP-DVR-I03-070508 ... 129
II.3 ECNs included in OC-SP-OCAP-DVR-I04-071220 ... 130
II.4 ECNs included in OC-SP-OCAP-DVR-I05-090612 ... 130
II.5 ECN included in OC-SP-OCAP-DVR-I06-100603 ... 131
II.6 ECNs included in OC-SP-OCAP-DVR-I07-110512 ... 131
II.7 ECN included in OC-SP-OCAP-DVR-I08-120112 ... 131
II.8 ECNs included in OC-SP-OCAP-DVR-I09-130530 ... 131

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs vii

Figures
Figure 5–1 - DVR Architecture ... 8
Figure 6–1 - TSB Recording Interruption .. 24

Tables
Table 5–1 - API Support Property ... 9
Table 6–1 - Correlation between [OCAP] and [TS102817] MHP PVR/PDR Common Core Specification 11
Table 6–2 - Reason codes for certain resource acquisition failures ... 17
Table 7–1 - Correlation between [OCAP] and [TS102817] MHP PVR/PDR Common Core Specification 35
Table 10–1 - Correlation between [OCAP] and [TS102817] MHP PVR/PDR Common Core Specification 41
Table 10–2 - Security restrictions for individual recording requests ... 41
Table 11–1 - Correlation between [OCAP] and [TS102817] MHP PVR/PDR Common Core Specification 43
Table A–1 - Correlation between [OCAP] and [TS102817] MHP PVR/PDR Common Core Specification 46
Table B–1 - Mapping for GEM Required Responsibilities ... 47
Table C–1 - Correlation between [OCAP] and [TS102817] MHP PVR/PDR Common Core Specification 49

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

viii CableLabs 5/30/13

This page left blank intentionally.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 1

1 SCOPE

This document defines a minimal specification for a Digital Video Recorder (DVR) software environment for digital
cable receivers with local storage, and is a modular extension to the OpenCable Application Platform (OCAP).
[OCAP] and the OCAP DVR specification (this document) were developed by Cable Television Laboratories, Inc.
(CableLabs), in conjunction with representatives from its member cable operating companies, as well as leading
software and hardware firms.

The OCAP DVR is based on [OCAP] and includes that document in its entirety.

1.1 OCAP DVR Purpose

The OCAP DVR is an application interface that includes all required Application Program Interfaces (APIs), content
and data formats, and protocols, up to the application level. Applications developed to the OCAP DVR will be
executed on OpenCable-compliant host devices. The OCAP DVR allows cable operators to deploy their applications
and services on all OpenCable-compliant host devices connected to their networks.

The OCAP DVR platform SHALL be applicable to a wide variety of hardware and operating systems to allow
Consumer Electronics (CE) manufacturers flexibility in implementation. A primary objective in defining the OCAP
DVR is to enable competing implementations of the OCAP DVR platform by CE manufacturers.

1.2 OCAP DVR Requirements

The OCAP DVR platform has been designed to meet specific requirements that are not commonly applied to other
DVR environments. Some of these requirements are related to content protection obligations that cable operators
encounter, such that broadcast event descriptions might be maintained by applications, and that the platform supports
DVR applications deployed by various service providers that have no a priori knowledge of each other and may
compete for resources.

1.3 OCAP DVR Application Areas (informative)

The information in this section is informative to the OCAP DVR.

This section identifies the applications and services that could be made available to the viewer when using an OCAP
DVR-compliant terminal. The descriptions of the applications are intended to demonstrate the scope of services
required from [OCAP].

1.3.1 Personal Video Recorder (PVR)

A critical application enabled by this platform is a PVR. A PVR application may be an extension to an Electronic
Program Guide (EPG) that enables viewers to select programming events to record, and to select recorded events for
viewing. Event listing and selection may be integrated into the EPG. Future broadcast events may be selected for
recording. For instance, on Thursday night, a viewer might choose to record Sunday's broadcast of '60 Minutes'.
Once the recording is scheduled, the PVR application will record the event without further input from the viewer. A
PVR might also allow users to schedule the recording of a package of events, such as a season of 'Friends'.

1.3.2 Time Shift

Another critical application can be called 'time shift'. This set of features allows viewers to record the currently
selected broadcast event, pause the current event, and rewind the current event. This capability is accomplished by

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

2 CableLabs 5/30/13

the use of a 'time-shift buffer', which temporarily stores the broadcast stream. If a user selects to pause the live
broadcast, the current frame of video is displayed, while the ongoing broadcast is still saved to the time-shift buffer.
The contents of the buffer, up to the beginning of the current event, can be saved in permanent storage, and the
contents of the time-shift buffer can be viewed with 'trick-play' modes, such as rewind and fast-forward.

1.3.3 Pushed Content

Applications may schedule recording or perform immediate recording of broadcast events with initiation by a viewer.
Many services and applications may use this capability to provide promotional material or targeted ads to viewers.
These applications use the same API features as PVR applications.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 3

2 REFERENCES

This section provides the normative and informative references used to create this specification.

2.1 Normative References

Note: Information contained in these normative references is required for all implementations. Notwithstanding,
intellectual property rights may be required to use or implement these normative references.

All references are subject to revision, and parties to agreement based on this specification are encouraged to
investigate the possibility of applying the most recent editions of the documents listed below.

References are either specific (identified by date of publication, edition number, version number, etc.) or non-
specific:

• For a specific reference, subsequent revisions do not apply.

• For a non-specific, non-Bundle reference, the latest version applies.

• For non-specific CableLabs references that are part of the [OC-BUNDLE], the versions mandated in a particular
Bundle apply.

The following table lists the normative references for this specification:

References Edition Description

[OC-BUNDLE] OpenCable Bundle Requirements, OC-SP-BUNDLE. See Section
2.2.1 to acquire this specification.

[OC-SEC] OpenCable System Security Specification, OC-SP-SEC, Cable
Television Laboratories, Inc. Referenced in [OC-BUNDLE].

[OCAP] OpenCable Application Platform Specification (OCAP), OC-SP-
OCAP, Cable Television Laboratories, Inc. Referenced in [OC-
BUNDLE].

[HOST] OpenCable Host Device 2.1 Core Functional Requirements, OC-
SP-HOST2.1, Cable Television Laboratories, Inc. Referenced in
[OC-BUNDLE].

[HOST-DVR] OpenCable Host 2.X DVR Extension, OC-SP-HOST2-DVREXT,
Cable Television Laboratories, Inc. Referenced in [OC-BUNDLE].

[FIPS-46-3] 99 Oct 25 Data Encryption Standard (DES).
[FIPS-140-2] 01 May 25 Security Requirements for Cryptographic Modules.
[FIPS-197] 2001 November 26 Advanced Encryption Standard (AES).
[TS102817] 2007 September 18 Digital Video Broadcasting (DVB); Digital Recording Extension

to Globally Executable MHP (GEM), ETSI TS 102 817 v 1.1.1.
[DVB-GEM 1.0.2] ETSI TS 102 819

v1.3.1, October 2005
Digital Video Broadcasting (DVB) Globally Executable MHP
version 1.0.2.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

4 CableLabs 5/30/13

2.2 Reference Acquisition

2.2.1 OpenCable Bundle Requirements

The OpenCable Bundle Requirements specification [OC-BUNDLE] indicates the set of CableLabs specifications
required for the implementation of the OpenCable Bundle. The version number of [OC-BUNDLE] corresponds to
the release number of the OpenCable Bundle that it describes. One or more versions of [OC-BUNDLE] reference
this specification. Current and past versions of [OC-BUNDLE] may be obtained from CableLabs at
http://www.cablelabs.com/opencable/specifications.

2.2.2 Other References

• Cable Television Laboratories, Inc., 858 Coal Creek Circle, Louisville, CO 80027;
Phone +1-303-661-9100; Fax +1-303-661-9199; http://www.cablelabs.com

• European Telecommunications Standards Institute (ETSI), www.etsi.org

http://www.cablelabs.com/
http://www.etsi.org/

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 5

3 DEFINITIONS AND ABBREVIATIONS

3.1 Definitions

Digital Video Recorder
(DVR)

A hardware/software platform that enables viewers to store digital video content. DVR
systems enable applications such as PVRs.

OpenCable Bundle The OpenCable Bundle defines a set of specifications required to build a specific
version of an OpenCable device. See [OC-BUNDLE].

Personal Video Recorder
(PVR)

An application that enables viewers to schedule the recording of broadcast events, and
to view and display previously recorded events.

Time-Shift A set of functionality that enables viewers to record, pause, and rewind/fast-forward
through a real-time broadcast event.

Time-Shift Buffer A portion of memory that enables Time-Shift functionality.

Transrating A process of modifying MPEG compression to achieve greater compression.

3.2 Abbreviations

BWP Buffering Without Presentation

DVR Digital Video Recorder

PVR Personal Video Recorder

TSB Time-Shift Buffer

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

6 CableLabs 5/30/13

4 CONVENTIONS

The following conventions are used in this specification:

• The Courier New font type is used to indicate code examples, names of properties, and other information that
MUST be entered exactly as-is: code example font

• Boldfaced text is used as emphasis.

4.1 Specification Language

Throughout this document, the words that are used to define the significance of particular requirements are
capitalized. These words are:

"SHALL" This word means that the item is an absolute requirement of this specification.

"SHALL NOT" This phrase means that the item is an absolute prohibition of this specification.

"SHOULD" This word means that there may exist valid reasons in particular circumstances to ignore this
item, but the full implications should be understood and the case carefully weighed before
choosing a different course.

"SHOULD NOT" This phrase means that there may exist valid reasons in particular circumstances when the
listed behavior is acceptable or even useful, but the full implications should be understood and
the case carefully weighed before implementing any behavior described with this label.

"MAY" This word means that this item is truly optional. One vendor may choose to include the item
because a particular marketplace requires it or because it enhances the product, for example;
another vendor may omit the same item.

4.2 Organization

This document uses the OpenCable Application Platform Specification [OCAP] as its base. Where applicable,
OCAP DVR sections reference the corresponding section within [OCAP].

The OCAP DVR specification adds packages to [OCAP], as seen in Annex D, OCAP DVR API
(org.ocap.dvr);Annex E, OCAP DVR Storage API (org.ocap.dvr.storage); OCAP Shared DVR API
(org.ocap.shared.dvr) - see [TS102817]; OCAP Shared DVR Navigation API (org.ocap.shared.dvr.navigation) - see
[TS102817]; OCAP Shared Media API (org.ocap.shared.media) - see [TS102817]; Annex J, OCAP DVR Event API
(org.ocap.dvr.event)

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 7

5 GENERAL CONSIDERATIONS

5.1 Introduction

This specification fully defines a DVR extension to [OCAP]. This specification defines a platform to enable
applications to record and playback broadcast events, and to time-shift broadcast events. These functions are
considered basic capabilities of a DVR platform, and the platform is limited in scope to support these basic
functions. Advanced functions, such as preference engines or targeted content, are not explicitly supported by this
platform and are considered application level functions.

5.2 Relationship with OCAP and GEM Specifications

Implementers of this specification SHALL also fully implement [OCAP]. [OCAP] and this DVR platform are related
in such a way that [OCAP] implementations have no build-time or runtime dependencies on the DVR platform, while
OCAP DVR implementations depend on the full implementation of [OCAP].

With exceptions noted elsewhere in this document, all normative clauses of MHP PVR/PDR Common Core
Specification [TS102817], Digital Video Broadcasting (DVB); Digital Recording Extension to Globally Executable
MHP, SHALL apply.

5.3 Basic Architecture (Informative)

Figure 5–1 shows an overview of the architecture assumed by the present document. Several aspects are omitted for
the sake of clarity.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

8 CableLabs 5/30/13

Third Party Apps

MSO Apps

Resource
Contention

Handler

Resource
Resolution

Handler

OCAP Recording and
Resource Manager API

GEM Recording
Manager SPI

Playback
API

Timeshift
API

Resource Manager Recording Manager Timeshift Proxy

Recording Engine Playback Engine

Figure 5–1 - DVR Architecture

In this architecture, among other things, the recording manager is responsible for:

• Managing pending recording requests.

• Interfacing with the resource manager to reserve resources required for pending and current recordings.

• Updating the conflict status of pending recording requests based on the resource availability.

• Interfacing with the recording engine to start and stop recordings at appropriate times.

• Updating the status of recording requests and creating RecordedServices as recordings are made.

Resource manager in this architecture is an extension of the resource manager functionality required to implement
the OCAP specification. Among other things, the resource manager is responsible for:

• Detecting resource conflicts between pending recording requests.

• Detecting resource conflicts between pending and in-progress recording requests.

• Detecting resource conflicts between recording requests and other activities that require resource reservations,
such as time-shift buffering, presentation of broadcast services by services contexts, the
NetworkInterfaceController reserve method, etc.

• Notifying the resource contention handler when the resource conflicts are detected.

• Resolving conflicts based on the priority specified by MSO applications.

In this architecture, an MSO application may register to handle resource contentions. When the resource manager
detects a resource contention, the contention handler is invoked to resolve the resource contention.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 9

An MSO application may register to handle request resolution. Typically this would be an application that has access
to electronic program guide (EPG) listing data. When the recording manager encounters a recording request that
requires additional information to process, this request resolution handler is invoked. The request resolution handler
may process series requests and schedule recording requests corresponding to individual episodes.

Applications may use the GEM recording manager API to:

• Request recordings to be made,

• Manage the list of recording requests maintained by the recording manager,

• Manage recorded services.

5.3.1 Limited Storage Profile

This specification allows device configurations that do not provide internal storage for media recording as part of the
default configuration.

5.4 API Support Properties

OCAP Hosts that support the OCAP DVR extension SHALL indicate this support with the system properties as
defined in section 13.3.12.2 of [OCAP], per Table 5–1.

Table 5–1 - API Support Property

Property Description Value Application Access

ocap.api.option.dvr System property indicating that OCAP DVR
extension is supported by the Host device.

"1.0" signed and unsigned

ocap.api.option.limited_storage
_dvr

System property indicating that the OCAP DVR
extension is supported by the Host device but
internal storage is either not present or not
configured for media recording.

"1.0" signed and unsigned

OCAP Hosts that support the OCAP DVR extension and provide at least one StorageProxy representing internal
storage containing a MediaStorageOption SHALL indicate this support with the ocap.api.option.dvr property.

OCAP Hosts that support the OCAP DVR extension and do not provide at least one StorageProxy representing
internal storage containing a MediaStorageOption SHALL indicate this support with the
ocap.api.option.limited_storage_dvr property.

When the ocap.api.option.dvr property is present, the implementation SHALL NOT expose the
ocap.api.option.limited_storage_dvr property. When the ocap.api.option.limited_storage_dvr property is present, the
implementation SHALL NOT expose the ocap.api.option.dvr property.

Note: When a device supports the DVR extension and has internal storage capable of media storage
but which is not considered large enough for typical permanent recording use, the
ocap.api.option.limited_storage_dvr property is appropriate. Such a storage device can be
configured by an application for use as one or more TSBs, storage of audio/video clips, etc. The
determination of storage that is large enough for typical permanent recording use is
implementation specific.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

10 CableLabs 5/30/13

5.5 EAS

The OCAP DVR platform SHALL comply with EAS signaling as defined in [OCAP]. The OCAP resource
contention handler SHALL NOT be invoked to resolve resource contention during an EAS event as defined in
section 20.2.2.10 of [OCAP].

During the EAS event, the Time Shift Buffer (TSB) MAY continue to store content if already enabled and if
resources are available. The EAS event SHALL NOT be stored in the TSB.

During an EAS event, the OCAP DVR platform MAY continue to record if in-progress and resources are available.
The OCAP DVR SHALL NOT record the EAS event.

When acquiring resources for an EAS event, the OCAP DVR SHALL give priority to preserving Recording
resources over TSB resources.

If in play mode, the OCAP DVR MAY stop the playback if necessary to present the EAS event. A scrolling message
or audio might not require the playback to be interrupted, while a Forced Tune SHALL interrupt the playback. It is
the responsibility of applications to resume playback of recorded content that was interrupted due to presentation of
the EAS event.

Resources taken to present the EAS event SHALL be available for satisfying the needs of in-progress scheduled
recordings when the EAS presentation concludes per [TS102817], section 6.2.1.2, Recording with resource
interruption.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 11

6 RECORDING AND PLAYBACK PROCESS

This chapter describes the recording and playback process for scheduled recordings and time-shift recording.

6.1 DVB-GEM Specification Correspondence

This section corresponds to [TS102817], Chapter 6, as follows:

Table 6–1 - Correlation between [OCAP] and [TS102817] MHP PVR/PDR Common Core Specification

OCAP Compliance MHP PVR/PDR Common Core
Specification Section

GEM
Compliance

6, Recording and Playback Process 6 Recording and Playback Process Extension
6.2.1.1, Scheduled Recordings No corresponding section Extension
6.2.1.1.1, RecordingSpecs No corresponding section Extension
6.2.1.1.2, Managing Recording Requests 6.1 Managing scheduled recording Extension
6.2.1.1.3, The Recording Process 6.2 The recording process Extension
6.2.1.1.3.1, Identifying Streams to be Recorded No corresponding section Extension
6.2.1.1.3.2, Identifying and Recording Applications No corresponding section Extension
6.2.1.1.4, Managing Completed Recording 6.3 Managing completed recordings Extension
6.2.1.1.5, Resource Management for Recording Request No corresponding section Extension
6.2.1.1.6, Request Resolution Process No corresponding section Extension
6.2.1.1.7, RecordedService No corresponding section Extension
6.2.1.2, Playback of Recorded Services 6.4 Playback of scheduled recordings Extension
6.2.1.2.1, Process for Playback 6.4.1 Process of playback Extension
6.2.1.2.1, Process for Playback 6.4.2 Event during playback Extension
6.2.1.3, Time-Shift Buffer 6.5 Time-shift Extension
6.2.1.3.1, Overview No corresponding section Extension
6.2.1.3.2, Recording 6.5.1 Recording Extension
6.2.1.3.2.1, Identifying the Streams to be Recorded No corresponding section Extension
6.2.1.3.2.2, Identifying and Recording Applications No corresponding section Extension
6.2.1.3.3, Playback 6.5.2 Playback Extension
6.2.1.3.4, Resource Management No corresponding section Extension
6.2.1.4, Storage No corresponding section Extension
6.2.1.4.1, Storage Management No corresponding section Extension
6.2.1.4.2, Storage Initialization No corresponding section Extension
6.2.1.5, Lightweight Trigger No corresponding section Extension

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

12 CableLabs 5/30/13

6.2 OCAP DVR Specific Requirements

6.2.1 Extensions to [TS102817] MHP PVR/PDR Common Core

6.2.1.1 Scheduled Recordings

6.2.1.1.1 RecordingSpecs

Applications may use an extension of the RecordingSpec class to specify a recording request. Implementations
SHALL support the following extensions of RecordingSpec passed in as an argument to the
RecordingManager.record method:

• org.ocap.shared.dvr.LocatorRecordingSpec

• org.ocap.shared.dvr.ServiceRecordingSpec

• org.ocap.shared.dvr.ServiceContextRecordingSpec

• org.ocap.dvr.PrivateRecordingSpec

Implementations SHALL support RecordingProperties specified through the extension
OcapRecordingProperties.

When the implementation uses the base RecordingProperties interface to create a recording request, it SHALL give
read and write application access rights as defined by the org.ocap.storage.ExtendedFileAccessPermissions class.
How this access is given is implementation-specific, but SHALL apply to any recording access granted by those
rights.

If a LocatorRecordingSpec, ServiceRecordingSpec or ServiceContextRecordingSpec object
is specified as the source parameter to the RecordingManager.record method, a
LeafRecordingRequest object returns. If a PrivateRecordingSpec object is specified as the source
parameter to the RecordingManager.record method, a ParentRecordingRequest object returns,
according to Section 6.2.1.1.6, Request Resolution Process.

6.2.1.1.2 Managing Recording Requests

In addition to the activities defined in clause 6.1 of [TS102817], the process of managing recording requests SHALL
include the following:

a) Detecting conflicts between multiple recording requests and between recording requests and resource
reservations for other activities in the system. When conflicts are detected, the conflicts are resolved as
specified in Section 6.2.1.1.5, Resource Management for Recording Request, for recording requests. After the
conflict is resolved, status of the recording request SHALL be updated based on the conflict resolution.
Recording requests that are not expected to be recorded due to resource conflicts SHOULD NOT be deleted
by the implementation unless explicitly deleted by the application. When a recording is scheduled or
rescheduled, the recording database SHALL be checked for concurrent resource usages. If it is determined
that the recording being scheduled will cause a point in time where there are more ongoing recordings than
available resources, then the implementation SHALL resolve this conflict, as described in Section 6.2.1.1.5,
Resource Management for Recording Request, and invoke the ResourceContentionHandler, if one is
registered.

As a result of this processing, the recording being scheduled, and any recordings that overlap this recording, will
result in either the PENDING_NO_CONFLICT_STATE or PENDING_WITH_CONFLICT_STATE, excluding
IN_PROGRESS recordings, which will retain their state, and where:

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 13

• The PENDING_NO_CONFLICT_STATE indicates that the recording has been granted a reservation for the
usage of the needed resources, and that it is expected to complete in its entirety.

• The PENDING_WITH_CONFLICT_STATE indicates that at some point during the recording there exists too
many simultaneous scheduled usages of the needed resources, and that other recordings have been given priority
over this recording, and therefore, this recording is not expected to complete.

The priority property field, which can contain the values RECORD_IF_NO_CONFLICT and
RECORD_WITH_CONFLICT, is only referenced at the time that the recording is scheduled to start. At that time, the
recording attempting to start will already have been placed in one of the pending states, as described immediately
above.

If, at recording start time, the recording is in the PENDING_WITH_CONFLICT_STATE, and the priority is set to
RECORD_IF_NO_CONFLICTS, no attempts to acquire resources or physically start the recording will occur, and
the recording SHALL be immediately marked as FAILED.

If, at recording start time, the recording is in the PENDING_WITH_CONFLICT_STATE and the priority is set to
RECORD_WITH_CONFLICTS, or the recording is in the PENDING_NO_CONFLICTS_STATE, the
implementation SHALL attempt to start the recording by acquiring the needed resources. This may also cause
invocation of a registered ResourceContentionHandler, since non-DVR resource usages may be in progress.

b) Invoking the Request resolution handler when the record method is called with an instance of
PrivateRecordingSpec. Details of how the request resolution process SHOULD be handled is defined
in Section 6.2.1.1.6, Request Resolution Process.

c) The effect of storage device detachment and reattachment on scheduling of new recordings, pending
recordings, and recording initiation SHALL be handled as detailed in Section 6.2.1.4.3.

6.2.1.1.3 The Recording Process

The recording process as defined in clause 6.2 of [TS102817], SHALL be complied with and extended as follows.

• When a recording transitions from IN_PROGRESS_INCOMPLETE_STATE to INCOMPLETE_STATE, the
implementation SHALL maintain any recording failed reason code that was set before this state transition.

• As a clarification to a clause in [TS102817] section 6.2.1.2, which states “When a recording is in progress in the
IN_PROGRESS_INCOMPLETE_STATE and one or more resources for the recording are lost the
implementation shall execute the following steps:" and where the second step is specified as “Stop the
recording”; the second step SHALL be read as “Stop recording content from the service and leave the recording
in a condition from which it can be restarted.”

• When a recording request is in any in-progress state and is stopped by an application calling the
LeafRecordingRequest.stop method, the implementation SHALL set the value in the
org.ocap.shared.dvr.RecordingFailedException to be returned by the LeafRecordingRequest.getFailedException
method to org.ocap.shared.dvr.RecordingFailedException.USER_STOP.

• As a clarification to the clause in [TS102817] section 6.2.1.2 which states: "When a recording duration ends and
the recording is in the IN_PROGRESS_WITH_ERROR state and any part of the recording request was
recorded, the LeafRecordingRequest SHALL be transitioned to the INCOMPLETE_STATE. Otherwise, the
LeafRecordingRequest SHALL be transitioned to the FAILED_STATE.", this requirement should be read as
follows:

When a recording duration ends or the recording is terminated by the application [via the
LeafRecordingRequest.stop() method] and the recording is in an in-progress state, the LeafRecordingRequest
SHALL be transitioned to a resulting state according to the following table:

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

14 CableLabs 5/30/13

Duration recorded Resulting State

none FAILED_STATE
some INCOMPLETE_STATE
all COMPLETED_STATE

The javadoc for the LeafRecordingRequest.stop() method is extended and SHALL be read as “Stops the
recording for an in-progress recording request regardless of how much of the duration has been recorded. Moves
the recording to the INCOMPLETE_STATE in the event any duration has been recorded, to the
FAILED_STATE in the event no duration has been recorded, or to the COMPLETED_STATE in the event the
entire duration has been recorded.”

• When a content type can never be recorded due to device specific I/O bandwidth constraints and such a content
type is scheduled for recording, the recording SHALL NOT be put in a
PENDING_WITH_CONFLICT_STATE because of this reason, and once the recording starts, it SHALL be
transitioned to the FAILED_STATE and the value in the org.ocap.shared.dvr.RecordingFailedException to be
returned by the LeafRecordingRequest.getFailedException method SHALL be set to
org.ocap.shared.dvr.RecordingFailedException.OUT_OF_BANDWIDTH.

When a DVR API method modifies properties of a RecordingRequest, the implementation SHALL make the same
changes to the recording database accessed by the org.ocap.dvr.OcapRecordingManager, in a synchronous fashion,
before the respective method returns. Methods that follow this behavior include:

• org.ocap.shared.dvr.RecordingManager.record

• org.ocap.shared.dvr.RecordingRequest.reschedule

• org.ocap.shared.dvr.RecordingRequest.setRecordingProperties

• org.ocap.dvr.OcapRecordingManager.record

• org.ocap.dvr.OcapRecordingManager.resolve

• org.ocap.shared.dvr.RecordingRequest.addAppdata

• org.ocap.shared.dvr.RecordingRequest.removeAppdata

• org.ocap.shared.dvr.RecordingRequest.delete

• org.ocap.shared.dvr.RecordedService.delete

• org.ocap.dvr.OcapRecordingManager.deleteRecordings

• org.ocap.dvr.OcapRecordingRequest.cancel

• org.ocap.shared.dvr.ParentRecordingRequest.cancel

• org.ocap.shared.dvr.LeafRecordingRequest.cancel

• org.ocap.shared.dvr.SeqmentedRecordedService.delete

• org.ocap.dvr.OcapRecordingManager.cancelBufferingRequest

• org.ocap.dvr.OcapRecordingManager.disableBuffering

• org.ocap.dvr.OcapRecordingManager.enableBuffering

• org.ocap.dvr.OcapRecordingManager.requestBuffering

• org.ocap.shared.dvr.LeafRecordingRequest.stop

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 15

When a DVR API method modifies the state of a recording, the implementation SHALL perform conflict detection
and resource contention handling, as defined by Section 6.2.1.1.5, in a synchronous fashion, before the respective
method returns. Methods that follow this behavior include:

• org.ocap.shared.dvr.RecordingManager.record

• org.ocap.shared.dvr.RecordingRequest.reschedule

• org.ocap.shared.dvr.RecordingRequest.setRecordingProperties

• org.ocap.dvr.OcapRecordingManager.record

When a DVR API method modifies the recording database accessed by the org.ocap.dvr.OcapRecordingManager
and causes resource contention handling, it SHALL complete changes to the database before invoking the resource
contention handler application.

In addition to the activities defined in clause 6.3 of [TS102817], the process for managing recordings SHALL
include the following activity:

If the implementation estimates that a recording request that is in progress might not complete successfully due
to lack of storage space available, the implementation SHOULD update the status of the recording in progress to
reflect that. The estimation need not be accurate, and any proprietary algorithm MAY be used for this
computation. Applications SHOULD use this only as an advisory notification and MAY use its own mechanisms
to decide whether sufficient space is available to complete the recording.

If a ServiceContextRecordingSpec is used as the parameter to the record method, the implementation
SHALL store and record the relevant portion already contained within any time-shift buffer associated with the
service context, when the startTime is in the past.

Recordings initiated with the invocation of the record method with a ServiceContextRecordingSpec as the
parameter SHALL be terminated if the service context is destroyed, or if an application selects another service on the
service context.

If a ServiceRecordingSpec is used as the parameter to the record method, the implementation SHALL store
and record relevant portions of the service already contained in any time shift buffer when the startTime is in the
past. If a LocatorRecordingSpec is used, the implementation SHALL store and record relevant portions of the
selected components of the service already contained in any time-shift buffer when the startTime is in the past. If
the service is being buffered by more than one time-shift buffer, the one which contains the most amount of the
relevant portions of the service SHALL be used. In both these cases, if end time of the recording is in the future, the
recording SHALL continue using the resources that were used for the time-shift buffering if allowed by resource
contention handling. If the end time of the recording is in the past, an IllegalArgumentException is thrown
if no relevant part of the content associated with the RecordingRequest is contained in any time-shift buffer.

When content from a time-shift buffer is stored as a part of a recording, the
RecordedService.getRecordingStartTime() method would return the start time at which the relevant
portion of the content was originally recorded in the TSB.

When a recording request is created with a start time in the past and a duration completion in the future but none or
only some of the requested service is buffered, the implementation SHALL transition the recording to the
IN_PROGRESS_STATE. Missing some portion of a recording at the beginning due to instant record after the start
of a program is not considered an error, and the recording can complete successfully. When the duration completes,
and if the state is still IN_PROGRESS_STATE, the implementation SHALL transition the recording to the
COMPLETED_STATE.

In this section, use of the term “in-progress state(s)” refers to the following list of recording request states:

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

16 CableLabs 5/30/13

• IN_PROGRESS

• IN_PROGRESS_WITH_ERROR

• IN_PROGRESS_INSUFFICIENT_SPACE_STATE

• IN_PROGRESS_INCOMPLETE_STATE

6.2.1.1.3.1 Identifying Streams to be Recorded

If the recording request was specified using a ServiceRecordingSpec or a
ServiceContextRecordingSpec, the implementation SHALL:

a) Record the audio and video streams that are present on the Service up to the limits in the recording capability
of the OCAP-DVR device. NOTE: Minimum capabilities for recording streams are defined in Section
11.2.1.4, Recording Multiple Streams from the Same Service.

b) Record Closed Captioning information and Content Advisory information, if these are included in the
Service.

c) Manage (increment where needed) CCI bits and store them along with the stream if CCI bits are present in the
broadcast stream.

d) Create a TimeLine accessible through the TimeLineControl API corresponding to each time-base
associated with the Service as signaled through DSMCC NPTReferenceDescriptors.

Note: Recorded streams may be stored in a proprietary format in the OCAP DVR device.

6.2.1.1.3.2 Identifying and Recording Applications

If an application is signaled as to be recorded (the scheduled recording flag in the application recording descriptor is
set to '1'), and if the application does not rely on the use of dynamic data during its execution (dynamic_flag in
the application recording descriptor is set to 0), then the application SHALL be recorded. Implementations MAY
record all applications. Implementations MAY record dynamic data associated with the applications and make them
available through data access APIs in a manner consistent with access of data from broadcast streams.

6.2.1.1.3.3 Resource Requirements

At a minimum, the following SHALL be considered resources necessary for the implementation of recordings:

• Tuner (i.e., as represented by the NetworkInterfaceController proxy)

• Media Storage (e.g., ability to access target storage)

• Conditional Access (e.g., ability to decrypt encrypted signals)

• Content Availability (e.g., ability to resolve service/components to a program/elementary streams as for
switched digital)

• Copy Protection (e.g., the right to record content as indicated by Copy Control Information)

• I/O Bandwidth (i.e., ability to allocate sufficient I/O bandwidth between the tuner and media storage)

Other abstractions MAY be considered resources necessary for the implementation of recordings as an
implementation option. For example, input signal strength may be considered a resource as described in
[TS102817], section 6.2.1.2, Recording with resource interruption.

Where such resources cannot be acquired and held over the course of a recording, the semantics described in
[TS102817], section 6.2.1.2, Recording with resource interruption, SHALL apply, with extension. The
implementation SHOULD record the most specific reason code in a generated

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 17

org.ocap.shared.dvr.RecordingFailedException. Except where otherwise specified,
INSUFFIENT_RESOURCES SHALL be considered a non-specific reason. Table 6–2 outlines the reason codes that
SHALL be used to indicate failure to acquire the given considered resources due to specific error conditions.

Table 6–2 - Reason codes for certain resource acquisition failures

Resource Error RecordingFailedException
Reason Code

Tuner Failure to reserve NetworkInterface or loss of resource due
to contention.

INSUFFICIENT_RESOURCES

Media Storage Recording not started or halted due to lack of storage space. SPACE_FULL
Media Storage Access to the media storage volume is removed. RESOURCES_REMOVED
Conditional Access The conditional access subsystem does not enable access at

the start of a recording.
CA_REFUSAL

Conditional Access The conditional access subsystem removed access during a
recording.

ACCESS_WITHDRAWN

Content
Availability

Content could not be found in the network (e.g., due to lack
of PSI).

CONTENT_NOT_FOUND

Content
Availability

Lack of tuning information or errors encountered during
tuning at the start of a recording.

TUNING_FAILURE

Content
Availability

Lack of tuning information or signal encountered during a
recording.

SERVICE_VANISHED

Copy Protection At the start of a recording, recording is prohibited by copy
control information. NOTE: Differentiation between CA
authorization and copy protection errors can be
accomplished by examining the CCI bits.

CA_REFUSAL

Copy Protection During a recording, recording is prohibited by copy control
information. NOTE: Differentiation between CA
authorization and copy protection errors can be
accomplished by examining the CCI bits.

ACCESS_WITHDRAWN

I/O Bandwidth Insufficient bandwidth available to support the recording
along with other activities in the host.

OUT_OF_BANDWIDTH

The effect of storage device detachment and reattachment on in-progress recordings SHALL be handled as defined
in Section 6.2.1.4.3.

All resources required for implementation of a recording SHALL be held for the duration of the recording, unless
lost due to resource contention with another activity. For example, the tuner resource that is required for a recording
should not be implicitly released if the target service was not accessible due to CA restrictions.

6.2.1.1.4 Managing Completed Recordings

In addition to the activities defined in clause 6.3 of [TS102817], the process for managing completed recordings
SHALL include the following activities:

a) Deleting the RecordedService once the expiration period is past, or space is needed for additional
recordings, as indicated by the OcapRecordingProperties retentionPriority.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

18 CableLabs 5/30/13

(1) If the retentionPriority is DELETE_AT_EXPIRATION, then the implementation SHALL
NOT allow any application to access the RecordedService past the expiration period. If playback
is in progress when the recordings expiration period is reached, the playback SHALL be terminated.
The implementation SHALL delete the RecordedService within one hour after the expiration of
the recording. The implementation SHALL NOT allow playback of a recording marked for deletion.

(2) If the retentionPriority is a value other than DELETE_AT_EXPIRATION, then the
implementation SHALL defer deletion of the RecordedService until the storage space is needed
for other purposes. Recordings with lower values for retentionPriority SHALL be deleted
before recordings with higher values for retentionPriority. When recordings have the same
retentionPriority, older recordings, as determined by the RecordedService
getRecordingStartTime(), SHALL be deleted first. Recordings with a
retentionPriority value other than DELETE_AT_EXPIRATION SHALL remain accessible for
playback and SHALL NOT be deleted while playback is in progress.

b) Maintaining all OcapRecordingRequests regardless of state until explicitly deleted by an application. This
includes OcapRecordingRequests that are in the CANCELLED_STATE, FAILED_STATE and
DELETED_STATE.

c) Implicitly deleting and reconstructing completed recordings due to storage device detachment and reattachment
as detailed in Section 6.2.1.4.3.

This specification extends the javadoc for the org.ocap.shared.dvr.RecordingRequest.delete
method identified in [TS102817]. The following RecordingRequest methods SHALL NOT throw an
IllegalStateException when called on a RecordingRequest reference delivered to a
RecordingChangedListener after the request has been deleted from the database:

• getId

• getAppID

• getAppData

• getKeys

Instead, these methods SHALL return the correct values for the deleted request.

6.2.1.1.5 Resource Management for Recording Requests

The implementation SHALL perform the following resource management activities for recording requests:

a) Create an instance of RecordingResourceUsage corresponding to each recording request in one of the
pending states. The method getResource(..) MAY return null for RecordingResourceUsages
corresponding to pending recording request.

b) When any of the following occurs, detect conflicts by checking if resources are sufficient to complete all
recording requests in pending-without-conflict state and in-progress states:

New recording requests are inserted,

Start time of a recording request occurs,

Recording is stopped or cancelled,

An existing recording request is modified by an application or the implementation (including change of the
error reason),

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 19

Availability changes for a resource that can be used by a pending with conflict or in progress with error
recording.

If conflicts are detected, resolve the conflict as specified in section 19.2.1.1 of [OCAP]. If a
ResourceContentionHandler application is registered, any recording requests that overlap with a new or
changed recording request SHALL be included in the resource usages with any other conflicting usages when
the handler application is called, as defined by section 19.2.1.1 of [OCAP]. If no
ResourceContentionHandler application is registered, the same requests SHALL be considered by the
implementation. Update the states of pending recording requests based on the conflict resolution.

c) Before starting a recording, create an instance of RecordingResourceUsage corresponding to the
recording request and reserve the resources required for the recording. The method getResource(..) for
this recording resource usage SHALL NOT return null for any resource names returned by the method
getResourceNames().

d) Save the values of the requesting application's AppID and priority with each recording request. These values
SHALL be used for any resource contention in which the recording request is involved, even if the requesting
application is no longer running when the contention occurs. The stored priority SHALL NOT be affected by
changes in the requesting application's priority after the recording request is made.

There is no requirement for implementations to maintain a history of prioritized ResourceUsage arrays as
would be returned from the ResourceContentionHandler.resolveResourceContention or
OcapRecordingManager.setPrioritization methods.

When a resource contention handler is registered and a recording is cancelled or deleted, the implementation
SHALL NOT call the ResourceContentionHandler.resolveResourceContention method.
If removal of a recording results in resource availability that allows other recordings to move from in-conflict
to no-conflict, the choice of which recording gets moved is implementation-dependent.

Recursive calls to the ResourceContentionHandler.resolveResourceContention method
can occur if resources are used by that method. ResourceContentionHandler designers SHOULD be
aware of this possibility. It is recommended that the only resources used by this method are for graphics
needed to display a prompt for consumer resolution of a conflict that is irresolvable by the
ResourceContentionHandler.

6.2.1.1.6 Request Resolution Process

When recording requests are specified by applications using PrivateRecordingSpec, the implementation
SHALL invoke the request resolution handler to resolve the request. The request resolution process includes the
following:

a) When the RecordingManager.record() method is called with a PrivateRecordingSpec as an
argument, the implementation SHALL create a ParentRecordingRequest in UNRESOLVED state. The
ParentRecordingRequest SHALL be created using an OcapRecordingProperties that was constructed with an
ExtendedFileAccessPermissions with read and write permission for the calling application only. The
implementation SHALL invoke any registered request resolution handler with the newly-created recording
request as the parameter.

b) When the OcapRecordingManager.resolve(..) method is called with a
PrivateRecordingSpec as an argument, the implementation SHALL create a
ParentRecordingRequest in UNRESOLVED state and make that a child of the recording request that
was passed as an argument to the resolve(..) method. The ParentRecordingRequest SHALL be created
using an OcapRecordingProperties that was constructed with an ExtendedFileAccessPermissions with read
and write permission for the calling application only. The implementation SHALL invoke any registered
request resolution handler with the newly-created recording request as an argument.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

20 CableLabs 5/30/13

c) When the OcapRecordingManager.resolve(..) method is called with a RecordingSpec other
than the PrivateRecordingSpec as an argument, the implementation SHALL create a
LeafRecordingRequest and make that a child of the recording request that was passed as an argument
to the resolve(..) method.

6.2.1.1.7 RecordedService

The implementation SHALL create a RecordedService when a recording request enters one of the 'in progress'
states. A RecordedService SHALL NOT be listed in ServiceLists returned by the SIManager class in
the JavaTV service package. The getLocator() method of RecordedService SHALL return an OCAP
Locator that is different from the originating service Locator. The getName() method for a recorded service
SHALL return a unique name starting with the string "RecordedService". The method getServiceType()
SHALL return RECORDED_SERVICE. The method hasMultipleInstance() SHALL always return false.
The implementation SHALL support the retrieveDetails(SIRequester requester) method; however,
it is optional for the host to return a valid ServiceDetails object, i.e., if the host doesn't have a capability of
recording necessary information that will be contained in a ServiceDetails object, an
SIRequestor.notifyFailure(SIRequestFailureType) method will be called with
DATA_UNAVAILABLE reason. If the host has capability of recording information to create a ServiceDetails,
the host SHALL reflect change of elementary stream in the recorded service as follows. If a RecordedService is
not playing back when the retrieveDetails(SIRequester requester) method is called, the object
implementing the ServiceDetails SHALL contain information at the beginning of the recorded content in
RecordedService. In this case, even if the RecordedService has been played once and stopped in the
middle of the content, the object implementing ServiceDetails SHALL contain information at the beginning of
the recorded content. On the other hand, if a RecordedService is playing back when the
retrieveDetails(SIRequester requester) method is called, the ServiceDetails SHALL contain
information at the current playback point of the recorded content. Whichever application has started playback, set a
rate or changed the current position of a RecordedService, and whichever application calls the
retrieveDetails(SIRequester requester) method, information in a ServiceDetails object is
information at the current playback point. All methods in objects implementing ServiceDetails for
RecordedServices SHOULD function the same as objects implementing the ServiceDetails for broadcast
services.

If multiple ServiceContexts are presenting a single RecordedService, an
SIRequestor.notifySuccess(SIRetrievable[] result) method returns a set of
ServiceDetails objects that corresponds to those ServiceContexts, i.e., one ServiceDetails object
for each ServiceContext. Note that an OCAP-J application can't identify ServiceDetails for each
ServiceContext in this case; however, this is not a significant restriction since this is very rare case.

If a RecordingRequest is deleted or enters the LeafRecordingRequest.DELETED_STATE and the
MediaStorageVolume is unavailable, the implementation SHALL delete the content resources associated with
the RecordedService(s) when the MediaStorageVolume becomes available.

The implementation SHALL NOT block on RecordedService.delete() when the
MediaStorageVolume is not available, but return to the calling application.

6.2.1.2 Playback of Recorded Services

6.2.1.2.1 Process for Playback

The process for playback SHALL be as defined in clause 6.4 of [TS102817] and additionally constrained as follows:

a) When playing content that is currently being recorded, if the end of the content is reached and recording
stops, the playback must continue without interruption at this point, regardless of any (implementation-

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 21

dependent) process to copy the newly-recorded content from any temporary buffer to a more permanent
location on the storage device.

b) When a recorded service is selected on a service context, the playback SHALL begin from the media time set
using the method RecordedService.setMediaTime(..).

c) If the playback location is the same as the recording point (playing back the live point), the implementation
SHALL display the broadcast stream rather than the stream coming off the storage medium.

The following rules apply to players presenting recorded content, both associated with a service context, presenting a
recorded service, and those directly created from a MediaLocator:

a) The method setMediaTime(..) called with a value of Time corresponding to POSITIVE_INFINITY
SHALL set the playback location to the current record point if the recording is still on-going, or to the end of
the recording.

b) The method setRate(0.0) SHALL pause the playback displaying the last frame displayed. Any following
setRate called with a non-zero parameter SHALL resume the playback at the specified rate from the
paused location.

c) Audio SHALL NOT be presented for any playback rate other than 1.0.

d) If recording is ongoing, and if the playback (at a rate more than 1.0) hits the end of the recorded content, the
implementation SHALL set the playback rate to 1.0 and send an EndOfContentEvent to any registered
controller listeners, and doesn't send an EndOfMediaEvent. If the recording is not ongoing, and if the
playback (at a rate more than 0.0) hits the end of the recorded content, the implementation SHALL set the
playback rate to 0.0 and send an EndOfContentEvent to any registered controller listeners, and doesn't
send an EndOfMediaEvent. Note that playback at a rate equal to 0.0 is different from stop of playback.

e) If the player hits the beginning of media during playback at a rate less than 0.0, the implementation SHALL
change the playback rate to 1.0 and send a BeginningOfContentEvent to any registered controller
listeners.

f) The implementation SHALL set a playback rate to 1.0 for recorded contents that are presented at a current
rate other than 1.0, if an OCAP-J application that set the current rate to the recorded contents is terminated by
AIT/XAIT signaling (application_control_code or trick_mode_aware_flag) or any error
case.

g) If the current playback rate is 1.0, a setRate() call by any application will be successful unless there are
errors. If the current playback rate is not 1.0, only a setRate() call that satisfies either of the following
conditions (1) or (2), will succeed:

(1) The caller belongs to the same service as the application that has set the current playback rate, and the
caller has an equal or higher application priority value than the application that set the current playback
rate. Note that the services that two applications belong to are identified by a service_id (source_id)
instead of a service instance.

(2) The caller application instance is the same application instance that has set the current playback rate.

h) If the current playback rate is 1.0, a
stop()/syncStart()/setTimeBase()/setStopTime()/setMediaTime() call by any
application will be successful unless there are errors. If the current playback rate is not 1.0, only a
stop()/syncStart()/setTimeBase()/setStopTime()/setMediaTime() call that satisfies
either of the following conditions (1) or (2), will succeed:

(1) The stop()/syncStart()/setTimeBase()/setStopTime()/setMediaTime() caller
belongs to a same service as the application that has set the current playback rate by a setRate()

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

22 CableLabs 5/30/13

call, and the
stop()/syncStart()/setTimeBase()/setStopTime()/setMediaTime() caller has
an equal or higher application priority value than the application that set the current playback rate by a
setRate() call. Note that the services that two applications belong to are identified by a service_id
(source_id) instead of a service instance.

(2) The stop()/syncStart()/setTimeBase()/setStopTime()/setMediaTime() caller
application instance is the same application instance that has set the current playback rate by a
setRate() call.

Closed Caption and Content Advisory data as originally delivered from the network SHALL be present on playback.

6.2.1.3 Time-Shift Buffer

6.2.1.3.1 Overview

Time-shifting is the feature that enables an application to pause and rewind a service that is being broadcast. The
implementation of this feature is split into two parts - the time-shift buffering and time-shifted presentation.

A time-shift buffer is used to store a finite amount of live broadcast in order to apply trick-mode controls and
instantaneous recording of a presenting service, or a buffering without presentation request.

The org.ocap.dvr.TimeShiftProperties interface SHALL be implemented by any class that also
implements javax.tv.service.selection.ServiceContext when the Host device supports the OCAP
DVR option. Time-shifted presentation for a service context is enabled and controlled by applications by setting the
value for the minimum time-shift duration for the service context. The method setMinimumDuration(..) in
the TimeShiftProperties interface is used for setting the minimum duration content will be buffered for a
service context. If time-shift presentation is enabled for a service context, any broadcast service presented on the
service context SHALL also be simultaneously buffered or recorded so that an application MAY rewind the
playback location till the buffer depth of the time-shift buffer is reached. The implementation SHALL implicitly
associate the service context to one or more time-shift buffers or one or more recordings and use the content stored
in the time-shift buffers or the recordings to facilitate time-shifted presentation on that service context. When a
service context is associated with time-shift buffers or recordings, each time-shift buffer or recording is said to be
"attached" to the service context.

The TimeShiftProperties interface also allows an application to control other preferences, including a
preference to retain time-shift contents when a new service is selected, and a preference to buffer the last service.
Retaining time-shift content during service selection SHALL NOT affect a Host device's ability to comply with
service selection performance requirements. Host devices that do not have hardware resources to implement this
preference without affecting service selection performance compliance MAY ignore it.

6.2.1.3.1.1 Time-shift Buffering Without Presentation

In addition to time shift of a service context, applications MAY request buffering of services not selected on a
service context and that are not being presented to display or audio outputs. This is referred to as buffering without
presentation (BWP). Applications MAY request the implementation to start time-shift buffering of a service using
the OcapRecordingManager.requestBuffering method. The requestBuffering method takes a
BufferRequest parameter created by the calling application. The
OcapRecordingManager.getBufferingRequests method returns all active BWP requests.

BWP requests share resources with other resource requests. When a service context or scheduled recording begins
on the same service as a BWP request, the resources are shared. For example; if a service context is used to select a
service being buffered by a BWP request, the buffering resources become available to the service context, and time-

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 23

shifting in the past can be accomplished as soon as the select completes. If the service context is used to select a
different service later on, the implementation attempts to continue to honor the BWP request on the service
contained in the request. A BWP request is not attached to or associated with a ServiceContext or scheduled
recording except for sharing of resources when both are selected on the same service. A BWP request service is set
when the request is created and can be changed at any time by an application with access permissions to the BWP
request.

A BWP request has a lifetime during which an implementation will make a "best effort" to honor it. A BWP request
is honored when it is buffering on its own or when it is sharing resources with functions such as service presentation,
a scheduled recording, or another BWP request. The implementation may need to cause a tune to honor a BWP
request. When a BWP request is sharing resources with another function and that function ceases to share resources
(e.g., tunes away), the implementation continues attempts to honor the request until an application cancels the
request. Other aspects of BWP requests are stated below:

• BWP requests do not persist across reboots and power-cycles.

• Applications make requests for BWP requests that the implementation will honor if resources are available.

• A registered resource contention handler is used to resolve BWP request conflicts. ResourceUsage objects
with the AppID of the application that created the request are used for contention handling. When an
implementation creates a BWP request, any ResourceUsage for this request will contain a null AppID.

• Events are not generated for BWP status.

• Controlling a network interface to honor a BWP request may generate events as defined by OCAP, e.g., if a tune
is performed.

BWP requests have the following attributes that can be set or queried by an application:

• Service - The Service to buffer.

• Minimum duration - The minimum duration that must be buffered for this request to be honored. Resource
contention of BWP requests SHALL be based on this value. If the BWP request is sharing buffer resources with
a function that has a greater duration, the value of that duration is used; otherwise the implementation attempts
to honor the BWP request duration.

• Maximum duration - The maximum duration an application might need for this request. Informs the
implementation as to how much storage is best to set aside for this request.

• Extended file access permissions - Determines which applications can change the attributes of a request.

• App Id - Application identifier of the application that created the request. Will be null if the implementation
created the request. Read only.

The implementation SHALL handle a last-channel buffering request for a service context by setting a BWP request
for the last channel selected for that context. Every time the service context is tuned to a new channel, the
implementation changes the service in the last channel BWP request to follow the last channel. A BWP request
representing a last channel buffering request SHALL contain the AppID of the application that set the last channel
preference. The implementation can determine when a last channel request SHOULD change in an implementation-
specific fashion. For example, an implementation may wait five seconds to avoid buffering a last channel while the
consumer is rapidly changing channels.

6.2.1.3.2 Recording

The time-shift recording process as defined in clause 6.5 of [TS102817] SHALL be followed. In addition to the
activities defined in clause 6.5.1 of [TS102817], the process for the time-shift recording SHALL include the
following activity:

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

24 CableLabs 5/30/13

Time-shift resources contain content received since the time of a boot-up or the most recent flush event
following the last boot-up.

6.2.1.3.2.1 Identifying the Streams to be Recorded

The implementation SHALL:

a) Record the audio and video streams that are present on the Service up to the limits in the recording capability
of the OCAP-DVR device. NOTE: Minimum capabilities for recording streams are defined in Section
11.2.1.4, Recording Multiple Streams from the Same Service.

b) Record Closed Captioning information and Content Advisory information if these are included in the Service.

c) Manage (increment where needed) CCI bits and store them along with the stream, if CCI bits are present in
the broadcast stream.

6.2.1.3.2.2 Identifying and Recording Applications

All applications bound to the broadcast service with time_shift flag in the application recording descriptor set to
'1' SHALL be recorded. Implementations MAY record dynamic data associated with the applications and make them
available through data access APIs in a manner consistent with access of data from broadcast streams.

6.2.1.3.2.3 Service Interruption

For TSB recording purposes, a service interruption is caused by loss of presentable content from the selected service.
Loss of power is not considered in this case. A service interruption affects TSB and permanent recording differently,
even if the TSB is being used to create the recording. A permanent recording can be segmented and a continuous
media time can be created for the recording. A TSB does not segment in the same manner as a permanent recording,
and the playback media time differs from a recording playback media time. In order to maintain content before a
content interruption, devices SHALL extend [TS102817] section 6.5.2, item 3) and create a media time discontinuity
within the TSB. In this case, no content is recorded in the TSB during the service interruption. The following
diagram illustrates the media discontinuity case.

Available TSBTSB Pre-interruption Content Post-interruption Content

Time base time

Media time

t1

PostInteruption ContentService Pre-interruption Content Interruption Duration

Service Interruption
t1 t2

t2

Buffered
Content

JMF
Clock
time media time discontinuity

Figure 6–1 - TSB Recording Interruption

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 25

When a service interruption occurs during TSB recording and the implementation causes a media time discontinuity
in the TSB, the implementation SHALL adhere to the following rules:

a) Content recorded before a media time discontinuity SHALL be maintained and accessible in the TSB until it
falls outside the duration of the TSB.

b) Buffering of application and signaling SHALL be treated as if temporary loss of transport protocol had
occurred.

c) Referring to Figure 6–1, the time at t1 SHALL represent the Clock media time at which the interruption
occurred, and the time at t2 SHALL represent the media time when the interruption ended.

d) When a service interruption is over, the Clock media time SHALL be re-synchronized with the time base
time.

When the beginning point of content in a TSB changes such that there is no normal content before alternative content
or discontinuity caused by an interruption, in other words the content at the beginning of the buffer is alternative
content or discontinuity, then the alternative content or discontinuity at the beginning of the TSB SHALL be
removed from the TSB.

6.2.1.3.3 Playback

The time-shift playback process as defined in clause 6.5.2 of [TS102817] SHALL be followed.

As previously described, an application can enable or disable time-shift buffering of a service context using the
TimeShiftProperties.setMinimumDuration method. Calling this method SHALL cause a time-shift
resource in the form of one or more time-shift buffers or in-progress recordings to be implicitly attached to or
detached from a service context, depending upon the value of the duration parameter passed to the method.
However, the implementation SHALL ensure the time-shift resources allocated based on a call to the
setMinimumDuration method are permanent. For example; a recording cannot be used to satisfy the call
because it will not be usable once the current time minus the minimum duration value passes the end of the
recording. The implementation SHALL adhere to the following rules to complete the process of a time-shift buffer
or recording attaching to and detaching from a service context.

a) If an application enables time-shifted presentation for a service context that was presenting a broadcast
service during a service selection, the implementation SHALL wait till the selection completes and implicitly
attach an ongoing recording of the same service, or an available time-shift buffer to the service context, and
use the recording or the time-shift buffer to facilitate time-shifted presentation of the service. The
implementation SHALL begin the service presentation from the live point. If the time-shift buffer or
recording used was recording the service selected, the implementation SHOULD make portions already
recorded available to a controlling application based on the time-shift duration value set by the application. If
the time-shift duration is reduced and a time-shift buffer is attached to the service context, the implementation
MAY reduce the size of the time-shift buffer accordingly.

It is implementation-dependent whether the implementation uses a time-shift buffer or a recording or
combinations of the two, to enable time-shifting of broadcast service presentation. If the implementation uses
a combination of time-shift buffers and recordings, the transition across the buffers or recordings SHALL
NOT affect the JMF media time, the TimeShiftControl behavior, or the rewind duration.

b) When a new service is selected on a service context for which the time-shifted presentation is enabled, the
implementation SHALL execute the same behavior as specified in step a) immediately above for time-shift
enabled. In addition, the implementation MAY detach any time-shift buffer or recording being used for the
previous service and attach a different time-shift buffer or recording combination to the corresponding service

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

26 CableLabs 5/30/13

context during service selection. If the TimeShiftProperties.setLastServiceBuffered
method has been called with a value of true, the implementation SHALL continue buffering the previous
service if resources are available.

c) If an application disables time-shifted presentation for a service context that was presenting a broadcast
service, any attached time-shift buffer or recording SHALL implicitly detach the service context. Once
detached, a time-shift buffer is available for other uses. Disabling time-shifted presentation in a service
context does not imply content flushing.

d) If a recording is initiated for a service being presented by a service context with an attached time-shift buffer,
the implementation SHALL use the resources being used for time-shift buffering for the recording. The
implementation SHALL not detach from any attached time-shift buffer when this occurs. In this case, a
RecordingTerminatedEvent is not sent to any registered listeners of the ServiceContext. In
addition, no resource contention is generated.

e) When a service recording completes or terminates, and the recording was attached to a service context as the
time-shift resource, the implementation SHALL start time-shift buffering of the service on a different time-
shift resource, if available. The implementation SHALL use a time-shift buffer if one is available. If not, a
recording SHALL be used if available.

f) Implementations SHALL detach a recorded service attached to a service context once the attachment is not
necessary for rewinding to the maximum depth as specified in the time-shift buffer properties.

g) A player associated with a service context with an attached time-shift buffer or recording, and that is
presenting a broadcast service, SHALL follow all rules for a player associated with a service context
presenting a recorded service; see Section 6.2.1.2. In addition, the following rules also apply to such a player:

(1) If the write point of the time-shift buffer is about to overwrite the location corresponding to the current
media time due to circular buffer reaching its depth, the implementation SHALL set the playback rate
to 1.0 in order to prevent the location corresponding to the current media time being invalidated. The
implementation SHALL send a BeginningOfContentEvent to any registered controller listeners.
This SHOULD occur only when the playback is at a rate less than 1.0. The time-shift buffer
implementation SHOULD make sure that the location corresponding to the current media time is never
invalidated.

(2) If the playback location is the same as the record point (playing back the live point), the
implementation SHALL display the service with no delay from the broadcast service.

h) When a presentation loses time-shift resources due to resource contention or because an application disables
time-shift, the implementation SHALL move the presentation to the live point, an
EnteringLiveModeEvent SHALL be generated, and the TimeShiftControl SHALL be removed
from the corresponding Player.

i) Default values for a TimeShiftProperties instance SHALL be set as follows:

• Minimum time-shift duration to 0.
• Last channel buffered to false.
• Save time-shift contents on service selection to false.

6.2.1.3.3.1 Content Interruption

As described in Section 6.2.1.3.2.3, when a content interruption occurs, the implementation causes a media time
discontinuity. This section describes how the implementation behaves when presenting time-shifted content that has
been interrupted during time-shift recording.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 27

When a media time discontinuity is encountered during TSB playback, the implementation SHALL adhere to the
following rules:

a) When presenting at the live point or when presenting within a TSB, and a content discontinuity is encountered
during playback or as a result of setting the media time, an AlternativeContentErrorEvent SHALL
be generated with a reason consistent with the cause of the content interruption. A
NormalContentEvent SHALL be generated after the AlternativeContentErrorEvent and as
soon as normal content is reached. Any media-time-associated events with media times within the
discontinuity (e.g., MediaTimeEvents, lightweight triggers) SHALL NOT be generated prior to the
resumption of normal content.

b) During time-shift playback, the Clock.getMediaTime method SHALL return the media time value
assigned to that location at the point it was stored, and media time continues to increment during the content
interruption.

c) Attempts to set the media time to a point within a content interruption SHALL set the media time to the value
of the next media time associated with normal content in the direction of playback. If there is no normal
content in the direction of playback, the media time SHALL be set to the live point for forward playback and
to the earliest normal content in the time-shifted content for reverse playback. If there is no direction of
playback, i.e., paused, attempts to set the time within the content interruption SHALL set the media time to
the value of the next media time associated with normal content, or the live point if no subsequent normal
content exists.

d) When TSB content playback is in a forward direction and not at the live point and alternative content or
media discontinuity caused by interruption is encountered and the interruption continues to the live point,
then the implementation SHALL generate an AlternativeContentErrorEvent with a reason
consistent with the cause of the content interruption, jump presentation to the live point, and generate an
EnteringLiveModeEvent.

e) If there is no normal content in the buffer, any attempt to set the media time SHALL generate an
AlternativeContentErrorEvent with a reason consistent with the cause of the content interruption
and set the media time to the live point.

f) The Clock.mapToTimeBase method SHALL map the media time to the corresponding time base time,
regardless of whether the specified media time is within a content interruption or not.

g) The media time reported in generated MediaTimeSetEvents SHALL represent the adjusted playback
position as described in this section.

These rules apply to multiple content interruptions, i.e., media time discontinuities, that are buffered in the same
TSB.

Note: During live presentation of a content interruption, calling the Clock.getMediaTime method returns a media
time corresponding to the live point with no discontinuity.

6.2.1.3.4 Resource Management

Resource management for the time-shift buffer SHALL be done according to the following rules:

a) When an application requests the implementation to start buffering a broadcast service and if a time-shift
buffer is available, the implementation SHALL create an instance of a
TimeShiftBufferResourceUsage and attempt to allocate the resources needed for the buffering of
the broadcast service. If there is a conflict, the conflict SHALL be resolved as specified in section 19.2.1.1 of
[OCAP].

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

28 CableLabs 5/30/13

b) If a time-shift buffer is attached to a service context, and if the resources needed to continue buffering are
taken away from the time-shift buffer, and the resources are allocated to a recording that is not attached to the
service context, the implementation SHALL:

(1) Terminate buffering for the service context that has lost time-shift resources.

(2) Continue presentation till the playback hits the end of the buffered content.

(3) When playback hits the end of the buffered content, send a RecordingTerminatedEvent to any
registered listeners on the service context.

(4) If the application that selected the service in the service context owns resources for live broadcast
presentation, the implementation SHALL jump the service presentation to the live point in the
broadcast. Otherwise, the implementation SHALL stop the service context presentation and generate a
PresentationTerminatedEvent with reason code RESOURCES_REMOVED.

c) When a time-shift buffer is attached to a service context, the resources used by the time-shift buffer SHALL
be shared with the service context and SHALL be represented using a SharedResourceUsage if the
shared resources are in a resource contention. The method
SharedResourceUsage.getResourceUsages() SHALL return an instance of the
ServiceContextResourceUsage and an instance of TimeShiftBufferResourceUsage.

d) When an ongoing recording is attached to a service context, or a recording request is recording the same
service being presented by a service context with time-shifting disabled, the resources used by the recording
SHALL be shared with the service context and SHALL be represented using a SharedResourceUsage if
the shared resources are in a resource contention. The method
SharedResourceUsage.getResourceUsages() SHALL return an instance of the
ServiceContextResourceUsage and an instance of RecordingResourceUsage.

e) When an active time-shift buffering session is used to implement a scheduled recording and the service is not
being presented by a service context, the implementation SHALL create a SharedResourceUsage
composed of a TimeShiftBufferResourceUsage and a RecordingResourceUsage.

f) When an active time-shift buffering session is used to implement a scheduled recording and the service is
being presented by a service context, the implementation SHALL create a SharedResourceUsage
composed of a TimeShiftBufferResourceUsage, a RecordingResourceUsage, and a
ServiceContextResourceUsage.

g) When time-shifted presentation is enabled on a service context, but the implementation cannot find a
recording or time-shift buffer to attach to the service context, the implementation SHALL generate an
org.ocap.dvr.TimeShiftEvent to the ServiceContext during a select method call or after
presentation begins. The reason code SHALL be NO_TIME_SHIFT_BUFFER. Presentation SHALL
continue without time-shift capabilities based on availability of other resources.

h) When time-shifted presentation is enabled on a service context and no time-shift buffer or recording was
available but one becomes available during service presentation, the implementation SHALL generate an
org.ocap.dvr.TimeShiftEvent to the service context. The reason code SHALL be
TIME_SHIFT_BUFFER_FOUND. Time-shifted service presentation SHALL be available from that point in
time. If more than one service context have time shift enabled and are awaiting resources, the contention
SHALL be resolved as specified in clause a) of this section.

i) When time-shifted presentation is enabled on a service context and network signaling causes the time-shift
properties to change, the implementation SHALL generate an org.ocap.dvr.TimeShiftEvent to the

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 29

service context. The reason code SHALL be TIME_SHIFT_PROPERTIES_CHANGED. For instance, this
could occur when the CCI bits dictate a limit on time-shift contents duration and the minimum duration is
greater than that value.

j) When time-shifted presentation is disabled on a service context, if the application that selected the service in
the service context owns resources for live broadcast presentation, the implementation SHALL jump the
service presentation to the live point in the broadcast. Otherwise the implementation SHALL stop service
context presentation and generate a PresentationTerminatedEvent with reason code
RESOURCES_REMOVED.

k) When a presenting time-shift buffer or a recording are attached to a service context, any redundant resources
SHALL be freed.

l) When a new service is selected on a service context with an attached ongoing recording, and the
implementation cannot find another recording or a time-shift buffer to attach, the rules g) and h) SHALL
apply.

m) When a time-shift buffer is created implicitly to implement a scheduled recording, such a time-shift buffer
SHALL NOT be exposed as a TimeShiftBufferResourceUsage.

Note: The resource management rules above allow for various time-shift designs. For example, systems that use
a time-shift buffer to store a scheduled recording and convert it to a permanent recording can be
implemented using these rules. In addition, it is recognized that a scheduled recording and a broadcast
presentation of the same service MAY share the same hardware resources.

6.2.1.4 Storage

Storage devices are represented in OCAP by objects implementing the org.ocap.storage.StorageProxy
interface. A StorageProxy may be extended by StorageOption interfaces that expose additional capabilities
of a device. The StorageProxy interface also supports LogicalStorageVolumes, which allow applications
to organize and control access to content. This specification extends the base storage capabilities in [OCAP] to
support the storage and playback of full resolution video. Implementations MAY use storage architectures for DVR
content that differ from a general purpose file system. For this reason, a new volume type,
MediaStorageVolume, is introduced for this storage.

6.2.1.4.1 Storage Management

The MediaStorageOption and MediaStorageVolume interfaces expose the special characteristics of DVR
storage to applications. When a device is attached, the implementation SHALL determine whether it is supported for
DVR media content storage. Implementations SHALL provide the MediaStorageOption via the
getOptions() method on StorageProxy objects that are DVR media-capable.

The MediaStorageOption interface supports the creation of volumes for either DVR media storage or for
general purpose file use. Volumes of the former type implement the MediaStorageVolume interface, which
extends the LogicalStorageVolume interface and provides the ability to preallocate storage for a volume.
Implementations SHALL support the creation of multiple instances of both LogicalStorageVolume and
MediaStorageVolume on any StorageProxy that is capable of storing DVR content. Storage allocated for a
MediaStorageVolume SHALL always be available for use by recordings created on that
MediaStorageVolume until that storage is explicitly released by an application.

The first media storage volume that is created on a StorageProxy is the default recording volume and is used to
record programs for which a destination MediaStorageVolume is not specified for a recording. If there are
multiple media-capable StorageProxy objects available with default recording volumes, the implementation may
choose any default recording volume as the destination for such a recording. An implementation SHALL NOT

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

30 CableLabs 5/30/13

spread the content for a recording across multiple storage volumes. An implementation SHALL NOT resolve the
default recording volume request to a specific MediaStorageVolume until recording is to be started.

Implementations are not required to make files created for recordings on DVR media volumes visible through the
java.io package. Implementations MAY allow applications to store and retrieve general purpose files on a
MediaStorageVolume using the java.io package, but are not required to do so. Since media content is
referenced through locators generated by the platform, an implementation MAY use multiple platform-specific files
to represent a single media locator and MAY use storage architectures that differ significantly from typical file
systems. Implementations SHALL support recordings of any length up to the available storage. The implementation
SHALL ensure that the actual bandwidth available for DVR usage to StorageProxies always meets the
combined maximum recording and playback capacity of the host device. The implementation SHALL delete any
recordings, that, due to corruption, it can determine, cannot be played at all. The implementation SHALL delete any
ancillary or index files related to a recording when a recording is lost or deleted.

A privileged application with MonitorAppPermission("storage") can block a MediaStorageVolume
from access by any application. It does this by calling the MediaStorageVolume.removeAccess method
and passing in a null parameter. When this occurs successfully, the MediaStorageVolume is effectively
removed as an application-accessible system resource. This does not affect implicit time-shift buffering or buffering
without presentation activities. MediaStorageVolume application access can be restored with the
MediaStorageVolume.allowAccess method by passing in a null parameter. When restored, any recordings
that were interrupted and are still in progress SHALL be segmented based on the recording segmentation definition
for loss of resource as defined in [TS102817].

6.2.1.4.2 Storage Initialization

Implementations that do not use a common storage architecture (e.g., file system type) for both general purpose files
stored in LogicalStorageVolumes and media content stored in MediaStorageVolumes, may not be able
to dynamically shift storage between one use and the other without destroying content (e.g., re-partitioning). An
implementation supporting dynamic allocation is preferred, but an implementation MAY divide the storage on the
device between the two uses in either a fixed or a dynamic manner.

The MediaStorageOption provides an overloaded initialize() method that allows a highly-privileged
application to specify the amount of space to be allocated to each use. Implementations SHALL support the
reallocation of space between the two uses. Because an OCAP application may change the allocation even on
internal storage devices, implementations that cannot dynamically shift storage between the two uses SHOULD store
any internal files on a separate reserved section of the device that would not be affected by a reallocation of storage.
Implementations that cannot dynamically shift storage between the uses SHOULD NOT initialize a
StorageProxy capable of DVR media storage until explicitly requested by an application. Implementations that
do initialize such a StorageProxy before explicitly requested SHALL allocate for general-purpose
LogicalStorageVolumes at least 3% of the combined storage that can be allocated to both uses. However,
implementations are not required to preallocate more than 1GB to general purpose LogicalStorageVolumes.

6.2.1.4.3 Detachable Storage

Storage of recordings to media storage volumes contained within detachable and/or removable storage devices MAY
be supported. When supported, the behavior specified in the following sub-sections SHALL apply. For the sake of
brevity, where detachable storage is discussed in general, removable storage is also considered included.

In all cases, RecordingChangedEvents SHALL NOT be generated indicating changes that are due to
detachment or reattachment of storage. Instead, MediaStorageEvents, which provide access to the list of
affected recordings, SHALL be generated.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 31

6.2.1.4.3.1 Scheduling Recordings

The detachment and subsequent reattachment of a detachable storage device SHALL NOT have an effect on the
ability of an application to schedule recordings.

6.2.1.4.3.2 Pending Recordings

The detachment or reattachment of a detachable storage device SHALL NOT have any immediate effect on a
pending recording (including the current state), other than the reflection of the readiness of the destination storage
via OcapRecordingRequest.isStorageReady().

Implementations SHOULD ensure that sufficient internal storage is available to persistently store scheduled
recording information. If sufficient persistent storage is not available for storage of scheduled recordings, recordings
MAY be implicitly canceled following a power-cycle.

If, at recording start time, the destination storage is absent, the recording SHALL enter the
IN_PROGRESS_WITH_ERROR_STATE with a RecordingFailedException, where the reason is
RESOURCES_REMOVED.

6.2.1.4.3.3 In Progress Recordings

The detachment and reattachment of the destination storage for an in-progress recording SHALL be treated as the
loss and gain of a resource necessary for recording. The semantics of recording interruption due to resource loss
described in [TS102817], section 6.2.1.2 Recording with resource interruption, SHALL be followed.

6.2.1.4.3.4 Completed Recordings

The detachment of the destination storage for completed recordings SHALL result in the logical deletion of those
recordings and removal from the RecordingManager database. When a detached storage device is reattached,
any recordings that were deleted as a result of the previous detachment that remain on the device SHALL be
reconstructed in the RecordingManager database.

For detachable devices, such logical deletion occurs as part of making the device detachable.

For removable storage devices, such logical deletion occurs as part of ejecting the storage medium.

6.2.1.4.3.5 Deleting Recordings

The OCAP implementation SHALL NOT block on the deletion of recording requests or recorded services when the
destination storage has become detached. Instead, the implementation SHALL return to the calling application.

6.2.1.5 Lightweight Triggers

The DVB-GEM [DVB-GEM 1.0.2] Annex P Lightweight binding of trigger API is extended to include an API that
allows an application to synchronize content with private data, where stream events are signaled in a proprietary
fashion. An application that is familiar with proprietary signaling can use the DAVIC MPEG section filtering API to
discover it.

An application can register itself as a LightweightTriggerHandler (handler) interested in availability
of a specific broadcast service stream type (e.g., private data). It does this by calling the
LightweightTriggerManager.registerHandler method. The implementation will call the
LightweightTriggerHandler.notifyStreamType method to inform an application when one or more
streams of interest are available. Notification SHALL be performed regardless of the conditional access
authorization status for the service. The implementation SHALL NOT report a requested stream type for any
services other than broadcast services. The implementation SHALL report requested stream types for each instance

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

32 CableLabs 5/30/13

of a broadcast service selected into a service context (with or without time shift enabled) or recorded to time shift
buffer or DVR recording. The implementation MAY report a requested stream type for other broadcast services in a
tuned transport stream.

The notifyStreamType method takes a LightweightTriggerSession object that can be used to
populate the DSMCCStreamEvent with stream events associated with proprietary data filtered from the stream.
The session object contains a Locator created by the implementation for the artificial carousel. The implementation
SHALL create an artificial carousel for the session. This carousel can be attached to as soon as an application
receives a LightweightTriggerSession from the notifyStreamType method. However, it will not
contain any events until added by an application using the LightweightTriggerSession.registerEvent
method. For service domain attach purposes, the carousel SHALL be named "lightweight_triggers" as per DVB-
GEM [DVB-GEM 1.0.2] Annex P; see section P.2.3.1.

During an active LightweightTrigger session, the LightweightTriggerSession.store method
MAY be called. This causes the artificial carousel associated with the session to be stored with any permanent
recording created for the stream the carousel was created for. It is implementation-specific regarding how the
carousel is stored with a permanent recording.

When a LightweightTriggerSession is generated for a non-authorized stream, the session SHALL be
created in an already stopped state. The semantics of a session for a non-authorized stream are thus the same as those
for a stopped session. A session for a non-authorized stream SHALL be considered to have been stopped with a
reason of STREAM_ACTIVITY_ENDED_REASON. If the given stream transitions from non-authorized to
authorized, then a new session SHALL be generated and the LightweightTriggerHandler notified. When a
stream is no longer considered authorized, the current session SHALL be stopped with a reason of
STREAM_ACTIVITY_ENDED_REASON.

Once an artificial carousel is created, it can be attached to using the DSMCC API. Events that were added to an
artificial carousel by a handler application can be listened for during broadcast service time-shift or recorded service
playback. For events to be generated with a recording playback, an artificial carousel must be stored with the
recording using the LightweightTriggerSession.store method. However, for broadcast service time
shift, a LightweightTriggerSession.store call is not necessary. Events from an artificial carousel
SHALL be generated for presenting services only. To attach to an artificial carousel during broadcast service
presentation, an application can pass the Locator returned from the
LightweightTriggerSession.getLocator method to the ServiceDomain.attach(Locator)
method. An artificial carousel can be attached to for broadcast presentation while the corresponding
LightweightTriggerSession is open. In addition, it can be attached to after the session is stopped as long
as events that were registered for the carousel can still be triggered by trick-mode and normal play of buffered
content that was stored for the service the session pertained to. Once content that can be associated with any
registered event is no longer available, the artificial carousel for a broadcast service is considered permanently lost
unless stored with a recording. Two or more LightweightTriggerSession instances MAY share the same
underlying artificial carousel if they were created for the same service and stream type. Where two or more
concurrent LightweightTriggerSession instances share an underlying artificial carousel, the locator
returned by LightweightTriggerSession.getLocator SHALL be the same for each. Where a portion of
a time-shift buffer is converted to a permanent recording, any corresponding portion of an artificial carousel for the
time-shift buffer SHALL be maintained and stored with the recording.

Recording playback can be started at arbitrary times, and an application can register itself to listen for this type of
playback using the OcapRecordingManager.addRecordingPlaybackListener. A
RecordingPlaybackListener is passed to this method and contains a notifyRecordingPlayback
method that SHALL be called by the implementation whenever a permanent recording playback is started.
Applications MAY use the ServiceDomain.attach(Locator locator, int carouselId) method
to attach to artificial carousels in permanent recording playback, where the locator is the implementation-specific
locator of the recorded service and the carouselId is the Id used to create the artificial carousel. An artificial
carousel stored with a completed recording can be attached to anytime while the recording is being played back in a

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 33

ServiceContext regardless of trick mode. Once the ServiceContext is stopped or destroyed, any attached
artificial carousel is considered permanently lost.

Certain artificial carousel class and interface methods require special handling as follows:

ServiceDomain

• getLocator – Returns an implementation-specific locator.

• getMountPoint – Returns a read-only DSMCCObject created by the implementation for the artificial
carousel.

• isNetworkConnectionAvailable – Returns true as long as any events in the artificial carousel are
available during time-shifting or any events are stored with a permanent recording.

DSMCCObject (returned from ServiceDomain.getMountPoint for an attached artificial carousel and used
in a call to DSMCCStreamEvent(DSMCCObject))

• getPath – Returns an implementation-specific value that SHALL be unique within the implementation.

• list – Returns an empty array from either list overloaded method.

• setRetrievalMode – Because artificial carousels are always in cache, once the carousel is loaded this
method does nothing successfully.

• isStreamEvent – Always returns true.

DSMCCStream

• getNPT – Returns 0 without blocking.

• isAudio – Returns false.

• isData – Returns true.

• isMPEGProgram – Returns false.

• isVideo – Returns false.

DSMCCStreamEvent

• DSMCCStreamEvent(DSMCCObject) constructor shall throw NotLoadedException if either the
corresponding DSMCCObject.asynchronousLoad or DSMCCObject.synchronousLoad methods
have not been called for the artificial carousel.

• subscribe – The implementation SHALL map the event name used in calls to
LightweightTriggerSession.registerEvent to this method.

• unsubscribe – The implementation SHALL map the event name and Id used in calls to
LightweightTriggerSession.registerEvent to the respective overloaded method.

• getEventList – Returns the set of registered events that are contained within a recording or TSB duration.
When an event is only contained within a TSB duration and the time of the event falls outside the duration of the
buffer, the event SHALL not be contained in the set of events returned by this method.

StreamEvent

• getEventNPT – Returns 0 without blocking.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

34 CableLabs 5/30/13

ObjectChangeEventListener

• receiveObjectChangeEvent – The implementation SHALL call this method whenever an event is
registered by the LightweightTriggerSession.registerEvent method. The implementation
SHALL call this method whenever a registered event is buffered in a TSB and the time of the event falls outside
the duration of the TSB.

ObjectChangeEvent
• The contained version number SHALL be implementation specific.

When an application attaches to an artificial carousel during completed recording playback, the
DSMCCStreamEvent SHALL be copied from persistent storage to volatile storage, and the retrieval mode
SHALL always be FROM_CACHE.

When an application is listening for stream events from an artificial carousel, the implementation SHALL generate
them in playback and all trick-mode media rates. The accuracy of the time of application receipt of an application
created stream event as compared to the time the event was created with is implementation-specific.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 35

7 RECORDING AND PLAYBACK APIS

This section describes recording and playback APIs particular to the OCAP DVR platform.

7.1 DVB-GEM Specification Correspondence

Section 7 Recording and Playback API (this section) corresponds to [TS102817], Chapter 7 as follows:

Table 7–1 - Correlation between [OCAP] and [TS102817] MHP PVR/PDR Common Core Specification

OCAP Compliance MHP PVR/PDR Common Core Specification
Section

GEM Compliance

7.2.1.2, Recording API 7 Recording and playback APIs Extension
7.2.1.1, Recording and Power Modes 7.1 Recording and recording management Extension
No corresponding section 7.2 Playback A sub-section is

extended
No corresponding section 7.2.1 Overview (informative) Complete compliance
7.2.1.5, DvbServiceContext 7.2.2 Details Extension
7.2.1.2, Recording API No corresponding section Extension
7.2.1.3, OCAP DVR API No corresponding section Extension
No corresponding section 7.3 Other APIs Complete compliance
7.2.1.4, Permissions 7.4 Recording and recording management Extension
No corresponding section 7.4.1 Unsigned applications Complete compliance
7.2.1.4.1, Signed Applications 7.4.2 Signed applications Extension
7.2.1.4.2, Monitor Application
Permission

No corresponding section Extension

7.2 OCAP DVR Specific Requirements

7.2.1 Extensions to [TS102817] MHP PVR/PDR Common Core

7.2.1.1 Recording and Power Modes

The OCAP DVR specification extends [TS102817], Section 7.1.

An initial monitor application can delay scheduled recording start by calling the
org.ocap.dvr.OcapRecordingManager.setRecordingDelay() method. When this method is called,
the implementation SHALL delay the start of scheduled recordings by the amount of time passed in after the time the
initial monitor application calls the org.ocap.OcapSystem.monitorConfiguredSignal method or the
timeout to call that method expires. If the setRecordingDelay method is called after the
monitorConfiguredSignal method is called or times out, the implementation SHALL NOT apply a delay to
scheduled recordings start. The org.ocap.dvr.OcapRecordingManager.signalRecordingStart
method can be used to terminate the delay timeout if it is in effect.

When the implementation is in low-power mode and a scheduled recording is about to start, the implementation
SHALL power-on any devices required to complete the recording, e.g., hard-drive. The implementation SHALL

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

36 CableLabs 5/30/13

power-on needed devices ahead of time so that the needed devices are ready when the recording begins. If powering
up such devices violates low-power mode power consumption requirements, the implementation MAY take the Host
device to full-power. In this case, output ports and integrated displays disabled for low power mode SHALL remain
disabled. In addition, the org.ocap.hardware.Host.getPowerMode SHALL return LOW_POWER, and the
implementation SHALL NOT generate an event for power mode change. The duration required to prepare devices
for usage is implementation-specific.

7.2.1.2 Recording API

The OCAP DVR platform extends [TS102817] and adds support for the following packages:
org.ocap.dvr
org.ocap.dvr.storage
org.ocap.dvr.event

7.2.1.3 OCAP DVR API

The OCAP DVR platform extends the OCAP-J API defined in [OCAP]. The additional packages, classes, and
interfaces are listed here. For a complete definition and description of the APIs, see Annex D, OCAP DVR API
(org.ocap.dvr);; OCAP Shared DVR API (org.ocap.shared.dvr) - see [TS102817]; OCAP Shared DVR Navigation
API (org.ocap.shared.dvr.navigation) - see [TS102817]; OCAP Shared Media API (org.ocap.shared.media)
[TS102817]; Annex J, OCAP DVR Event API (org.ocap.dvr.event). An implementation of the OCAP DVR platform
SHALL include all of the packages, classes, and interfaces defined in [OCAP] and [TS102817], as well as the
packages, classes, and interfaces required by this section. An additional class,
org.davic.media.MediaTimeEventControl, is required by [TS102817]. These are enhancements to the APIs defined
in [OCAP], as well as the following packages:

OCAP DVR Extensions to GEM
org.ocap.dvr.storage.MediaStorageOption
org.ocap.dvr.storage.MediaStorageVolume
org.ocap.dvr.storage.SpaceAllocationHandler
org.ocap.dvr.storage.FreeSpaceListener
org.ocap.dvr.event.LightweightTriggerHandler
org.ocap.dvr.event.LightweightTriggerManager
org.ocap.dvr.event.LightweightTriggerSession
org.ocap.dvr.event.StreamChangeListener

Note: The behavior of the org.ocap.shared.media.FrameControl.move method for a non-
paused player is undefined. As such, to assure consistent behavior across implementations, it is
the application’s responsibility to ensure that a player is paused before attempting to
advance/reverse by one frame.

7.2.1.4 Permissions

7.2.1.4.1 Signed Applications

No additional RecordingPermission is assigned to signed applications. RecordingPermissions with
names "create", "modify", "delete" or "cancel" SHALL NOT be granted to a signed application unless the signed
application has MonitorAppPermission("recording") or
MonitorAppPermission("handler.recording").

7.2.1.4.2 Monitor Application Permission

Host devices that implement the OCAP DVR Extension SHALL support the
MonitorAppPermission("recording") and MonitorAppPermission("handler.recording")
permission names. Annex Q of [OCAP] is extended as follows:

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 37

The table within the description of MonitorAppPermission is extended to include the following rows:

Permission Name What the Permission Allows Description

Recording Allows management of
system-wide recording
operations

Applications with this permission can delay the start of
scheduled recordings and disable system-wide buffering.

Handler.recording Allows management of
recording prioritization and
resolution

Applications with this permission can register as request
resolution handler, register as space allocation handler
and manipulate prioritization of scheduled recordings.

In addition, Section 14.2.2.1.1 in [OCAP] is extended as follows: the enumerated token value type of the name
attribute of the ocap:monitorapplication element type defined by the DTD of the PRF SHALL be
considered to contain the "recording" and "handler.recording" values.

Applications with the MonitorAppPermission("recording") permission can delay the start of scheduled
recordings using the OcapRecordingManager.setRecordingDelay() method. Additionally, applications
with this permission can control system wide buffering using the
OcapRecordingManager.enableBuffering() and
OcapRecordingManager.disableBuffering() methods.

Applications with the MonitorAppPermission("recording.handler") permission can register as the
space allocation handler and request resolution handler using the
OcapRecordingManager.setSpaceAllocationHandler() and
OcapRecordingManager.setRequestResolutionHandler() methods, respectively. Additionally,
applications with this permission can modify recording prioritization using the
OcapRecordingManager.getPrioritizedResourceUsages() and
OcapRecordingManager.setPrioritization() methods.

An application with MonitorAppPermission("recording") is assigned the following set of permissions
defined in org.ocap.shared.dvr.RecordingPermission:

a) RecordingPermission("create", "own") - schedule a RecordingRequest.

b) RecordingPermission("read", "own") - obtain the list of RecordingRequests.

c) RecordingPermission("modify", "own") - modify properties or application-specific data for a
RecordingRequest.

d) RecordingPermission("delete", "own") - delete a RecordingRequest including recorded
content.

e) RecordingPermission("cancel", "own") - cancel a pending RecordingRequest.

An application with MonitorAppPermission("handler.recording") is assigned the following set of
permissions defined in org.ocap.shared.dvr.RecordingPermission:

RecordingPermission("*", "*") - create, read, modify, delete or cancel any RecordingRequest or
RecordedService, regardless of any restrictions specified through the extended file access permission
associated with the RecordingRequest.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

38 CableLabs 5/30/13

7.2.1.5 DvbServiceContext

The OCAP DVR specification extends [TS102817], section 7.2.2. The rules defined in [TS102817], section 7.2.2
that describe the behavior of the DvbServiceContext.getNetworkInterface and the returned “special”
network interface instance are modified as follows.

A “special” network interface SHALL only be returned by
DvbServiceContext.getNetworkInterface() when that method is invoked by an application running
within the given DvbServiceContext. The behavior for applications executing outside the context of the given
DvbServiceContext SHALL be unchanged from [OCAP]. Furthermore, if the DvbServiceContext is not
presenting a recorded service or does not have a time-shift attached, the behavior SHALL be unchanged from
[OCAP]. That is, the rules outlined in [TS102817], section 7.2.2 do not apply to applications executing outside the
context of the given DvbServiceContext or when there is no possibility of time-shifted presentation.

The org.ocap.dvr.TimeShiftProperties.getNetworkInterface(boolean) method MAY be
used by an application, irrespective of context, to acquire a reference to the “special” or “real”
NetworkInterface.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 39

8 SIGNALING

This chapter is in complete compliance with [TS102817], Chapter 8.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

40 CableLabs 5/30/13

9 APPLICATION MODEL

This chapter is in complete compliance with [TS102817], Chapter 9.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 41

10 SECURITY

This section describes security features particular to the OCAP DVR platform. These are enhancements to the
security features defined in [OCAP].

10.1 DVB-GEM Specification Correspondence

Section 10 Security (this section) corresponds to [TS102817], Chapter 10 as follows:

Table 10–1 - Correlation between [OCAP] and [TS102817] MHP PVR/PDR Common Core Specification

OCAP Compliance MHP PVR/PDR Common Core Specification
Section

GEM Compliance

10, Security 10 Security Complete compliance
10.2.1.1, Access Scope of Recordings No corresponding section Extension
10.2.1.2, Content Protection No corresponding section Extension
10.2.1.3, Minimum Security Constraints No corresponding section Extension

10.2 OCAP DVR Specific Requirements

10.2.1 Extensions to [TS102817] MHP PVR/PDR Common Core

10.2.1.1 Access Scope of Recordings

Applications MAY indicate an access scope at the time a recording is added to the recording database. An
application MAY allow any other application to play back a recording it initiates; it MAY restrict playback to
applications from a specific set of organizations; it MAY restrict playback to applications that are from the same
organization; or, it MAY restrict playback to itself. The implementation SHALL respect scope parameters and not
decrypt, decode, and display recordings that are not within the defined scope (see
org.ocap.storage.ExtendedFileAccessPermission and the overloaded
org.ocap.dvr.RecordingManager.record() method).

The following table describes the security restrictions for individual recording requests. Where calling applications
do not have extended file access permission as listed in the table below, the corresponding method SHALL throw
AccessDeniedException; see the java doc for each respective method:

Table 10–2 - Security restrictions for individual recording requests

Method Policy

RecordingManager.addRecordingChanged
Listener(RecordingChangedListener)

No additional permissions required.

RecordingManager.getEntries() Only entries for which the application has read extended file access
permission will be listed.

RecordingRequest.removeAppData(int) Permitted only for entries for which the application has write
extended file access permission.

RecordingRequest.setRecordingProperties
(RecordingSpec)

Permitted only for entries for which the application has write
extended file access permission.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

42 CableLabs 5/30/13

Method Policy

RecordingRequest.addAppData
(String,Serializable)

Permitted only for entries for which the application has write
extended file access permission.

RecordingRequest.removeAppData(String) Permitted only for entries for which the application has write
extended file access permission.

RecordingRequest.delete() Permitted only for entries for which the application has write
extended file access permission.

RecordingManager.record() No additional permissions required.
ParentRecordingRequest.cancel() Permitted only for entries for which the application has write

extended file access permission.
RecordedService.setMediaTime(Time) Permitted only for entries for which the application has write

extended file access permission.
RecordedService.delete() Permitted only for entries for which the application has write

extended file access permission.
LeafRecordingRequest.getService() No additional permissions required
LeafRecordingRequest.stop() Permitted only for entries for which the application has write

extended file access permission.
LeafRecordingRequest.cancel() Permitted only for entries for which the application has write

extended file access permission.

10.2.1.2 Content Protection

The OCAP DVR platform represents an extension of the cable network operator's service. As such, the platform
respects the copy-protection rules defined in [OCAP]. Because recorded content originates from the cable network,
all content SHALL be recorded in a manner that unites the content to the network on which it was recorded. Any
network-specific information saved by the Host device for this purpose must either be encrypted, or placed in a
secure storage device location that cannot be read from outside the device. Furthermore, in order to meet copy-
control requirements, all content SHALL be encrypted in a manner that unites the content to the device which
initiated its recording. These features are, in general, transparent to a viewer, as long as the recording device is not
connected to a different network, or a storage device is not connected to a different receiver.

The means by which a recording is associated with the network, and the device from which it was recorded, will be
defined in a future revision of this specification.

10.2.1.3 Minimum Security Constraints

Minimum "level of security" requirements are asserted by this specification as follows:

• For DES implementations - The Triple DES Encryption Algorithm (TDEA) as per [FIPS-46-3] SHALL be the
minimum DES configuration.

• For AES implementations - The minimum configuration SHALL be AES-128 as defined by [FIPS-197].

This specification complies with the OpenCable System Security Specification [OC-SEC] regarding [FIPS-140-2]
Level 1 security requirements and extends those requirements to any recording components.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 43

11 MINIMUM PLATFORM CAPABILITIES

This chapter describes the minimum platform capabilities of the OCAP DVR platform.

11.1 DVB-GEM Specification Correspondence

Section 11, Minimum Platform Capabilities (this section) does not correspond to any [TS102817] chapter, as
depicted below:

Table 11–1 - Correlation between [OCAP] and [TS102817] MHP PVR/PDR Common Core Specification

OCAP Compliance MHP PVR/PDR Common Core
Specification Section

GEM
Compliance

11, Minimum Platform Capabilities No corresponding section Extension
11.2.1.1, Bit Rate No corresponding section Extension
11.2.1.2, Storage Devices No corresponding section Extension
11.2.1.3, Time-shift Buffers No corresponding section Extension
11.2.1.5, OpenCable Set-top Terminal Core Requirements No corresponding section Extension

11.2 OCAP DVR Specific Requirements

11.2.1 Extensions to [TS102817] MHP PVR/PDR Common Core

11.2.1.1 Bit Rate

Implementations SHALL support three recording bit-rates: low, medium, and high. Where high causes a recording to
be encoded with the best audio/video quality, but takes more storage space than the other settings. For analog
recordings. these values are implementation-specific. Bit-rates for digital recordings are related to transrating, which
is a process of modifying MPEG compression to achieve greater compression. Transrating is optional, but when
supported, high bit-rate is equivalent to no transrating, and medium to low bit rates specify increasing compression.
When transrating is supported, the type of transrating supported is implementation-specific.

11.2.1.2 Storage Devices

Implementations SHALL enable simultaneous recording and playback to/from given storage devices, when
supported by corresponding storage devices. When criteria for exposing the ocap.api.option.dvr property is met as
defined in Section 5.4, then at least one storage device using internal storage resources supporting simultaneous
recording and playback SHALL be provided by the implementation. Implementations SHALL enable recording to
one device, and playback from any other, if multiple storage devices are present.

Note: When the ocap.api.option.limited_storage_dvr property is exposed, there are no minimum
requirements for the presence of recording storage devices. Therefore, a consumer may attach
an external device some time after initial boot-up and configuration and the implementation may
defer to application configuration of recording devices.

11.2.1.3 Time-shift Buffers

When criteria for exposing the ocap.api.option.dvr property is met as defined in Section 5.4, the implementation
SHALL provide at least one time-shift buffer using internal storage resources. Implementations SHALL support at

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

44 CableLabs 5/30/13

least one time-shift buffer. If a Host device supports simultaneous presentation of services, the implementation MAY
support multiple time-shift buffers. If multiple time-shift buffers are supported, the implementation MAY support
allocation of time-shift buffers and attachment of timeshift buffers to various service contexts.

Note: When the ocap.api.option.limited_storage_dvr property is exposed, there are no minimum
requirements for presence of time shift buffers. Therefore, a consumer may attach an external
device some time after initial boot-up and configuration and the implementation may defer to
application configuration of time-shift buffers.

11.2.1.4 Recording Multiple Streams from the Same Service

Implementations SHALL support simultaneous recording of at least one video stream and at least two audio streams
that are broadcast as a part of a broadcast service. If a broadcast service contains more than one video stream,
implementations SHALL record at least the first video stream in the PMT elementary stream loop. If the broadcast
service contains more than two audio streams, the implementation shall record the audio stream matching the user
preferred language, if available. If no match is found, the implementation SHALL record the first audio stream in the
PMT elementary stream loop, as the preferred audio. If more than one audio stream is available in the broadcast
service, the implementation SHALL arbitrarily pick a second audio stream of a different language from the first to
store with the recorded service. It is implementation-dependent regarding whether additional audio or video streams
available in the service being recorded are actually stored with the recorded service.

11.2.1.5 OpenCable Set-top Terminal Core Requirements

The resources as specified for all OCAP specifications in the [HOST] are REQUIRED. Implementations SHALL
also comply with the requirements of [HOST-DVR].

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 45

12 REGISTRY OF CONSTANTS

org.ocap.dvr.OcapRecordingProperties
public static final int DELETE_AT_EXPIRATION 0
public static final byte HIGH_BIT_RATE 1
public static final byte LOW_BIT_RATE 2
public static final byte MEDIUM_BIT_RATE 3
public static final byte RECORD_IF_NO_CONFLICTS 1
public static final byte RECORD_WITH_CONFLICTS 2
public static final byte TEST_RECORDING 3
org.ocap.dvr.OcapRecordingRequest
public static final int CANCELLED_STATE 10
public static final int TEST_STATE 9
org.ocap.dvr.TimeShiftEvent
public static final int NO_TIME_SHIFT_BUFFER 2
public static final int TIME_SHIFT_BUFFER_FOUND 1
public static final int TIME_SHIFT_PROPERTIES_CHANGED 3
org.ocap.dvr.event.StreamChangeListener
public static final int STREAM_ACTIVITY_ENDED_REASON 2
public static final int STREAM_TYPE_LOST_REASON 1
public static final int TRANSPORT_STREAM_LOST_REASON 0

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

46 CableLabs 5/30/13

Annex A Application Recording Description (Normative)

This annex defines requirements for application recording.

A.1 DVB-GEM Specification Correspondence

This Annex corresponds to [TS102817], Annex A, as follows:

Table A–1 - Correlation between [OCAP] and [TS102817] MHP PVR/PDR Common Core Specification

OCAP Compliance MHP PVR/PDR Common Core
Specification Section

GEM
Compliance

Annex A, Application Recording Description
(Normative)

Annex A (normative) Application
recording description

Complete
compliance

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 47

Annex B Responsibilities of this Specification (Informative)

This annex complies with [TS102817], Annex B (informative), Responsibilities of GEM Recording Specifications.
The responsibilities called out in the referenced annex are defined in the following sections of this specification.

Table B–1 - Mapping for GEM Required Responsibilities

 GEM Requirement OCAP DVR Spec Section

1 Which types of streams are to be considered as "recordable
streams". Stream types corresponding to clauses 7.2.1
("Audio") and 7.2.2 ("Video") of GEM in the GEM terminal
specification on which the GEM recording specification is
based, must be considered as recordable streams.

Section 6.2.1.1.3.1, Identifying Streams to be
Recorded

2 Mechanisms for resolving conflicts between requested
recordings (e.g., use of the tuner).

Section 6.2.1.1.5, Resource Management for
Recording Request

3 Minimum capabilities for the number of steams (or number of
streams of each type) that a GEM recording terminal must be
able to record.

Section 11.2.1.4, Recording Multiple Streams
from the Same Service

4 The definition of which applications are recordable in both
scheduled and time-shift recording (which need not be the
same).

Section 6.2.1.1.3.2, Identifying and Recording
Applications and Section 6.2.1.3.2.2,
Identifying and Recording Applications

5 Requirements on a GEM recording terminal to monitor for
dynamic data (in the DSMCC object carousel or GEM
functional equivalent), during scheduled and time-shift
recording (which need not be the same).

Section 6.2.1.1.3.2, Identifying and Recording
Applications and Section 6.2.1.3.2.2,
Identifying and Recording Applications

6 Requirements on a GEM recording terminal to monitor for
GEM triggers or DSMCC stream events during scheduled and
time-shift recording (which need not be the same).

Section 6.2.1.1.3.2, Identifying and Recording
Applications and Section 6.2.1.3.2.2,
Identifying and Recording Applications

7 Requirements on a GEM recording terminal to monitor for
dynamic application signaling during scheduled and time-shift
recording (which need not be the same).

Section 6.2.1.1.3.2, Identifying and Recording
Applications and Section 6.2.1.3.2.2,
Identifying and Recording Applications

8 Requirements on reconstructing the dynamic behavior of
recorded applications during playback of scheduled and time-
shift recordings (which need not be the same).

Section 6.2.1.1.3.2, Identifying and Recording
Applications and Section 6.2.1.3.2.2,
Identifying and Recording Applications

9 How accurately the expiration period should be enforced by
implementations.

Section 6.2.1.1.4, Managing Completed
Recording

10 The definition of at least one protocol for transmitted time
lines.

Section 6.2.1.1.3.1, Identifying Streams to be
Recorded

11 The conditions when a JMF player or service context has a
time-shift buffer attached.

Section 6.2.1.3. Time-Shift Buffer

12 A mechanism to associate security attributes with individual
recording requests.
A mapping from that mechanism to the language in each of the
methods in Table 10–2.

Section 10.2.1.1, Access Scope of Recordings
Table 10–2 - Security restrictions for
individual recording requests

13 Requirements on the number of entries of application-specific
private data that it must be possible to associate with a single
RecordingRequest without a NoMoreDataEntriesException
being thrown.

Defined as a minimum of 16 entries in
org.ocap.shared.dvr.RecordingRequest.addAp
pData [TS102817].

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

48 CableLabs 5/30/13

 GEM Requirement OCAP DVR Spec Section

14 A mechanism to associate security attributes with individual
recording requests and a mapping from that mechanism to the
language in each of the methods in Table 10–2.

Section 10.2.1.1, Access Scope of Recordings
Table 10–2 - Security restrictions for
individual recording requests

15 The mechanism for resolving parent recording requests,
including setting the initial state of a parent recording request.

6.2.1.1.6, Request Resolution Process

16 The events generated during playback when the start and end of
a recording are reached.

6.2.1.2.1, Process for Playback

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 49

Annex C External References; Errata, Clarifications, and
Exemptions (Normative)

This annex specifies errata, clarifications, and exemptions to external references required by this specification.

C.1 DVB-GEM Specification Correspondence

This Annex corresponds to [TS102817], Annex C, as follows:

Table C–1 - Correlation between [OCAP] and [TS102817] MHP PVR/PDR Common Core Specification

OCAP Compliance MHP PVR/PDR Common Core Specification
Section

GEM Compliance

Annex C, External References; Errata,
Clarifications, and Exemptions (Normative)

Annex C (normative) External references;
errata, clarifications, and exemptions

Complete compliance

C.2 org.ocap.shared.dvr.ServiceRecordingSpec

The second paragraph of the class description for org.ocap.shared.dvr.ServiceRecordingSpec (Javadoc) reads:

When instances of this class are passed to RecordingManager.record(..), the following additional failure mode
shall apply - if the end time (computed as the start time + the duration) is in the past when the record method is
called, the record method shall throw an IllegalArgumentException.

To comply with the behavior described in Section 6.2.1.1.3 of this specification, the class description for
org.ocap.shared.dvr.ServiceRecordingSpec SHALL be modified as follows:

When instances of this class are passed to RecordingManager.record(..), the following additional failure mode
shall apply - if the end time (computed as the start time + the duration) is in the past when the record method is
called and no relevant part of the content associated with the RecordingRequest is contained in any time-shift
buffer, then the record method shall throw an IllegalArgumentException.

C.3 org.ocap.shared.dvr.LocatorRecordingSpec
The second paragraph of the class description for org.ocap.shared.dvr.LocatorRecordingSpec (Javadoc) reads:

When instances of this class are passed to RecordingManager.record(..), the following additional failure mode
shall apply - if the end time (computed as the start time + the duration) is in the past when the record method is
called, the record method shall throw an IllegalArgumentException.

To comply with the behavior described in Section 6.2.1.1.3 of this specification, the class description for
org.ocap.shared.dvr.LocatorRecordingSpec SHALL be modified as follows:

When instances of this class are passed to RecordingManager.record(..), the following additional failure mode
shall apply - if the end time (computed as the start time + the duration) is in the past when the record method is
called and no relevant part of the content associated with the RecordingRequest is contained in any time-shift
buffer, then the record method shall throw an IllegalArgumentException.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

50 CableLabs 5/30/13

Annex D OCAP DVR API (org.ocap.dvr)

Package org.ocap.dvr

OCAP Specific extensions to the shared DVR API.

See:
 Description

Interface Summary
OcapRecordedService This interface represents a RecordedService in OCAP.
OcapRecordingRequest This interface represents a LeafRecordingRequest in OCAP.
RecordingAlertListener Listener for Recording Alerts.

RecordingPlaybackListener This interface represents a listener that can be added to listen for recording
playback start.

RecordingResourceUsage This interface represents a grouping of resources specific to a recording
function performed by an application.

RequestResolutionHandler This interface will be implemented by the application that registers the
RequestResolutionHandler.

SharedResourceUsage This interface represents a group of resources where one or more resources are
shared between multiple resource usages.

TimeShiftBufferResourceUsage This interface represents a grouping of resources specific to a time-shift
buffering performed by an application.

TimeShiftListener The TimeShiftListener interface is implemented by applications wishing to
receive events related to time shift resources.

TimeShiftProperties This interface represents a set of time-shift properties that can be set for and
queried from a ServiceContext.

Class Summary
BufferingRequest This class represents an application request for buffering.

OcapRecordingManager RecordingManager represents the entity that performs recordings and maintains a
database of recordings.

OcapRecordingProperties Encapsulates the details about how a recording is to be made.

PrivateRecordingSpec Specifies a recording request that can be resolved only by an application defined
request resolution handler.

RecordingAlertEvent Event notifying that a scheduled recording is about to occur.
TimeShiftEvent The parent class for TimeShiftBuffer events.

Package org.ocap.dvr Description

OCAP Specific extensions to the shared DVR API.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 51

org.ocap.dvr
Class BufferingRequest

java.lang.Object
 org.ocap.dvr.BufferingRequest

public abstract class BufferingRequest
extends java.lang.Object

This class represents an application request for buffering. An application can call the createInstance method to
create a request.

Constructor Summary
protected BufferingRequest()

 Protected constructor, not to be used by applications.

Method Summary
static BufferingRequest createInstance

(javax.tv.service.Service service,
long minDuration, long maxDuration,
ExtendedFileAccessPermissions efap)
 Creates a BufferingRequest object.

abstract AppID getAppID()
 Gets the AppID of the application that created the request.

abstract
 ExtendedFileAccessPermissions

getExtendedFileAccessPermissions()
 Gets the ExtendedFileAccessPermissions for this request.

abstract long getMaxDuration()
 Gets the maximum duration to buffer for this request.

abstract long getMinimumDuration()
 Gets the minimum content buffering duration for this request.

abstract
 javax.tv.service.Service

getService()
 Gets the Service this request is attempting to buffer.

abstract void setExtendedFileAccessPermissions
(ExtendedFileAccessPermissions efap)
 Sets the ExtendedFileAccessPermissions for this request.

abstract void setMaxDuration(long duration)
 Sets the maximum duration of content that MAY be buffered
for this BufferingRequest.

abstract void setMinimumDuration(long minDuration)
 Sets the minimum duration of content that SHALL be buffered
for this request.

abstract void setService(javax.tv.service.Service service)
 Sets the Service this request is attempting to buffer.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

52 CableLabs 5/30/13

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail

BufferingRequest
protected BufferingRequest()

Protected constructor, not to be used by applications.

Method Detail

createInstance
public static BufferingRequest
createInstance(javax.tv.service.Service service,
 long minDuration,
 long maxDuration,

ExtendedFileAccessPermissions efap)

Creates a BufferingRequest object.
Parameters:
service - The service to buffer.
minDuration - Minimum duration in seconds to buffer.
maxDuration - Maximum duration in seconds to buffer.
efap - Extended file access permissions for this request. If this parameter is null, no write permissions are
given to this request. Read permissions for BufferingRequest instances are always world regardless of
read permissions set by this parameter.
Throws:
java.lang.IllegalArgumentException - if the service parameter is not a valid Service, or if
minDuration is less than OcapRecordingManager.getSmallestTimeShiftDuration(),
or if maxDuration is less than minDuration.

getService
public abstract javax.tv.service.Service getService()

Gets the Service this request is attempting to buffer.
Returns:
Service being buffered for this request.

setService
public abstract void setService(javax.tv.service.Service service)

Sets the Service this request is attempting to buffer.
Parameters:
service - The Service to buffer for this request.
Throws:
java.lang.IllegalArgumentException - if the parameter is not a valid Service.
java.lang.SecurityException - if the calling applications does not have one of the write
ExtendedFileAccessPermissions set by the createInstance or
setExtendedFileAccessPermissions methods.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 53

getMinimumDuration
public abstract long getMinimumDuration()

Gets the minimum content buffering duration for this request.
Returns:
The minimum content buffering duration in seconds.

setMinimumDuration
public abstract void setMinimumDuration(long minDuration)

Sets the minimum duration of content that SHALL be buffered for this request. If this method necessitates a
buffer re-size the implementation MAY flush the contents of the buffer.
Parameters:
minDuration - Minimum duration in seconds.
Throws:
java.lang.IllegalArgumentException - If the parameter is greater than the current value and
Host device does not have enough space to meet the request, or if the parameter is greater than the
maximum duration set by the createInstance or setMaximumDuration methods, or if the
parameter is less than the duration returned by
OcapRecordingManager.getSmallestTimeShiftDuration().
java.lang.SecurityException - if the calling application does not have one of the write
ExtendedFileAccessPermissions set by the createInstance or
setExtendedFileAccessPermissions methods.

getMaxDuration
public abstract long getMaxDuration()

Gets the maximum duration to buffer for this request. Returns the value set by the createInstance or
setMaximumDuration methods.
Returns:
Maximum duration in seconds.

setMaxDuration
public abstract void setMaxDuration(long duration)

Sets the maximum duration of content that MAY be buffered for this BufferingRequest. Informs the
implementation that storing more content than this is not needed by the application owning this
BufferingRequest.
Parameters:
duration - The maximum duration in seconds.
Throws:
java.lang.IllegalArgumentException - if the duration parameter is negative or if the
parameter is less than the minimum duration set by the createInstance or setMaximumDuration
methods, or if the parameter is less than the duration returned by
OcapRecordingManager.getSmallestTimeShiftDuration().
java.lang.SecurityException - if the calling application does not have one of the write
ExtendedFileAccessPermissions set by the createInstance or
setExtendedFileAccessPermissions methods.

getExtendedFileAccessPermissions
public abstract ExtendedFileAccessPermissions
getExtendedFileAccessPermissions()

Gets the ExtendedFileAccessPermissions for this request.
Returns:

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

54 CableLabs 5/30/13

The ExtendedFileAccessPermissions.

setExtendedFileAccessPermissions
public abstract void
setExtendedFileAccessPermissions(ExtendedFileAccessPermissions efap)

Sets the ExtendedFileAccessPermissions for this request.
Parameters:
efap - The ExtendedFileAccessPermissions for this request.
Throws:
java.lang.IllegalArgumentException - if the parameter is null;
java.lang.SecurityException - if the calling application is not the creator of this request.

getAppID
public abstract AppID getAppID()

Gets the AppID of the application that created the request. If null is returned the implementation created the
request.
Returns:
AppID of the owning application.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 55

org.ocap.dvr
Interface OcapRecordedService

All Superinterfaces:
RecordedService, javax.tv.service.Service

public interface OcapRecordedService
extends RecordedService

This interface represents a RecordedService in OCAP. The object returned when an applications calls the getService
method on a RecordingRequest will be an instance of this interface.

Method Summary
 long getRecordedBitRate()

 Get the bit-rate used for encoding and storage of this recorded service.
 long getRecordedSize()

 Gets the size of the recording in bytes.
 boolean isDecodable()

 Determines if the recording has a format which can be decoded for presentation by the
implementation, e.g., the bit rate, resolution, and encoding are supported.

 boolean isDecryptable()
 Determines if the recording can be decrypted by the implementation on the current network.

Methods inherited from interface org.ocap.shared.dvr.RecordedService
delete, getFirstMediaTime, getMediaLocator, getMediaTime, getRecordedDuration,
getRecordingRequest, getRecordingStartTime, setMediaTime

Methods inherited from interface javax.tv.service.Service
equals, getLocator, getName, getServiceType, hashCode, hasMultipleInstances,
retrieveDetails

Method Detail

getRecordedBitRate
long getRecordedBitRate()

Get the bit-rate used for encoding and storage of this recorded service.
Returns:
Bit-rate in bytes per second.

getRecordedSize
long getRecordedSize()

Gets the size of the recording in bytes.
Returns:
Space occupied by the recording in bytes.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

56 CableLabs 5/30/13

isDecryptable
boolean isDecryptable()

Determines if the recording can be decrypted by the implementation on the current network.
Returns:
True if the recording can be decrypted, otherwise returns false.

isDecodable
boolean isDecodable()

Determines if the recording has a format which can be decoded for presentation by the implementation, e.g.,
the bit rate, resolution, and encoding are supported.
Returns:
True if the recording can be decoded, otherwise returns false.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 57

org.ocap.dvr
Class OcapRecordingManager

java.lang.Object
 org.ocap.shared.dvr.RecordingManager
 org.ocap.dvr.OcapRecordingManager

public abstract class OcapRecordingManager
extends RecordingManager

RecordingManager represents the entity that performs recordings and maintains a database of recordings. An
instance of this class is returned when an application calls the RecordingManager.getInstance() class in OCAP
platforms.

The setPrioitization method is intended to be used with the current set of prioritized resource usages that would be
returned by a call to the getPrioritizedUsages method. However, the set of resource usages returned by a call to the
getPrioritizedResourceUsages MAY be invalid in a subsequent call to the setPrioritization method as the set MAY
have changed during the time between the two method calls.

Constructor Summary
OcapRecordingManager()

Method Summary
abstract void addRecordingAlertListener(RecordingAlertListener ral)

 Adds an event listener for receiving events corresponding to a transition from a
pending state to an in-progress state or a failed state.

abstract void addRecordingAlertListener(RecordingAlertListener ral,
long alertBefore)
 Adds an event listener for receiving events corresponding to a transition from a
pending state to an in-progress state or a failed state.

abstract void addRecordingPlaybackListener
(RecordingPlaybackListener listener)
 Adds an event listener for receiving events corresponding to a recording
playback start.

abstract void cancelBufferingRequest(BufferingRequest request)
 Cancels an active buffering request.

abstract void deleteAllRecordings()
 Deletes all recordings.

abstract void deleteRecordings(RecordingList requests)
 Deletes multiple recordings.

abstract void disableBuffering()
 Disables time-shift buffering and buffering without presentation.

abstract void enableBuffering()
 Enables time-shift buffering and buffering without presentation.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

58 CableLabs 5/30/13

Method Summary
abstract

 BufferingRequest[]
getBufferingRequests()
 Gets a set of buffering requests that were passed to the requestBuffering method
and have not been cancelled.

abstract long getMaxBitRate()
 Gets the maximum bit rate the implementation will use for duration to space in
calculations.

abstract
 ResourceUsage[]

getPrioritizedResourceUsages(RecordingRequest recording)
 Get the prioritized list of overlapping ResourceUsages corresponding to a
particular recording request.

abstract long getSmallestTimeShiftDuration()
 Gets the smallest time-shift duration supported by the implementation.

abstract
 RecordingRequest

record(RecordingSpec source, java.lang.String[] keys,
java.io.Serializable[] appData)
 Records the stream or streams according to the source parameter.

abstract void removeRecordingAlertListener(RecordingAlertListener ral)
 Removes a registered event listener for receiving recording events.

abstract void removeRecordingPlaybackListener
(RecordingPlaybackListener listener)
 Removes a registered event listener for receiving recording playback events.

abstract void requestBuffering(BufferingRequest request)
 Requests the implementation to start buffering a service using implementation
specific time-shift storage.

abstract
 RecordingRequest

resolve(RecordingRequest request, RecordingSpec spec,
int resolutionState)
 Schedule a child recording request corresponding to an unresolved or partially
resolved recording request.

abstract void setPrioritization(ResourceUsage[] resourceUsageList)
 Sets the relative priorities for a set of ResourceUsages.

abstract void setRecordingDelay(long seconds)
 Sets the amount of time to delay the start of scheduled recordings after the initial
monitor application is running.

abstract void setRequestResolutionHandler(RequestResolutionHandler rrh)
 Set the RequestResolutionHandler that will be invoked when any application
calls the RecordingManager.record method.

abstract void setSpaceAllocationHandler(SpaceAllocationHandler sah)
 Set the SpaceAllocationHandler that will be invoked when any application
attempts to allocate space in any MediaStorageVolume.

abstract void signalRecordingStart()
 Informs the implementation it SHALL start scheduled recordings if it hasn't
already done so.

Methods inherited from class org.ocap.shared.dvr.RecordingManager
addRecordingChangedListener, getEntries, getEntries, getInstance,
getRecordingRequest, record, removeRecordingChangedListener

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 59

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail

OcapRecordingManager
public OcapRecordingManager()

Method Detail

addRecordingAlertListener
public abstract void addRecordingAlertListener(RecordingAlertListener ral)

Adds an event listener for receiving events corresponding to a transition from a pending state to an in-
progress state or a failed state. The listener parameter will only be informed of these events for entries the
calling application has read file access permission to.
Parameters:
ral - The listener to be registered.

addRecordingAlertListener
public abstract void addRecordingAlertListener(RecordingAlertListener ral,
 long alertBefore)

Adds an event listener for receiving events corresponding to a transition from a pending state to an in-
progress state or a failed state. The listener parameter will only be informed of these events for entries the
calling application has read file access permission to.
Parameters:
ral - The listener to be registered.
alertBefore - Time in milliseconds for the alert to be generated before the start of the scheduled event.

removeRecordingAlertListener
public abstract void removeRecordingAlertListener(RecordingAlertListener ral)

Removes a registered event listener for receiving recording events. If the listener specified is not registered
then this method has no effect.
Parameters:
ral - the listener to be removed.

addRecordingPlaybackListener
public abstract void
addRecordingPlaybackListener(RecordingPlaybackListener listener)

Adds an event listener for receiving events corresponding to a recording playback start. The listener
parameter will only be informed of these events for service contexts and services that the calling application
respectively owns and has access to.
Parameters:
listener - The listener to add.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

60 CableLabs 5/30/13

removeRecordingPlaybackListener
public abstract void
removeRecordingPlaybackListener(RecordingPlaybackListener listener)

Removes a registered event listener for receiving recording playback events. If the listener specified is not
registered then this method has no effect.
Parameters:
listener - The listener to be removed.

setSpaceAllocationHandler
public abstract void setSpaceAllocationHandler(SpaceAllocationHandler sah)

Set the SpaceAllocationHandler that will be invoked when any application attempts to allocate space in any
MediaStorageVolume. At most one instance of this handler can be set. Subsequent calls to this method
replace the previous instance with the new one.
Parameters:
sah - the space reservation handler.
Throws:
java.lang.SecurityException - if the caller does not have
MonitorAppPermission("handler.recording").

setRequestResolutionHandler
public abstract void setRequestResolutionHandler(RequestResolutionHandler rrh)

Set the RequestResolutionHandler that will be invoked when any application calls the
RecordingManager.record method. At most only one instance of this handler can be set. Subsequent calls to
this method replaces the previous instance with the new one.
Parameters:
rrh - the request resolution handler.
Throws:
java.lang.SecurityException - if the caller does not have
MonitorAppPermission("handler.recording").

resolve
public abstract RecordingRequest resolve(RecordingRequest request,
 RecordingSpec spec,
 int resolutionState)

Schedule a child recording request corresponding to an unresolved or partially resolved recording request.
This method is called either by the RequestResolutionHandler or by an application that has enough
information to provide request resolutions. The implementation SHALL generate a recording request
corresponding to each successful invocation of this method and make that recording request a child of the
RecordingRequest passed in as the first parameter. If the implementation has enough information to resolve
the newly created recording request, the implementation should resolve the recording request.

Implementation should set the state of the recording request "request" to "resolutionState" before the return
of this call.

Parameters:
request - the RecordingRequest for which the resolution is provided.
spec - the RecordingSpec for the child recording request.
resolutionState - the state of the RecordingRequest after the return of this method. The possible
values for this parameter are the states defined in ParentRecordingRequest.
Returns:
the newly scheduled recording request.
Throws:

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 61

java.lang.SecurityException - if the caller does not have
MonitorAppPermission("handler.recording").
java.lang.IllegalArgumentException - if the resolutionState is not a state defined in
ParentRecordingRequest, or if the request is not in unresolved or partially resolved state.

getPrioritizedResourceUsages
public abstract ResourceUsage[]
getPrioritizedResourceUsages(RecordingRequest recording)

Get the prioritized list of overlapping ResourceUsages corresponding to a particular recording request. The
list of resource usages may include RecordingResourceUsages and other types of ResourceUsages. The
ResourceUsage corresponding to the specified recording request is also included in the prioritized list. The
prioritized list is sorted in descending order of prioritization. The prioritization for resource usages is based
on OCAP resource management.
Parameters:
recording - the RecordingRequest for which overlapping resource usages are sought.
Returns:
the list of ResourceUsages overlapping with the specified RecordingRequest, including the ResourceUsage
corresponding to the specified RecordingRequest, sorted in descending order of prioritization, null if the
RecordingRequest is not in one of the pending or in-progress states.
Throws:
java.lang.SecurityException - if the caller does not have
MonitorAppPermission("handler.recording").
java.lang.IllegalArgumentException - if the parameter is null.

setPrioritization
public abstract void setPrioritization(ResourceUsage[] resourceUsageList)

Sets the relative priorities for a set of ResourceUsages. This method MAY be used by an application with
MonitorAppPermission("handler.recording") to set the relative priorities for a set of overlapping resource
usages. The implementation SHOULD use the specified prioritization scheme to resolve conflicts (resource
conflicts as well as conflicts for RecordingRequests) between these overlapping resource usages. This call
MAY change the relative priorities specified by the contention handler or a previous call to this method.
Changing the relative priorities for the resource usages MAY result in one or more recording requests
changing states. The implementation SHALL only change the ordering of the ResourceUsages passed in the
resourceUsageList parameter. This method is meant to be used with the getPrioritizedResourceUsages
method.
Parameters:
resourceUsageList - a list of ResourceUsages sorted in descending order of prioritization
Throws:
java.lang.SecurityException - if the caller does not have
MonitorAppPermission("handler.recording").
java.lang.IllegalArgumentException - if the parameter does not match a current set of
overlapping ResourceUsages.

requestBuffering
public abstract void requestBuffering(BufferingRequest request)

Requests the implementation to start buffering a service using implementation specific time-shift storage. If
successful, the service will be buffered, but audio and video presentation will not take place.
Parameters:
request - The to make active.
Throws:
java.lang.SecurityException - if the calling application does not have the "file" element set to
true in its permission request file.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

62 CableLabs 5/30/13

getBufferingRequests
public abstract BufferingRequest[] getBufferingRequests()

Gets a set of buffering requests that were passed to the requestBuffering method and have not been
cancelled.
Returns:
An array of active buffering requests, or a 0 length array if no buffering requests are active.

cancelBufferingRequest
public abstract void cancelBufferingRequest(BufferingRequest request)

Cancels an active buffering request. If the parameter is not active this method does nothing and returns
successfully.
Parameters:
request - The BufferingRequest to cancel.
Throws:
java.lang.SecurityException - if the calling application does not have write permission for the
request as determined by the ExtendedFileAccessPermissions returned by the
getExtendedFileAccessPermissions method in the parameter, or if the calling application does
not have MonitorAppPermission("handler.recording").

getMaxBitRate
public abstract long getMaxBitRate()

Gets the maximum bit rate the implementation will use for duration to space in calculations.
Returns:
Maximum bit-rate in bits per second.

record
public abstract RecordingRequest record(RecordingSpec source,
 java.lang.String[] keys,
 java.io.Serializable[] appData)
 throws AccessDeniedException

Records the stream or streams according to the source parameter. The concrete sub-class of RecordingSpec
MAY define additional semantics to be applied when instances of that sub-class are used. Overloaded from
the org.ocap.shared.dvr.RecordingManager.record method. This method is identical to
that method except for the key and appData parameters used to add application specific private data.

The keys and appData parameters are parallel arrays where the first entry in the keys array corresponds to
the first entry in the appData array and so forth. When a RecordingRequest is created from a call to
this method and then delivered to a RecordingChangedListener, the request SHALL contain the
application data passed to this method. This method SHALL add the new RecordingRequest to the
recording database maintained by this manager before returning and it SHALL include the appData
parameter in the RecordingRequest in the database at that time. If conflicts are detected during this method,
the appData SHALL be made available in the recording database for application access before any OCAP
handler application is called, e.g., resource contention handler application.

Parameters:
source - specification of stream or streams to be recorded and how they are to be recorded.
keys - the IDs under which the application data is to be added.
appData - the private application data to be added.
Returns:
an instance of RecordingRequest that represents the added recording.
Throws:

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 63

java.lang.IllegalArgumentException - if the source is an application defined class or as
defined in the concrete sub-class of RecordingSpec for instances of that class. Also throws this exception if
the keys or appData parameters are null or not the same length.
AccessDeniedException - if the calling application is not permitted to perform this operation by
RecordingRequest specific security attributes.
java.lang.SecurityException - if the calling application does not have
RecordingPermission("create",..) or RecordingPermission("*",..)

setRecordingDelay
public abstract void setRecordingDelay(long seconds)

Sets the amount of time to delay the start of scheduled recordings after the initial monitor application is
running. Calling this method more than once over-writes the previous setting.
Parameters:
seconds - Number of seconds to delay.
Throws:
java.lang.SecurityException - if the calling application does not have
MonitorAppPermission("recording").
java.lang.IllegalArgumentException - is the parameter is negative.

signalRecordingStart
public abstract void signalRecordingStart()

Informs the implementation it SHALL start scheduled recordings if it hasn't already done so. Terminates
timeout of the delay set by the #setRecordingDelay method if it is still in effect.
Throws:
java.lang.SecurityException - if the calling application does not have
MonitorAppPermission("recording").

getSmallestTimeShiftDuration
public abstract long getSmallestTimeShiftDuration()

Gets the smallest time-shift duration supported by the implementation. This method SHALL return a value
greater than zero.
Returns:
The smallest time-shift duration in seconds that is supported by the implementation.

enableBuffering
public abstract void enableBuffering()

Enables time-shift buffering and buffering without presentation. The default is buffering is enabled.
Throws:
java.lang.SecurityException - if the calling application does not have
MonitorAppPermission("recording").

disableBuffering
public abstract void disableBuffering()

Disables time-shift buffering and buffering without presentation. All time-shift operations cease
immediately and any presenting services that are time-shifted SHALL be taken to the live point. Any
buffering without presentation activities SHALL cease to be honored. Any content in a time-shift buffer
before this method was called SHALL not be accessible if the enableBuffering method is called. If an
implementation uses time-shift buffering for recording creation it MAY segment the recording.
Throws:

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

64 CableLabs 5/30/13

java.lang.SecurityException - if the calling application does not have
MonitorAppPermission("recording").

deleteRecordings
public abstract void deleteRecordings(RecordingList requests)

Deletes multiple recordings. The implementation SHALL execute the equivalent of the
RecordingRequest.delete method for each RecordingRequest in the requests parameter.

The recordings SHALL be deleted in incrementing array index order from the first element at
requests[0].

Parameters:
requests - List of RecordingRequest recordings to delete.
Throws:
java.lang.SecurityException - if the calling application does not have
MonitorAppPermission("handler.recording").

deleteAllRecordings
public abstract void deleteAllRecordings()

Deletes all recordings. The implementation SHALL execute the equivalent of the
RecordingRequest.delete method for each RecordingRequest in the database of recordings
maintained by this manager and delete all of the recordings in the database.

To avoid asynchronous race conditions while deleting RecordingRequest instances that are pending
due to resource contention (i.e. tuner and storage availability), recordings that have acquired resources
SHALL be deleted after all other LeafRecordingRequests have been deleted.

The implementation SHALL also delete all RecordingRequest instances in the DELETED_STATE.

Once all LeafRecordingRequests have been successfully deleted, the
ParentRecordingRequests SHALL then be deleted last.

Throws:
java.lang.SecurityException - if the calling application does not have
MonitorAppPermission("handler.recording").

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 65

org.ocap.dvr
Class OcapRecordingProperties

java.lang.Object
 org.ocap.shared.dvr.RecordingProperties
 org.ocap.dvr.OcapRecordingProperties

public class OcapRecordingProperties
extends RecordingProperties

Encapsulates the details about how a recording is to be made. Used by the implementation to create a parent or leaf
recording request when the RecordingManager record or resolve methods are called. The only attributes
in this class that are used by a ParentRecordingRequest are the access and organization attributes. All of the
other attributes are not used by a parent recording request ParentRecordingRequest for the life cycle of the
request.

When the implementation creates a ParentRecordingRequest using this class it SHALL set the
ExtendedFileAccessPermissions to read and write application access rights only.

For purposes of the RecordingRequest.setRecordingProperties method, properties MAY be changed
under the following state conditions:

• bitRate - leaf recordings only, in the PENDING_NO_CONFLICT_STATE and
PENDING_WITH_CONFLICT_STATE

• priorityFlag - leaf recordings only, in the PENDING_NO_CONFLICT_STATE and
PENDING_WITH_CONFLICT_STATE

• retentionPriority - leaf recordings only, any state except DELETED_STATE and CANCELLED_STATE

• access - leaf or parent recordings in any state

• organization - cannot be changed in any state

• destination - leaf recordings only, in the PENDING_NO_CONFLICT_STATE and
PENDING_WITH_CONFLICT_STATE

• expirationPeriod - leaf recordings only, any state except DELETED_STATE and CANCELLED_STATE

• resourcePriority - leaf recordings only, any state except DELETED_STATE, CANCELLED_STATE,
FAILED_STATE, COMPLETE_STATE, or INCOMPLETE_STATE

Field Summary
static int DELETE_AT_EXPIRATION

 Indicates a recording SHALL be deleted by the implementation as soon as its expiration date
is reached.

static byte HIGH_BIT_RATE
 Indicates an implementation specific value for high bit-rate.

static byte LOW_BIT_RATE
 Indicates an implementation specific value for low bit-rate.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

66 CableLabs 5/30/13

Field Summary
static byte MEDIUM_BIT_RATE

 Indicates an implementation specific value for medium bit-rate.
static byte RECORD_IF_NO_CONFLICTS

 Record only if there are no conflicts.
static byte RECORD_WITH_CONFLICTS

 Record even when resource conflicts exist.
static byte TEST_RECORDING

 Schedule only test recording requests corresponding to this spec.

Constructor Summary
OcapRecordingProperties(byte bitRate, long expirationPeriod,
int retentionPriority, byte priorityFlag,
ExtendedFileAccessPermissions access, java.lang.String organization,
MediaStorageVolume destination)
 Constructs an immutable instance of OcapRecordingProperties with the specified attributes.
OcapRecordingProperties(byte bitRate, long expirationPeriod,
int retentionPriority, byte priorityFlag,
ExtendedFileAccessPermissions access, java.lang.String organization,
MediaStorageVolume destination, int resourcePriority)
 Constructs an immutable instance of OcapRecordingProperties with the specified attributes.

Method Summary
 ExtendedFileAccessPermissions getAccessPermissions()

 Return the file access permission to use for the recording
 byte getBitRate()

 Return the bitRate to use for the recording
 MediaStorageVolume getDestination()

 Return the volume that represents the storage location of the
recording

 long getExpirationPeriod()
 Gets the period in seconds the recording expires after being
scheduled.

 java.lang.String getOrganization()
 Return the name of the organization that this recording will be
tied to

 byte getPriorityFlag()
 Return whether or not the recording should be made if there are
resource conflicts

 int getResourcePriority()
 Return the application-specified resource priority that may be
considered at resource contention resolution time.

 int getRetentionPriority()
 Gets the priority determining how the recording is deleted.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 67

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Field Detail

HIGH_BIT_RATE
public static final byte HIGH_BIT_RATE

Indicates an implementation specific value for high bit-rate.
See Also:
Constant Field Values

LOW_BIT_RATE
public static final byte LOW_BIT_RATE

Indicates an implementation specific value for low bit-rate.
See Also:
Constant Field Values

MEDIUM_BIT_RATE
public static final byte MEDIUM_BIT_RATE

Indicates an implementation specific value for medium bit-rate.
See Also:
Constant Field Values

DELETE_AT_EXPIRATION
public static final int DELETE_AT_EXPIRATION

Indicates a recording SHALL be deleted by the implementation as soon as its expiration date is reached.
See Also:
Constant Field Values

RECORD_IF_NO_CONFLICTS
public static final byte RECORD_IF_NO_CONFLICTS

Record only if there are no conflicts.
See Also:
Constant Field Values

RECORD_WITH_CONFLICTS
public static final byte RECORD_WITH_CONFLICTS

Record even when resource conflicts exist.
See Also:
Constant Field Values

TEST_RECORDING
public static final byte TEST_RECORDING

Schedule only test recording requests corresponding to this spec. Does not cause a recording to be started.
This value could be used as the priorityFlag parameter value to the constructor for instances of this class.
When an OcapRecordingProperties with this value used as a priority value is used to schedule a recording

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

68 CableLabs 5/30/13

request, any leaf recording requests scheduled will be in the TEST_STATE. If a test recording request is
unresolved, partially resolved or completely resolved, the states would be UNRESOLVED_STATE,
PARTIALLY_RESOLVED_STATE and COMPLETELY_RESOLVED_STATE respectively. Test
recording requests maybe used by applications to detect potential conflicts before scheduling a regular
recording. Scheduling a test recording request will not affect the states of any other recording requests. No
events will be generated corresponding to a test recording request. Test recording requests will not change
state to any other state.
See Also:
Constant Field Values

Constructor Detail

OcapRecordingProperties
public OcapRecordingProperties(byte bitRate,
 long expirationPeriod,
 int retentionPriority,
 byte priorityFlag,
 ExtendedFileAccessPermissions access,
 java.lang.String organization,
 MediaStorageVolume destination)

Constructs an immutable instance of OcapRecordingProperties with the specified attributes.
Parameters:
bitRate - An application may specify LOW_BIT_RATE, MEDIUM_BIT_RATE, or
HIGH_BIT_RATE. For analog recordings the corresponding bit-rate values are implementation specific.
For digital recordings these values request optional transrating. When transrating is supported,
HIGH_BIT_RATE indicates no transrating, and MEDIUM_BIT_RATE to LOW_BIT_RATE indicates
increasing compression with a potential decrease in video quality.
expirationPeriod - The period in seconds after the initiation of recording when leaf recording
requests with this recording property are deemed as expired. The implementation will delete recorded
services based on the expirationPeriod and retentionPriority parameters. This is done without application
intervention and transitions those recording requests to the deleted state.
retentionPriority - Indicates when the recording shall be deleted. An application MAY pass in
DELETE_AT_EXPIRATION or a higher value indicating a retention priority. If the value is not
DELETE_AT_EXPIRATION the recording will be kept after the expirationPeriod has passed if the
implementation does not need the storage space for any other reason. If the space is needed expired
recordings will be deleted based on retention priority, i.e. higher value equals higher priority, until the
needed space is achieved.
priorityFlag - Indication whether the recording should be made regardless of resource conflict or not.
This parameter can contain the values RECORD_IF_NO_CONFLICTS, TEST_RECORDING or
RECORD_WITH_CONFLICTS.
access - File access permission for the recording request. If a null value is passed in the implementation
SHALL create an ExtendedFileAccessPermissions object with read and write application access
rights only and contain it in the object instantiated from this class.
organization - Name of the organization this recording will be tied to. This String will be compared
against the organization_id as would be found in the organization name field of an application's leaf
certificate to authenticate a playback request. A value of null disables such playback authentication for this
recording.
destination - The volume that represents the Storage location of the recording. When an instance of
this class is used with a ServiceRecordingSpec a LocatorRecordingSpec, or a
ServiceContextRecordingSpec where the specified service context is not attached to a time-shift buffer, with
the value of this parameter set to null, the implementation shall use the default recording volume (see
org.ocap.storage.MediaStorageOption) in one of the storage devices connected. If the value is null when
used with a ServiceContextRecordingSpec, when the service context specified in the
ServiceContextRecordingSpec is attached to a time-shift buffer, the default recording volume from the

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 69

storage device where the time-shift buffer is located shall be used. When an instance of this class is used
with a ServiceContextRecordingSpec, the record(..) method will throw an IllegalArgumentException if the
destination is not in same storage device where an attached time-shift buffer is located.
Throws:
java.lang.IllegalArgumentException - if bitRate does not equal one of LOW_BIT_RATE,
MEDIUM_BIT_RATE, or HIGH_BIT_RATE; or if priorityFlag does not contain the value
RECORD_IF_NO_CONFLICTS, TEST_RECORDING or RECORD_WITH_CONFLICTS; or if
organization is not found in the application's certificate file.

OcapRecordingProperties
public OcapRecordingProperties(byte bitRate,
 long expirationPeriod,
 int retentionPriority,
 byte priorityFlag,
 ExtendedFileAccessPermissions access,
 java.lang.String organization,
 MediaStorageVolume destination,
 int resourcePriority)

Constructs an immutable instance of OcapRecordingProperties with the specified attributes.
Parameters:
bitRate - An application may specify LOW_BIT_RATE, MEDIUM_BIT_RATE, or
HIGH_BIT_RATE. For analog recordings the corresponding bit-rate values are implementation specific.
For digital recordings these values request optional transrating. When transrating is supported,
HIGH_BIT_RATE indicates no transrating, and MEDIUM_BIT_RATE to LOW_BIT_RATE indicates
increasing compression with a potential decrease in video quality.
expirationPeriod - The period in seconds after the initiation of recording when leaf recording
requests with this recording property are deemed as expired. The implementation will delete recorded
services based on the expirationPeriod and retentionPriority parameters. This is done without application
intervention and transitions those recording requests to the deleted state.
retentionPriority - Indicates when the recording shall be deleted. An application MAY pass in
DELETE_AT_EXPIRATION or a higher value indicating a retention priority. If the value is not
DELETE_AT_EXPIRATION the recording will be kept after the expirationPeriod has passed if the
implementation does not need the storage space for any other reason. If the space is needed expired
recordings will be deleted based on retention priority, i.e. higher value equals higher priority, until the
needed space is achieved.
priorityFlag - Indication whether the recording should be made regardless of resource conflict or not.
This parameter can contain the values RECORD_IF_NO_CONFLICTS, TEST_RECORDING or
RECORD_WITH_CONFLICTS.
access - File access permission for the recording request. If a null value is passed in the implementation
SHALL create an ExtendedFileAccessPermissions object with read and write application access
rights only and contain it in the object instantiated from this class.
organization - Name of the organization this recording will be tied to. This String will be compared
against the organization_id as would be found in the organization name field of an application's leaf
certificate to authenticate a playback request. A value of null disables such playback authentication for this
recording.
destination - The volume that represents the Storage location of the recording. When an instance of
this class is used with a ServiceRecordingSpec a LocatorRecordingSpec, or a
ServiceContextRecordingSpec where the specified service context is not attached to a time-shift buffer, with
the value of this parameter set to null, the implementation shall use the default recording volume (see
org.ocap.storage.MediaStorageOption) in one of the storage devices connected. If the value is null when
used with a ServiceContextRecordingSpec, when the service context specified in the
ServiceContextRecordingSpec is attached to a time-shift buffer, the default recording volume from the
storage device where the time-shift buffer is located shall be used. When an instance of this class is used

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

70 CableLabs 5/30/13

with a ServiceContextRecordingSpec, the record(..) method will throw an IllegalArgumentException if the
destination is not in same storage device where an attached time-shift buffer is located.
resourcePriority - Indicates the application-specified resource priority. This value MAY be used by
a resource contention handler application.
Throws:
java.lang.IllegalArgumentException - if bitRate does not equal one of LOW_BIT_RATE,
MEDIUM_BIT_RATE, or HIGH_BIT_RATE; or if priorityFlag does not contain the value
RECORD_IF_NO_CONFLICTS, TEST_RECORDING or RECORD_WITH_CONFLICTS; or if
organization is not found in the application's certificate file.

Method Detail

getBitRate
public byte getBitRate()

Return the bitRate to use for the recording
Returns:
the bitRate as passed into the constructor

getExpirationPeriod
public long getExpirationPeriod()

Gets the period in seconds the recording expires after being scheduled.
Overrides:
getExpirationPeriod in class RecordingProperties
Returns:
the expiration period as passed into the constructor

getRetentionPriority
public int getRetentionPriority()

Gets the priority determining how the recording is deleted.
Returns:
the retention priority as passed into the constructor

getPriorityFlag
public byte getPriorityFlag()

Return whether or not the recording should be made if there are resource conflicts
Returns:
the priority flag passed into the constructor

getAccessPermissions
public ExtendedFileAccessPermissions getAccessPermissions()

Return the file access permission to use for the recording
Returns:
the file access permission passed into the constructor

getOrganization
public java.lang.String getOrganization()

Return the name of the organization that this recording will be tied to
Returns:

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 71

the organization passed into the constructor

getDestination
public MediaStorageVolume getDestination()

Return the volume that represents the storage location of the recording
Returns:
the volume passed into the constructor

getResourcePriority
public int getResourcePriority()

Return the application-specified resource priority that may be considered at resource contention resolution
time.
Returns:
the resource priority

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

72 CableLabs 5/30/13

org.ocap.dvr
Interface OcapRecordingRequest

All Superinterfaces:
LeafRecordingRequest, RecordingRequest

public interface OcapRecordingRequest
extends LeafRecordingRequest

This interface represents a LeafRecordingRequest in OCAP.

When the implementation detects a schedule conflict, it either resolves the conflict using the Application priority of
the conflicting recordings, or invokes the ResourceContentionHandler if one is set. The resolution of the
conflict by the implementation or the ResourceContentionHandler will result in some of the overlapping recordings
to be pending without conflict and some to be pending with conflict.

Field Summary
static int CANCELLED_STATE

 This recording request was cancelled.
static int TEST_STATE

 This recording request is a test recording request.

Fields inherited from interface org.ocap.shared.dvr.LeafRecordingRequest
COMPLETED_STATE, DELETED_STATE, FAILED_STATE, IN_PROGRESS_INCOMPLETE_STATE,
IN_PROGRESS_INSUFFICIENT_SPACE_STATE, IN_PROGRESS_STATE,
IN_PROGRESS_WITH_ERROR_STATE, INCOMPLETE_STATE, PENDING_NO_CONFLICT_STATE,
PENDING_WITH_CONFLICT_STATE

Method Summary
 void cancel()

 Cancels a pending recording request.
 RecordingList getOverlappingEntries()

 Gets any other RecordingRequest that overlaps with the duration of this recording
request.

 long getSpaceRequired()
 Gets the estimated space, in bytes, required for the recording.

 boolean isStorageReady()
 Returns whether the destined MediaStorageVolume for this recording is present
and ready or not.

 void setParent(ParentRecordingRequest parent,
int resolutionParentState)
 Sets the parent for this recording request.

Methods inherited from interface org.ocap.shared.dvr.LeafRecordingRequest
getDeletionDetails, getFailedException, getService, stop

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 73

Methods inherited from interface org.ocap.shared.dvr.RecordingRequest
addAppData, delete, getAppData, getAppID, getId, getKeys, getParent,
getRecordingSpec, getRoot, getState, isRoot, removeAppData, reschedule,
setRecordingProperties

Field Detail

TEST_STATE
static final int TEST_STATE

This recording request is a test recording request. Actual recording is not initiated for recording requests in
this state. RecordingRequests in this state do not transition to other states. No events are generated when a
recording request is added or deleted in this state. A recording in this state is a leaf recording request.
Recordings in this states are the leaf recording requests corresponding to invocation of the
RecordingManager.record(..) method with the priority value in OcapRecordingProperties set to
TEST_RECORDING.
See Also:
Constant Field Values

CANCELLED_STATE
static final int CANCELLED_STATE

This recording request was cancelled. Transitioned to when the cancel method completes successfully.
See Also:
Constant Field Values

Method Detail

cancel
void cancel()
 throws AccessDeniedException

Cancels a pending recording request. The recording request will be not be deleted from the database after
the successful invocation of this method. Successful completion places this recording request in the
CANCELLED_STATE. Canceling a recording request may resolve one or more conflicts. In this case some
pending recordings with conflicts would be changed to pending without conflicts.
Specified by:
cancel in interface LeafRecordingRequest
Throws:
AccessDeniedException - if the calling application is not permitted to perform this operation by
RecordingRequest specific security attributes.
java.lang.SecurityException - if the calling application does not have
RecordingPermission("cancel",..) or RecordingPermission("*",..)
java.lang.IllegalStateException - if the state of the recording is not in
PENDING_STATE_NO_CONFLICT_STATE or PENDING_WITH_CONFLICT_STATE.

getSpaceRequired
long getSpaceRequired()

Gets the estimated space, in bytes, required for the recording.
Returns:
Space required for the recording in bytes. This method returns zero if the recordings is in failed state.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

74 CableLabs 5/30/13

getOverlappingEntries
RecordingList getOverlappingEntries()

Gets any other RecordingRequest that overlaps with the duration of this recording request. This method will
return null unless the recording request is in the PENDING_WITH_CONFLICTS_STATE,
PENDING_NO_CONFLICTS_STATE, IN_PROGRESS_INSUFFICIENT_SPACE_STATE or
IN_PROGRESS_STATE. The returned list will contain only overlapping recording requests for which the
application has read access permission. The RecordingList returned is only a copy of the list of overlapping
entries at the time of this method call. This list is not updated if there are any changes. A new call to this
method will be required to get the updated list.
Returns:
a RecordingList

isStorageReady
boolean isStorageReady()

Returns whether the destined MediaStorageVolume for this recording is present and ready or not.
Returns:
If the MediaStorageVolume destination of this recording request can be written to, assuming write
permission, then this method returns true, otherwise it returns false. If the getDestination method
returns null then the destination MediaStorageVolume is a default volume on a default storage device
as determined by the implementation.

setParent
void setParent(ParentRecordingRequest parent,
 int resolutionParentState)

Sets the parent for this recording request. If the parent parameter is null this leaf is orphaned from any
previously set parent. If the parent parameter is null and this leaf does not have a parent, this method does
nothing and returns successfully. If the parameter is not null and the parent was already set by any method,
this leaf is removed from the previously set parent and added to the parent parameter. Unless otherwise
noted, the state of the previously set parent will not be affected. If, as a result of this method invocation, this
OcapRecordingRequest is removed from a ParentRecordingRequest which is in the
COMPLETELY_RESOLVED_STATE, and which contains no other RecordingRequests, that
ParentRecordingRequest SHALL be transitioned to the PARTIALLY_RESOLVED_STATE. If, as
a result of this method invocation, this OcapRecordingRequest is removed from a
ParentRecordingRequest which is in the CANCELLED_STATE and which contains no additional
RecordingRequests, that ParentRecordingRequest SHALL be deleted from the recording
database.
Parameters:
parent - The new parent of this leaf recording request or null if the leaf is to be orphaned.
resolutionParentState - The state into which the parent recording parameter shall be transitioned
to as a result of this method invocation. If the parent parameter in this method is null, this parameter is
ignored.
Throws:
java.lang.SecurityException - if the calling application does not have
RecordingPermission("modify",..) or RecordingPermission("*",..).
java.lang.IllegalStateException - if the parent parameter is in the CANCELLED_STATE.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 75

org.ocap.dvr
Class PrivateRecordingSpec

java.lang.Object
 org.ocap.shared.dvr.RecordingSpec
 org.ocap.dvr.PrivateRecordingSpec

public class PrivateRecordingSpec
extends RecordingSpec

Specifies a recording request that can be resolved only by an application defined request resolution handler.

Constructor Summary
PrivateRecordingSpec(java.io.Serializable requestData,
RecordingProperties properties)
 Constructor

Method Summary
 java.io.Serializable getPrivateData()

 Returns the private data stored in this recording spec

Methods inherited from class org.ocap.shared.dvr.RecordingSpec
getProperties

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail

PrivateRecordingSpec
public PrivateRecordingSpec(java.io.Serializable requestData,
 RecordingProperties properties)

Constructor
Parameters:
requestData - private data the format of which is known only to the application.
properties - the definition of how the recording is to be done

Method Detail

getPrivateData
public java.io.Serializable getPrivateData()

Returns the private data stored in this recording spec

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

76 CableLabs 5/30/13

Returns:
the private data passed into the constructor

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 77

org.ocap.dvr
Class RecordingAlertEvent

java.lang.Object
 java.util.EventObject
 org.ocap.dvr.RecordingAlertEvent
All Implemented Interfaces:

java.io.Serializable

public class RecordingAlertEvent
extends java.util.EventObject

Event notifying that a scheduled recording is about to occur. This event is triggered for
LeafRecordingRequests in pending states.

See Also:
Serialized Form

Field Summary

Fields inherited from class java.util.EventObject
source

Constructor Summary
RecordingAlertEvent(RecordingRequest source)
 Constructs the event.

Method Summary
 RecordingRequest getRecordingRequest()

 Returns the RecordingRequest that caused the event.

Methods inherited from class java.util.EventObject
getSource, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait,
wait

Constructor Detail

RecordingAlertEvent
public RecordingAlertEvent(RecordingRequest source)

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

78 CableLabs 5/30/13

Constructs the event.
Parameters:
source - The RecordingRequest that caused the event.

Method Detail

getRecordingRequest
public RecordingRequest getRecordingRequest()

Returns the RecordingRequest that caused the event.
Returns:
The RecordingRequest that caused the event.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 79

org.ocap.dvr
Interface RecordingAlertListener

All Superinterfaces:
java.util.EventListener

public interface RecordingAlertListener
extends java.util.EventListener

Listener for Recording Alerts.

Method Summary
 void recordingAlert(RecordingAlertEvent e)

 Notifies the RecordingAlertListener that a scheduled activity is about to happen.

Method Detail

recordingAlert
void recordingAlert(RecordingAlertEvent e)

Notifies the RecordingAlertListener that a scheduled activity is about to happen.
Parameters:
e - The generated event.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

80 CableLabs 5/30/13

org.ocap.dvr
Interface RecordingPlaybackListener

All Superinterfaces:
java.util.EventListener

public interface RecordingPlaybackListener
extends java.util.EventListener

This interface represents a listener that can be added to listen for recording playback start. The implementation
SHALL notify a listener once when a recording playback starts. For purposes of this listener playback is considered
ongoing while the presenting ServiceContext is in the presenting state regardless of trick mode. This listener is
specific to ServiceContext recording playback and does not notify for discreet Player based recording
playback.

Method Summary
 void notifyRecordingPlayback

(javax.tv.service.selection.ServiceContext context,
int artificialCarouselID, int[] carouselIDs)
 Notifies the listener a recording playback has started.

Method Detail

notifyRecordingPlayback
void
notifyRecordingPlayback(javax.tv.service.selection.ServiceContext context,
 int artificialCarouselID,
 int[] carouselIDs)

Notifies the listener a recording playback has started. The implementation SHALL create a new carousel Id
for any artificial carousel in each playback. The carouselIDs parameter SHALL reference broadcast
carousels when stored with a recorded service. An artificial carousel ID shall not conflict with a carousel ID
of a signaled carousel that was also stored with the recorded service and presented by the context parameter.
An artificial carousel ID MAY conflict with other carousel IDs.
Parameters:
context - The ServiceContext presenting the recorded service.
artificialCarouselID - Carousel ID for an artificial carousel that MAY have been created for the
recording being played back. A value of -1 indicates no artificial carousel was created.
carouselIDs - Array of carousel IDs associated with broadcast carousels stored with the recording being
played back. If no carousels are contained a zero length array is passed in.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 81

org.ocap.dvr
Interface RecordingResourceUsage

All Superinterfaces:
ResourceUsage

public interface RecordingResourceUsage
extends ResourceUsage

This interface represents a grouping of resources specific to a recording function performed by an application.

Method Summary
 RecordingRequest getRecordingRequest()

 Gets the RecordingRequest associated with the set of resources contained in
the usage and initiated by the application returned by the base ResourceUsage.getAppID
method.

Methods inherited from interface org.ocap.resource.ResourceUsage
getAppID, getResource, getResourceNames

Method Detail

getRecordingRequest
RecordingRequest getRecordingRequest()

Gets the RecordingRequest associated with the set of resources contained in the usage and initiated by
the application returned by the base ResourceUsage.getAppID method.
Returns:
The recording request associated with the resource usage.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

82 CableLabs 5/30/13

org.ocap.dvr
Interface RequestResolutionHandler

public interface RequestResolutionHandler

This interface will be implemented by the application that registers the RequestResolutionHandler. The
RequestResolutionHandler will be invoked whenever a new unresolved recording request is added to the
RecordingManager database. The RecordingResolutionHandler may call the resolve(..) method of the
OcapRecordingManager multiple times to schedule one or more recording requests corresponding to the recording
request.

Method Summary
 void requestResolution(RecordingRequest request)

 This method would be invoked by the implementation when an unresolved recording request is
scheduled in response to an application calling the record(..) method of the RecordingManager.

Method Detail

requestResolution
void requestResolution(RecordingRequest request)

This method would be invoked by the implementation when an unresolved recording request is scheduled in
response to an application calling the record(..) method of the RecordingManager.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 83

org.ocap.dvr
Interface SharedResourceUsage

All Superinterfaces:
ResourceUsage, SharedResourceUsage

public interface SharedResourceUsage
extends SharedResourceUsage

This interface represents a group of resources where one or more resources are shared between multiple resource
usages. For example, when a tuner is used for an ongoing recording and also for presenting a broadcast service in a
service context, and if the tuner is in a resource contention, the tuner is considered shared between a
RecordingResourceUsage and a ServiceContextResourceUsage. If there is a resource contention for
a tuner, the shared usage of tuner is represented by a SharedResourceUsage where the getResourceUsages()
method would return both ResourceUsage instances that share the tuner.

Because a SharedResourceUsage can contain multiple ResourceUsage instances where different entities
reserved the resources, the value returned by the SharedResourceUsage.getAppID method SHALL be the
AppID of the highest-priority ResourceUsage contained in the SharedResourceUsage or null if none of the
contained ResourceUsages have AppIDs.

Method Summary

Methods inherited from interface org.ocap.resource.SharedResourceUsage
getResourceUsages, getResourceUsages

Methods inherited from interface org.ocap.resource.ResourceUsage
getAppID, getResource, getResourceNames

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

84 CableLabs 5/30/13

org.ocap.dvr
Interface TimeShiftBufferResourceUsage

All Superinterfaces:
ResourceUsage

public interface TimeShiftBufferResourceUsage
extends ResourceUsage

This interface represents a grouping of resources specific to a time-shift buffering performed by an application.

Method Summary
 javax.tv.service.Service getService()

 Gets the Service associated with the set of resources contained in the
usage where the last service selection was initiated by the application returned
by the base ResourceUsage.getAppID method.

Methods inherited from interface org.ocap.resource.ResourceUsage
getAppID, getResource, getResourceNames

Method Detail

getService
javax.tv.service.Service getService()

Gets the Service associated with the set of resources contained in the usage where the last service
selection was initiated by the application returned by the base ResourceUsage.getAppID method.
Returns:
The Service associated with the resource usage.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 85

org.ocap.dvr
Class TimeShiftEvent

java.lang.Object
 java.util.EventObject
 javax.tv.service.selection.ServiceContextEvent
 org.ocap.dvr.TimeShiftEvent
All Implemented Interfaces:

java.io.Serializable

public class TimeShiftEvent
extends javax.tv.service.selection.ServiceContextEvent

The parent class for TimeShiftBuffer events.

See Also:
Serialized Form

Field Summary
static int NO_TIME_SHIFT_BUFFER

 A time-shift buffer or recording was not found for attachment to the ServiceContext
static int TIME_SHIFT_BUFFER_FOUND

 A time-shift buffer or recording was found for attachment to the ServiceContext.
static int TIME_SHIFT_PROPERTIES_CHANGED

 The implementation was forced to change time-shift properties due to signaling.

Fields inherited from class java.util.EventObject
source

Constructor Summary
TimeShiftEvent(javax.tv.service.selection.ServiceContext source, int reason)
 Constructor for this event.

Method Summary
 int getReason()

 Gets the reason for this event.
 javax.tv.service.selection.ServiceContext getServiceContext()

 Reports the ServiceContext that
generated the event.

Methods inherited from class java.util.EventObject
getSource, toString

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

86 CableLabs 5/30/13

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait,
wait

Field Detail

TIME_SHIFT_BUFFER_FOUND
public static final int TIME_SHIFT_BUFFER_FOUND

A time-shift buffer or recording was found for attachment to the ServiceContext.
See Also:
Constant Field Values

NO_TIME_SHIFT_BUFFER
public static final int NO_TIME_SHIFT_BUFFER

A time-shift buffer or recording was not found for attachment to the ServiceContext
See Also:
Constant Field Values

TIME_SHIFT_PROPERTIES_CHANGED
public static final int TIME_SHIFT_PROPERTIES_CHANGED

The implementation was forced to change time-shift properties due to signaling.
See Also:
Constant Field Values

Constructor Detail

TimeShiftEvent
public TimeShiftEvent(javax.tv.service.selection.ServiceContext source,
 int reason)

Constructor for this event.
Parameters:
source - The object associated with this event.
reason - The reason code for this event. See constants in this class for possible values.
Throws:
java.lang.IllegalArgumentException - if the reason code is not a value matching one of the
possible constants.

Method Detail

getReason
public int getReason()

Gets the reason for this event.
Returns:
The reason code for this event. See constants in this class for possible return values; see constants in this
class.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 87

getServiceContext
public javax.tv.service.selection.ServiceContext getServiceContext()

Reports the ServiceContext that generated the event.
Overrides:
getServiceContext in class javax.tv.service.selection.ServiceContextEvent
Returns:
The ServiceContext that generated the event.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

88 CableLabs 5/30/13

org.ocap.dvr
Interface TimeShiftListener

All Superinterfaces:
java.util.EventListener

public interface TimeShiftListener
extends java.util.EventListener

The TimeShiftListener interface is implemented by applications wishing to receive events related to time shift
resources.

Method Summary
 void receiveTimeShiftevent(TimeShiftEvent e)

 Notifies the TimeShiftListener of an event generated by time-shift resource handling.

Method Detail

receiveTimeShiftevent
void receiveTimeShiftevent(TimeShiftEvent e)

Notifies the TimeShiftListener of an event generated by time-shift resource handling.
Parameters:
e - The generated event.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 89

org.ocap.dvr
Interface TimeShiftProperties

public interface TimeShiftProperties

This interface represents a set of time-shift properties that can be set for and queried from a ServiceContext.
Any Host device that supports the OpenCable DVR extension SHALL implement this interface by any class that also
implements the ServiceContext interface.

Method Summary
 void addTimeShiftListener(TimeShiftListener listener)

 Adds a listener for time-shift events related to this TimeShiftProperties.
 boolean getLastServiceBufferedPreference()

 Gets the "last" service buffered preference.
 long getMaximumDuration()

 Gets the maximum content buffering duration.
 long getMinimumDuration()

 Gets the minimum content buffering duration.
 NetworkInterface getNetworkInterface(boolean presentation)

 Gets the NetworkInterface currently associated with this
ServiceContext corresponding to live or time-shifted content.

 boolean getSavePreference()
 Gets the save time-shift contents at service change preference.

 void removeTimeShiftListener(TimeShiftListener listener)
 Removes a previously added listener for time-shift events from this
TimeShiftProperties.

 void setLastServiceBufferedPreference(boolean buffer)
 Sets a preference to buffer the last service.

 void setMaximumDuration(long maxDuration)
 Sets the maximum duration of content that MAY be buffered for this
ServiceContext.

 void setMinimumDuration(long minDuration)
 Sets the minimum duration of content that SHALL be buffered for this
ServiceContext.

 void setPresentation(javax.tv.service.Service service,
javax.media.Time time, float rate, boolean action,
boolean persistent)
 Sets the JMF media time location from where the playback will begin when a
specific service is selected with this service context.

 void setSavePreference(boolean save)
 Sets a preference to retain the time-shift contents for the ServiceContext when
a new service is selected.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

90 CableLabs 5/30/13

Method Detail

addTimeShiftListener
void addTimeShiftListener(TimeShiftListener listener)

Adds a listener for time-shift events related to this TimeShiftProperties.
Parameters:
listener - The listener to add.
See Also:
removeTimeShiftListener(TimeShiftListener)

removeTimeShiftListener
void removeTimeShiftListener(TimeShiftListener listener)

Removes a previously added listener for time-shift events from this TimeShiftProperties. If the
given listener has not previously been added then this method has no effect.
Parameters:
listener - The listener to remove.
See Also:
addTimeShiftListener(TimeShiftListener)

getMinimumDuration
long getMinimumDuration()

Gets the minimum content buffering duration. If this method is called before setMinimumDuration has ever
been called, or if content buffering is disabled for this ServiceContext the value returned SHALL be 0.
Returns:
The minimum content buffering duration in seconds.

setMinimumDuration
void setMinimumDuration(long minDuration)

Sets the minimum duration of content that SHALL be buffered for this ServiceContext. Setting the
minimum duration to 0 disables time shifting on the ServiceContext.

This method MAY be called at any time regardless of service context state. However, enabling time-shifting
or changing the minimum duration SHALL NOT take effect until the ServiceContext is in the not
presenting state, presentation pending state, or a new service is selected. If the same service is selected it is
implementation dependent regarding whether time-shift enabling takes affect during the selection.

Disabling time shifting by setting the minimum duration to 0 SHOULD take effect immediately.

When enabling of time shifting by changing the minimum duration from zero to a positive value takes
effect, a TimeShiftControl SHALL be added to the associated JMF player. When time shifting is disabled
by changing the minimum duration to zero any existing TimeShiftControl SHALL be removed from the
associated JMF player.

An increase in minimum duration MUST NOT cause any loss of previously buffered content for the current
service.

Parameters:
minDuration - Minimum duration in seconds.
Throws:
java.lang.IllegalArgumentException - If the parameter is greater than the current value and
Host device does not have enough space to meet the request, or if the parameter is greater than the

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 91

maximum duration set by the setMaximumDuration method, or if the parameter is less than the
duration returned by OcapRecordingManager.getSmallestTimeShiftDuration().
java.lang.SecurityException - if the calling application does not have
ServiceContextPermission("*","own") for the ServiceContext object that implements
this TimeShiftProperties.

getMaximumDuration
long getMaximumDuration()

Gets the maximum content buffering duration. If this method is called before setMaximumDuration
has ever been called, or if content buffering is disabled for this ServiceContext the value returned
SHALL be 0.
Returns:
The maximum content buffering duration in seconds.

setMaximumDuration
void setMaximumDuration(long maxDuration)

Sets the maximum duration of content that MAY be buffered for this ServiceContext. Informs the
implementation that storing more content than this is not needed by the application owning this
ServiceContext.

This method MAY be called at any time regardless of service context state.

Parameters:
maxDuration - Maximum duration in seconds.
Throws:
java.lang.IllegalArgumentException - if the parameter is less than the duration set by the
setMinimumDuration method, or if the parameter is less than the duration returned by
OcapRecordingManager.getSmallestTimeShiftDuration().
java.lang.SecurityException - if the calling application does not have
ServiceContextPermission("*","own") for the ServiceContext object that implements
this TimeShiftProperties.

getLastServiceBufferedPreference
boolean getLastServiceBufferedPreference()

Gets the "last" service buffered preference.
Returns:
Preference indication for recording the "last" service. Returns true if "last" service should be buffered,
otherwise returns false.

setLastServiceBufferedPreference
void setLastServiceBufferedPreference(boolean buffer)

Sets a preference to buffer the last service. This method has no effect if the size of the time-shift buffer
associated with the ServiceContext object implementing this interface is set to zero.
Parameters:
buffer - If true the implementation will buffer the service selected by the ServiceContext object
implementing this interface, based on time-shift buffer availability; see the OCAP DVR API specification
time-shift buffer requirements. If false the last service will not be buffered.
Throws:
java.lang.SecurityException - if the calling application does not have
ServiceContextPermission("*","own") for the ServiceContext object that implements
this TimeShiftProperties.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

92 CableLabs 5/30/13

getSavePreference
boolean getSavePreference()

Gets the save time-shift contents at service change preference.
Returns:
True if save time-shift contents at service selection preference is enabled, otherwise returns false.

setSavePreference
void setSavePreference(boolean save)

Sets a preference to retain the time-shift contents for the ServiceContext when a new service is
selected. When enabled the time-shift contents are saved back to the value returned by the
getMaxTimeShiftDuration method.
Parameters:
save - If true the implementation will retain the time-shift contents for the ServiceContext when a
new service is selected. If false the time-shift contents are flushed when a new service is selected.
Throws:
java.lang.IllegalArgumentException - if the parameter is true and the Host device does not
have the hardware resources to support the preference.
java.lang.SecurityException - if the calling application does not have
ServiceContextPermission("*","own") for the ServiceContext object that implements
this TimeShiftProperties.

setPresentation
void setPresentation(javax.tv.service.Service service,
 javax.media.Time time,
 float rate,
 boolean action,
 boolean persistent)

Sets the JMF media time location from where the playback will begin when a specific service is selected
with this service context. Also sets the rate of that playback. If an instance of Time corresponding to value
of 0 nanoseconds, or a negative value is set, the playback will begin at the live point. The default values for
the time and rate values is live point and normal playback respectively. Calling this method for the same
service multiple times sets the values to the most recent call.

The implementation SHALL NOT allow content to be started in the past and beyond the duration set in this
ServiceContext, even if content with the time parameter is buffered. In that case presentation SHALL
begin at the duration in the past or at the live point as determined by the action parameter.

Parameters:
service - The service to set the media time for.
time - The time the service presentation will start at.
rate - The rate at which to start play back.
action - Indicates what to do when the media time is not buffered when the service is selected. If true
presentation starts at the beginning of the buffer, otherwise presentation starts at the live point.
persistent - If true the time and rate apply to every selection of the service, otherwise they will only
apply to the selection following a call to this method. In the latter case, once the values are applied to one
service selection they are returned to their default values.
Throws:
java.lang.SecurityException - if the calling application does not have
ServiceContextPermission("*","own") for the ServiceContext object that implements
this TimeShiftProperties.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 93

getNetworkInterface
NetworkInterface getNetworkInterface(boolean presentation)

Gets the NetworkInterface currently associated with this ServiceContext corresponding to live
or time-shifted content.

When the NetworkInterface corresponding to live content is requested, this method SHALL return
the interface currently reserved by this ServiceContext, if any. This NetworkInterface SHALL
be one of the interfaces returned by NetworkInterfaceManager.getNetworkInterfaces().
That is, this SHALL be the same as would be returned by
DvbServiceContext.getNetworkInterface() when called by an application executing outside
of this service context.

When the NetworkInterface corresponding to time-shifted content is requested, this method SHALL
return a reference to a "special" NetworkInterface as defined in the main body of the specification for
DvbServiceContext.getNetworkInterface(). That is, this SHALL be the same as would be
returned by DvbServiceContext.getNetworkInterface when called by an application
executing within this service context.

Parameters:
presentation - false indicates that the NetworkInterface corresponding to live content is to be
returned; true indicates that the NetworkInterface corresponding to time-shifted content is to be
returned.
Returns:
the specified NetworkInterface or null

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

94 CableLabs 5/30/13

Annex E OCAP DVR Storage API (org.ocap.dvr.storage)

Package org.ocap.dvr.storage

Extensions to the OCAP Storage API to support Media Storage and Time-shift buffer.

See:
 Description

Interface Summary

FreeSpaceListener This interface represents a listener that will be notified when a media volume has
reached a specified level of remaining free space.

MediaStorageEvent
This interface SHALL be implemented by StorageManagerEvents generated by
the implementation that involve a StorageProxy which contains
MediaStorageVolumes.

MediaStorageOption
This interface represents an option object provided by a StorageProxy that supports
media volumes (MediaStorageVolume) that are used by the DVR recording and
playback APIs for storing media content.

MediaStorageVolume This interface represents a media volume on a storage device and is contained within a
StorageProxy.

SpaceAllocationHandler A class implementing this interface decides whether requests to allocate storage space
should be allowed or not.

Package org.ocap.dvr.storage Description

Extensions to the OCAP Storage API to support Media Storage and Time-shift buffer.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 95

org.ocap.dvr.storage
Interface FreeSpaceListener

All Superinterfaces:
java.util.EventListener

public interface FreeSpaceListener
extends java.util.EventListener

This interface represents a listener that will be notified when a media volume has reached a specified level of
remaining free space.

Method Summary
 void notifyFreeSpace()

 Notifies the listener the remaining free space has reached the level specified by
MediaStorageVolume.addFreeSpaceListener
(org.ocap.dvr.storage.FreeSpaceListener, int).

Method Detail

notifyFreeSpace
void notifyFreeSpace()

Notifies the listener the remaining free space has reached the level specified by
MediaStorageVolume.addFreeSpaceListener(org.ocap.dvr.storage.FreeSpaceLi
stener, int).

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

96 CableLabs 5/30/13

org.ocap.dvr.storage
Interface MediaStorageEvent

public interface MediaStorageEvent

This interface SHALL be implemented by StorageManagerEvents generated by the implementation that
involve a StorageProxy which contains MediaStorageVolumes.

Method Summary
 RecordingList getEntries()

 Returns the list of scheduled, pending, in-progress, and completed recordings for which
a contained MediaStorageVolume is an explicit or implicit destination.

Method Detail

getEntries
RecordingList getEntries()

Returns the list of scheduled, pending, in-progress, and completed recordings for which a contained
MediaStorageVolume is an explicit or implicit destination.

Note that this may include recordings which no longer exist (in the case of a delete) or recordings that
previously did not exist (in the case of an add).

Returns:
the list of recordings affected by this event.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 97

org.ocap.dvr.storage
Interface MediaStorageOption

All Superinterfaces:
StorageOption

public interface MediaStorageOption
extends StorageOption

This interface represents an option object provided by a StorageProxy that supports media volumes
(MediaStorageVolume) that are used by the DVR recording and playback APIs for storing media content.

The interface distinguishes between content accessible through the DVR APIs and as general purpose files.
Implementations may store these different type of content in one or more filesystems. This is transparent to an
application. Only the general purpose files are visible through the normal file and directory classes in java.io.

The interface can be used to query the amount of storage the storage proxy has for storing all types of application-
visible content. (Some of the capacity may be reserved for internal system use.)

The interface also supports the initialization of the storage proxy with a specified allocation between the two types.
However, on some implementations, changing the allocations may require filesystems to be destroyed and recreated
which may result in the deletion of all application-visible content associated with the storage proxy, including any
storage volumes. On other implementations, a change in allocations may require some or all content of the type being
reduced to be destroyed. Initialization should be done with extreme caution.

Method Summary
 MediaStorageVolume allocateMediaVolume(java.lang.String name,

ExtendedFileAccessPermissions fap)
 Allocates a MediaStorageVolume.

 long getAllocatableMediaStorage()
 Gets total allocatable media storage available for all MediaStorageVolume
instances.

 MediaStorageVolume getDefaultRecordingVolume()
 Gets the default volume that the implementation setup as the default recording
volume for the containing StorageProxy.

 long getPlaybackBandwidth()
 Gets the playback bandwidth in bits-per-second when only one playback stream
and no record streams are open on the entire storage device.

 long getRecordBandwidth()
 Gets the record bandwidth in bits-per-second when only one record stream and
no playback streams are open on the entire storage device.

 long getTotalGeneralStorageCapacity()
 Gets the total capacity of the GPFS available for application use in the storage
device.

 long getTotalMediaStorageCapacity()
 Gets the total capacity of the MEDIAFS available for application use in the
storage device.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

98 CableLabs 5/30/13

Method Summary
 void initialize(long mediafsSize)

 Initializes the storage device so that there are at least mediafsSize bytes
available for MEDIAFS use.

 boolean simultaneousPlayAndRecord()
 Indicates if the storage device supports simultaneous play and record.

Method Detail

allocateMediaVolume
MediaStorageVolume allocateMediaVolume(java.lang.String name,
 ExtendedFileAccessPermissions fap)

Allocates a MediaStorageVolume. A media volume can contain multi-media content that may impose
I/O bandwidth criteria upon the storage device. The new volume will be owned by the application that
allocated it.
Parameters:
name - Name of the new MediaStorageVolume.
fap - Access permissions of the new MediaStorageVolume.
Returns:
Allocated volume storage.
Throws:
java.lang.IllegalArgumentException - if the name does not meet Java 1.1.8 directory naming
conventions, or if the type is not supported by the storage device.
java.lang.SecurityException - if the calling application is unsigned.

getDefaultRecordingVolume
MediaStorageVolume getDefaultRecordingVolume()

Gets the default volume that the implementation setup as the default recording volume for the containing
StorageProxy.
Returns:
Default recording volume for the storage device.

getPlaybackBandwidth
long getPlaybackBandwidth()

Gets the playback bandwidth in bits-per-second when only one playback stream and no record streams are
open on the entire storage device.
Returns:
Playback bandwidth in bits-per-second.

getRecordBandwidth
long getRecordBandwidth()

Gets the record bandwidth in bits-per-second when only one record stream and no playback streams are
open on the entire storage device.
Returns:
Record bandwidth in bits-per-second.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 99

getTotalMediaStorageCapacity
long getTotalMediaStorageCapacity()

Gets the total capacity of the MEDIAFS available for application use in the storage device.
Returns:
Total audio/video capacity of the storage device.

getAllocatableMediaStorage
long getAllocatableMediaStorage()

Gets total allocatable media storage available for all MediaStorageVolume instances.
Returns:
Size of allocatable media storage in bytes.

getTotalGeneralStorageCapacity
long getTotalGeneralStorageCapacity()

Gets the total capacity of the GPFS available for application use in the storage device.
Returns:
Total general purpose capacity of the storage device.

initialize
void initialize(long mediafsSize)

Initializes the storage device so that there are at least mediafsSize bytes available for MEDIAFS use. The
effects of initialization may include the deletion of all application visible content associated with the storage
proxy. Calling this method may remove application access to storage on the device for the duration of the
call. It may cause the abnormal termination of applications with open files associated with the storage
proxy. This method will block until the storage proxy is again ready for use.
Parameters:
mediafsSize - New size of the total MEDIAFS capacity in bytes.
Throws:
java.lang.IllegalArgumentException - if the mediafsSize passed is greater than the sum of
what is returned by getTotalGeneralStorageCapacity() and getTotalMediaStorageCapacity().
java.lang.IllegalStateException - if the sizes cannot be changed by the implementation for
any reason.

simultaneousPlayAndRecord
boolean simultaneousPlayAndRecord()

Indicates if the storage device supports simultaneous play and record.
Returns:
True if simultaneous play and record is supported, otherwise returns false.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

100 CableLabs 5/30/13

org.ocap.dvr.storage
Interface MediaStorageVolume

All Superinterfaces:
LogicalStorageVolume

public interface MediaStorageVolume
extends LogicalStorageVolume

This interface represents a media volume on a storage device and is contained within a StorageProxy. A
MediaStorageVolume is a specialized LogicalStorageVolume that supports the recording and playback of media
content through the DVR. The volume also provides a mechanism for allocating a fixed amount of storage for use by
recordings on the volume, as well as minimum time-shift buffer storage size.

Method Summary
 void addFreeSpaceListener(FreeSpaceListener listener,

int level)
 Adds a listener that is notified when available free space is less than a specified
level.

 void allocate(long bytes)
 Allocates the specified amount of storage from the containing StorageProxy for
use by recordings made to this volume.

 void allowAccess(java.lang.String[] organizations)
 Adds a list of Organization strings to the set of organizations that are allowed to
use this volume.

 long getAllocatedSpace()
 Gets the amount of space allocated on this volume.

 java.lang.String[] getAllowedList()
 Returns the list of Organizations who are allowed to use this volume.

 long getFreeSpace()
 Gets the remaining available space from an allocation after accounting for all
used space (including recordings, time shift buffers, and meta-data).

 long getMinimumTSBSize()
 Gets the minimum storage space size for time-shift buffer use.

 void removeAccess(java.lang.String organization)
 Removes an Organization from the list of Organization who are allowed to use
this volume.

 void removeFreeSpaceListener(FreeSpaceListener listener)
 Removes a free space listener.

 void setMinimumTSBSize(long size)
 Sets the minimum storage space for time-shift buffer use.

Methods inherited from interface org.ocap.storage.LogicalStorageVolume
getFileAccessPermissions, getPath, getStorageProxy, setFileAccessPermissions

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 101

Method Detail

allocate
void allocate(long bytes)

Allocates the specified amount of storage from the containing StorageProxy for use by recordings made to
this volume. The volume is guaranteed to be able to use this amount of storage without requiring the
deletion of the contents of other volumes and is also limited to using no more than the allocated amount of
storage. The amount of space allocated may be rounded up to meet platform requirements. Once the storage
on the volume reaches the amount allocated, the behavior is the same as if the storage device were full, e.g.
a SpaceFullException is thrown or a RecordingAlertEvent generated.

A value of zero indicates that the volume has no minimum guaranteed size and may also use as much space
as is available. Until set with the allocate() method, the space allocated is zero.

Subsequent calls to allocate() change the existing allocation. However, if a new allocation size is too small
to contain existing recordings a IllegalArgumentException is thrown and the allocation size is not changed.
Except when the allocation size is changed to zero which removes the limit and the guaranteed storage size.
The allocated space can only be released by an explicit call to allocate() or through the deletion of the
storage volume.

Parameters:
bytes - Number of bytes to allocate.
Throws:
java.lang.SecurityException - if the calling application does not have
MonitorAppPermission("storage") permission.
java.lang.IllegalArgumentException - if the requested amount of storage exceeds the amount
available for allocation, or reduces the previous allocation making it too small for existing recordings.

getAllocatedSpace
long getAllocatedSpace()

Gets the amount of space allocated on this volume. If the allocate method has not been called for the
volume this method returns 0.
Returns:
Number of bytes allocated.

getFreeSpace
long getFreeSpace()

Gets the remaining available space from an allocation after accounting for all used space (including
recordings, time shift buffers, and meta-data). If no allocated space has been used, this method returns the
same value as the getAllocatedSpace method. When this method is called on a MediaStorageVolume
without an explicit allocation, as is the case when allocate has not been called or was called with a value of
0, then the value returned is the space available on the associated StorgeProxy's MEDIAFS that has not
been explicitly allocated to another MediaStorageVolume.
Returns:
Number of bytes available for use from an allocation.

allowAccess
void allowAccess(java.lang.String[] organizations)

Adds a list of Organization strings to the set of organizations that are allowed to use this volume. The
volume is owned by the application that created the volume but is accessible to any record requests where
the Organization string matches one of the strings in the organization array.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

102 CableLabs 5/30/13

Note: Given Organization strings should represent an application's organization_id, formatted as
would be found in the OrganizationName field of the application's leaf certificate. That is, the
organization_id as a fixed length 8 character hexadecimal string (with leading zeros where required).

Parameters:
organizations - An array of strings representing organizations that are allowed to use this volume. The
String passed as a parameter to the record method should match one of this strings to record onto this
volume. If an array of length 0 is passed, any application can use this volume. If null is passed in and all
access to this volume has been removed by a call to the removeAccess method, then access is restored to
the same organizations that had access before all access was removed.
Throws:
java.lang.SecurityException - if the calling application is not the owner of the volume and does
not have MonitorAppPermission("storage") permission.

removeAccess
void removeAccess(java.lang.String organization)

Removes an Organization from the list of Organization who are allowed to use this volume. When
application access to the volume is in progress from either the Java I/O (java.io package) or recording
manager (org.ocap.dvr, org.ocap.shared.dvr packages) APIs and that application's access is removed by this
method, the implementation SHALL terminate the reads or writes immediately and generate the appropriate
response, e.g. IOException, interrupted recording request. This includes all forms of access from those APIs
including file I/O, service recording, and recording playback.
Parameters:
organization - A string representing an organization that should be removed from the list of allowed
organizations. Passing in null removes all application access to this volume.
Throws:
java.lang.SecurityException - if the calling application is not the owner and the calling
application does not have MonitorAppPermission("storage") permission.

getAllowedList
java.lang.String[] getAllowedList()

Returns the list of Organizations who are allowed to use this volume. The volume is owned by the
application that created the volume but is accessible to any record requests where the Organization string
matches one of the strings in the organization array.
Returns:
An array of strings representing organizations that are allowed to use this volume. A zero length array is
returned when all organizations have access. Null is returned when all access has been removed from this
volume.

addFreeSpaceListener
void addFreeSpaceListener(FreeSpaceListener listener,
 int level)

Adds a listener that is notified when available free space is less than a specified level. The parameter level
is a percentage of the total available space in the volume. For example, a level of 10 would cause the
listener to be notified when less than 10% of the volume is available for use. Determination of the level is
implementation specific and the listener is notified whenever the threshold indicated by the level is crossed
and available storage is less than the level parameter
Parameters:
listener - The listener to be added.
level - The level of free space remaining at which to notify the listener.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 103

removeFreeSpaceListener
void removeFreeSpaceListener(FreeSpaceListener listener)

Removes a free space listener. If the parameter listener was not previously added or has already been
removed this method does nothing successfully.
Parameters:
listener - The listener to remove.

getMinimumTSBSize
long getMinimumTSBSize()

Gets the minimum storage space size for time-shift buffer use. If the setMinimumTSBSize method has
been called then the value set SHALL be returned. If the setMinimumTSBSize method has not been
called but a minimum time-shift buffer size has been configured by the implementation then that value
SHALL be returned. Otherwise, if neither an application nor the implementation has set the value then 0
SHALL be returned. The implementation SHALL NOT override a value set by an application.
Returns:
The minimum time-shift buffer size.

setMinimumTSBSize
void setMinimumTSBSize(long size)

Sets the minimum storage space for time-shift buffer use. The implementation SHALL make at least the
minimum storage set by this method available to satisfy the requirements of
TimeShiftProperties.setMinimumDuration. Storage allocated by a call to this method
SHALL NOT be used for scheduled recordings. This method SHALL NOT affect any existing recorded
content. If the specified size is too large for the MSV to accommodate existing permanent recordings, an
IllegalArgumentException is thrown and the minimum TSB allocation is not changed.
Parameters:
size - The size in bytes of the minimum time-shift buffer storage to set.
Throws:
java.lang.IllegalArgumentException - if size > getFreeSpace() + current TSB size.
java.lang.SecurityException - if the calling application does not have
MonitorAppPermission("storage") permission.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

104 CableLabs 5/30/13

org.ocap.dvr.storage
Interface SpaceAllocationHandler

public interface SpaceAllocationHandler

A class implementing this interface decides whether requests to allocate storage space should be allowed or not.

Method Summary
 long allowReservation(LogicalStorageVolume volume, AppID app,

long spaceRequested)
 This method should be used by the implementation to allow the SpaceAllocationHandler to grant a
request to reserve space.

Method Detail

allowReservation
long allowReservation(LogicalStorageVolume volume,
 AppID app,
 long spaceRequested)

This method should be used by the implementation to allow the SpaceAllocationHandler to grant a request
to reserve space.
Parameters:
volume - The LogicalStorageVolume on which the reserved space is requested.
app - The requesting application.
spaceRequested - The new value of the reservation if the request is granted.
Returns:
the space granted.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 105

Annex F OCAP Shared DVR API (org.ocap.shared.dvr) - see
[TS102817]

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

106 CableLabs 5/30/13

Annex G OCAP Shared DVR Navigation API
(org.ocap.shared.dvr.navigation) - see [TS102817]

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 107

Annex H OCAP Shared Media API (org.ocap.shared.media) - see
[TS102817]

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

108 CableLabs 5/30/13

Annex I (void)

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 109

Annex J OCAP DVR Event API (org.ocap.dvr.event)

Package org.ocap.dvr.event

Interface Summary

LightweightTriggerHandler This interface represents a handler that can register for interest in specific stream
types.

LightweightTriggerSession This interface represents a session created to build an artificial carousel with a
DSMCCStreamEvent.

StreamChangeListener This interface represents a listener an application can set in order to listen for
events to do with a stream of interest.

Class Summary

LightweightTriggerManager
This class represents a manager that can be used by a privileged application to
create an artificial object carousel containing a DSMCCStreamEvent in the top
level.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

110 CableLabs 5/30/13

org.ocap.dvr.event
Interface LightweightTriggerHandler

public interface LightweightTriggerHandler

This interface represents a handler that can register for interest in specific stream types. When notified of stream type
activity of interest this handler MAY create an artificial object carousel associated with the stream and populate it
with stream events that will be generated whenever the stream is played back and encounters the JMF media time
attached to one of the stream events.

Method Summary
 void notifyStreamType(LightweightTriggerSession session)

 Notifies the handler when streams of the stream type for which it was registered are signaled by the
PMT for a program referenced by a service context selection, recording, buffering request, or tuning
operation.

Method Detail

notifyStreamType
void notifyStreamType(LightweightTriggerSession session)

Notifies the handler when streams of the stream type for which it was registered are signaled by the PMT
for a program referenced by a service context selection, recording, buffering request, or tuning operation.
Parameters:
session - The object representing the session for the stream type of interest.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 111

org.ocap.dvr.event
Class LightweightTriggerManager

java.lang.Object
 org.ocap.dvr.event.LightweightTriggerManager

public abstract class LightweightTriggerManager
extends java.lang.Object

This class represents a manager that can be used by a privileged application to create an artificial object carousel
containing a DSMCCStreamEvent in the top level. The DSMCCStreamEvent can be populated by a privileged
application. NOTE this is an expanded version of the GEM lightweight binding of the trigger API (GEM clause
P.2.3.1 Lightweight binding of trigger API).

Constructor Summary
protected LightweightTriggerManager()

 Protected constructor not callable by applications.

Method Summary
static LightweightTriggerManager getInstance()

 Gets an instance of the manager.
abstract void registerHandler

(LightweightTriggerHandler handler,
short streamType)
 Registers a handler interested in services with streams listed
in the PMT with this stream type.

abstract void unregisterHandler
(LightweightTriggerHandler handler)
 Unregisters a handler that was previously registered by the
registerHandler method.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail

LightweightTriggerManager
protected LightweightTriggerManager()

Protected constructor not callable by applications.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

112 CableLabs 5/30/13

Method Detail

getInstance
public static LightweightTriggerManager getInstance()

Gets an instance of the manager.
Returns:
An instance of the light-weight trigger manager.

registerHandler
public abstract void registerHandler(LightweightTriggerHandler handler,
 short streamType)

Registers a handler interested in services with streams listed in the PMT with this stream type.

A separate notification of the handler SHALL be made for each service selection (with or without timeshift
enabled), recording, buffering request, or tune that references a service containing streams of the given
stream type. The provided LightweightTriggerSession SHALL reflect the relevant
ServiceContext, RecordingRequest, BufferingRequest, or NetworkInterface.

Parameters:
handler - Handler to register.
streamType - a stream type as signaled in the PMT.
Throws:
java.lang.IllegalArgumentException - if streamType is not in the range 0x0 to 0xFF.
java.lang.NullPointerException - if handler is null.
java.lang.SecurityException - if the calling application is not signed.

unregisterHandler
public abstract void unregisterHandler(LightweightTriggerHandler handler)

Unregisters a handler that was previously registered by the registerHandler method.
Parameters:
handler - The handle to unregister.
Throws:
java.lang.IllegalArgumentException - if the handler was not previously registered.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 113

org.ocap.dvr.event
Interface LightweightTriggerSession

public interface LightweightTriggerSession

This interface represents a session created to build an artificial carousel with a DSMCCStreamEvent.

Method Summary
 BufferingRequest getBufferingRequest()

 Gets the BufferingRequest for the
stream type of interest.

 OcapLocator getLocator()
 Gets the locator for the artificial carousel.

 NetworkInterface getNetworkInterface()
 Gets the NetworkInterface for the
stream type of interest.

 int[] getPIDs()
 Get the array of PIDs for the streams with the
stream type of interest.

 RecordingRequest getRecordingRequest()
 Gets the RecordingRequest for the
stream type of interest.

 javax.tv.service.Service getService()
 Gets the broadcast service for which this
session was created.

 javax.tv.service.selection.ServiceContext getServiceContext()
 Gets the ServiceContext for the stream
type of interest.

 short getStreamType()
 Gets the stream type this session was created
for and that the handler registered interest in.

 boolean isAuthorized()
 Returns the CA authorization status for the
stream(s) referenced by getPIDs().

 boolean isPresenting()
 Returns an indication of service containing
stream type is presenting to outputs or display, or if
it is being buffered or recorded in the background.

 void registerEvent(java.util.Date date,
java.lang.String name, int id,
byte[] data)
 Registers a synchronized event to the stream
event list for this session.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

114 CableLabs 5/30/13

Method Summary
 void setStreamChangeListener

(StreamChangeListener listener)
 Sets the listener for this session.

 void stop()
 Stops the session.

 void store()
 Stores the artificial carousel created for an
open session with any permanent recordings made
of any elementary streams in the same program as
the stream type associated with the open session.

Method Detail

getLocator
OcapLocator getLocator()

Gets the locator for the artificial carousel. The locator is only valid during this session. The locator returned
is a valid Locator that is implementation specific and unique to the artificial carousel. The locator returned
SHALL be valid and usable in a ServiceDomain attach method call as long as the service containing the
stream is presenting or is accessible in a time-shift buffer.

The return value is constant for the life of this object.

Returns:
locator Locator of the artificial carousel.

getStreamType
short getStreamType()

Gets the stream type this session was created for and that the handler registered interest in.

The return value is constant for the life of this object.

Returns:
Stream type for this session.

getPIDs
int[] getPIDs()

Get the array of PIDs for the streams with the stream type of interest. The array SHALL be ordered from
lowest PID number to highest. Returns the PIDs for the stream type of interest and that are associated with
this session.

The return value MAY change over the life of this object. Changes are signaled by invocation of
StreamChangeListener.notifyPIDsChanged(int[]) on the set listener.

Returns:
The PIDs for this session.

getService
javax.tv.service.Service getService()

Gets the broadcast service for which this session was created. A reference to a Service object
representing the program for which this session was created SHALL be returned.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 115

The return value is constant for the life of this object.

Returns:
a Service object representing the service

getServiceContext
javax.tv.service.selection.ServiceContext getServiceContext()

Gets the ServiceContext for the stream type of interest.

The return value is constant for the life of this object.

Returns:
If a ServiceContext has selected or is in the process of selecting the service containing the stream type
of interest and the calling application has permission to access it, then the ServiceContext for this
session is returned, otherwise this method returns null.

getBufferingRequest
BufferingRequest getBufferingRequest()

Gets the BufferingRequest for the stream type of interest.

The return value is constant for the life of this object.

Returns:
If the service carrying the stream type of interest is buffering in the background, then the
BufferingRequest for the stream is returned, otherwise this method returns null.

getNetworkInterface
NetworkInterface getNetworkInterface()

Gets the NetworkInterface for the stream type of interest.

The return value is constant for the life of this object.

Returns:
If a NetworkInterface is tuned to the service carrying the stream type of interest it is returned,
otherwise this method returns null.

getRecordingRequest
RecordingRequest getRecordingRequest()

Gets the RecordingRequest for the stream type of interest.

The return value is constant for the life of this object.

Returns:
If an in-progress or transitioning-to-in-progress recording references the service carrying the stream type of
interest, the associated RecordingRequest is returned; otherwise this method returns null.

isPresenting
boolean isPresenting()

Returns an indication of service containing stream type is presenting to outputs or display, or if it is being
buffered or recorded in the background.

The return value MAY change over the life of this object. Changes are signaled by invocation of
StreamChangeListener.notifyPresentationChanged(boolean) on the set listener.

Returns:
True if the service containing stream type of interest is presenting, otherwise returns false.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

116 CableLabs 5/30/13

isAuthorized
boolean isAuthorized()

Returns the CA authorization status for the stream(s) referenced by getPIDs().

The return value MAY change over the life of this object. Changes are signaled by invocation of
StreamChangeListener.notifySessionStopped(int) on the set listener.

Returns:
True if all of the streams are authorized (i.e., can be decrypted); false if otherwise.

registerEvent
void registerEvent(java.util.Date date,
 java.lang.String name,
 int id,
 byte[] data)

Registers a synchronized event to the stream event list for this session.
Parameters:
date - The time when the event is to be generated. The implementation SHALL create JMF media time
from this value for use with presenting broadcast and recorded services.
name - A name for the event being registered. This name SHALL appear in the list of events returned by
the DSMCCStreamEvent getEventList method.
id - The unique identifier of the event.
data - Application specific data associated with the event. This data will be delivered with the
StreamEvent when the media time is incurred in the interested stream during playback. The maximum
size of this data is 4096 bytes.
Throws:
java.lang.IllegalArgumentException - if the name or id already exist, or if the data array
contains more than 4096 byte entries.
java.lang.IllegalStateException - if the session is not open, i.e. has been stopped by the
implementation or an application.

setStreamChangeListener
void setStreamChangeListener(StreamChangeListener listener)

Sets the listener for this session.

If the session has already been stopped by the implementation when the listener is set, then the listener
SHALL be notified immediately via StreamChangeListener.notifySessionStopped(int).

Parameters:
listener - The listener to set. If null any previously set listener is removed.

stop
void stop()

Stops the session. If an artificial carousel was created and the store method was called the carousel is stored
at this time. If the session was already stopped this method does nothing successfully.

store
void store()

Stores the artificial carousel created for an open session with any permanent recordings made of any
elementary streams in the same program as the stream type associated with the open session. The
implementation SHALL adjust the media times in the stored DSMCCStreamEvent so that they occur at

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 117

the same point in the recording presentation as they did in the presentation recorded from. The
implementation SHALL store all events added to the DSMCCStreamEvent while the session is active, i.e.
events added after the
LightweightTriggerHandler.notifyStreamType(org.ocap.dvr.event.Lightweigh
tTriggerSession) method was called and before the stop is called for the session. If a session does
not contain any registered events that fall within the duration of a recording when the session is stopped the
artificial carousel is not stored with the recording. The implementation SHALL update the stored carousel
as soon as an event is registered that falls within the duration of the recording. It is illegal to call this
method after a session has been closed.
Throws:
java.lang.SecurityException - if the calling application does not have file permission granted in
its permission request file.
java.lang.IllegalStateException - if this method is called after the session has been closed, or
if there are no events in the artificial carousel.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

118 CableLabs 5/30/13

org.ocap.dvr.event
Interface StreamChangeListener

public interface StreamChangeListener

This interface represents a listener an application can set in order to listen for events to do with a stream of interest.

Field Summary
static int STREAM_ACTIVITY_ENDED_REASON

 Activity that caused the stream a session was opened for has stopped.
static int STREAM_TYPE_LOST_REASON

 The stream type was lost within the transport stream.
static int TRANSPORT_STREAM_LOST_REASON

 The transport stream a session was opened for was lost.

Method Summary
 void notifyPIDsChanged(int[] pids)

 Notifies a change in the PIDs for the service containing the stream type it is interested in.
 void notifyPresentationChanged(boolean presenting)

 Notifies the presentation status has changed.
 void notifySessionStopped(int reason)

 Notifies the handler the implementation had to stop a session.

Field Detail

TRANSPORT_STREAM_LOST_REASON
static final int TRANSPORT_STREAM_LOST_REASON

The transport stream a session was opened for was lost. Most likely caused by a tune to a different transport
stream.
See Also:
Constant Field Values

STREAM_TYPE_LOST_REASON
static final int STREAM_TYPE_LOST_REASON

The stream type was lost within the transport stream. Indicates the PMT changed and there is no longer a
stream signaled with a stream type the handler is interested in.
See Also:
Constant Field Values

STREAM_ACTIVITY_ENDED_REASON
static final int STREAM_ACTIVITY_ENDED_REASON

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 119

Activity that caused the stream a session was opened for has stopped. This could be caused by a background
recording being stopped due to successful completion or premature termination. If stream activity ends due
to tune away the implementation SHALL generate the TRANSPORT_STREAM_LOST_REASON only. If
stream activity ends for some other reason such as lack of storage the implementation SHALL generate this
reason.
See Also:
Constant Field Values

Method Detail

notifyPIDsChanged
void notifyPIDsChanged(int[] pids)

Notifies a change in the PIDs for the service containing the stream type it is interested in. Changes which
result in no such PIDs SHALL result in the session being stopped. The array returned contains all PIDs in
the service with the stream type of interest.
Parameters:
pids - An array of new PID or PIDs with the stream type for which the application has registered interest.
The array SHALL be ordered from the lowest PID to the highest.

notifyPresentationChanged
void notifyPresentationChanged(boolean presenting)

Notifies the presentation status has changed.
Parameters:
presenting - When true this parameter indicates the service containing the stream type of interest is
presenting to one or more outputs. When false the stream is active as a background stream with no
presentation, e.g. background recording.

notifySessionStopped
void notifySessionStopped(int reason)

Notifies the handler the implementation had to stop a session. The implementation SHALL stop a session if
and only if one of the reasons described by the constants in this interface is encountered. If the
LightweightTriggerSession.store() method was called for this session the artificial carousel
is stored by this method.
Parameters:
reason - The reason the session was stopped.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

120 CableLabs 5/30/13

Appendix I Recording Use Cases (Informative)

This annex describes a number of use cases during the lifetime of a recording and demonstrates state transitions and
error handling. This annex is informative, as requirements for the state changes and error handling are taken from
[TS102817] and normative sections in this specification.

I.1 Use Case: In progress (or in-progress insufficient space) and CA revokes access

If a recording is IN_PROGRESS_STATE and CA removes access to the service being recorded, the implementation
transitions the recording to IN_PROGRESS_WITH_ERROR_STATE and creates a RecordingFailedException with
reason ACCESS_WITHDRAWN. The RecordingFailedException will be associated with the recording prior to its
transition.

If the recording is in IN_PROGRESS_WITH_ERROR_STATE, and CA allows access to the service, the
implementation transitions the recording to IN_PROGRESS_INCOMPLETE_STATE and retains any associated
RecordingFailedException. If the recording’s end time has been reached and no content has been recorded, the
implementation transitions the recording to the FAILED_STATE and retain any associated
RecordingFailedException. If the recording’s end time is reached and content has been recorded, the implementation
will transition the recording to INCOMPLETE_STATE and retain any associated RecordingFailedException.

If the recording is in IN_PROGRESS_INCOMPLETE_STATE and its end time is reached, the implementation will
transition the recording to INCOMPLETE_STATE and retain any associated RecordingFailedException. If CA
denies access to the service, and the recording’s end time has not been reached, the implementation will transition
the recording to IN_PROGRESS_WITH_ERROR_STATE and create a RecordingFailedException with reason
ACCESS_WITHDRAWN. The RecordingFailedException will be associated with the recording prior to its
transition.

I.2 Use Case: In progress (or in-progress insufficient space) and signal is lost

If a recording is IN_PROGRESS_STATE or IN_PROGRESS_INSUFFICIENT_SPACE_STATE and the carrier is
lost (as in cable un-plugged, QAM failure, or similar event), the implementation will transition the recording to
IN_PROGRESS_WITH_ERROR_STATE and create a RecordingFailedException with reason
SERVICE_VANISHED. The RecordingFailedException will be associated with the recording prior to its transition.

The implementation continues to attempt tune of the service until the recording’s end time is reached. If the tune
succeeds prior to the recording’s end time, the implementation will transition the recording to the
IN_PROGRESS_INCOMPLETE_STATE and start recording content. If the recording’s end time is reached and
content has not been recorded, the implementation will transition the recording to the FAILED_STATE and retain
any associated RecordingFailedException. If the recording’s end time has been reached and content has been
recorded, the implementation will transition the recording to the INCOMPLETE_STATE and retain any associated
RecordingFailedException.

If the recording is in the IN_PROGRESS_INCOMPLETE_STATE and tuning fails prior to the recording’s end time,
the implementation will transition the recording to the IN_PROGRESS_WITH_ERROR_STATE and create a
RecordingFailedException with reason SERVICE_VANISHED. The RecordingFailedException will be associated
with the recording prior to its transition. If the recording’s end time has been reached, the implementation will
transition the recording to the INCOMPLETE_STATE and retain any associated RecordingFailedException.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 121

I.3 Use Case: In progress (or in-progress insufficient space) and Resource Contention
denies access to resource for recording

If a recording is IN_PROGRESS_STATE or IN_PROGRESS_INSUFFICIENT_SPACE_STATE and resource
contention handling denies access to the resources (to allow access to resources for something else), then the
implementation must transition the recording to IN_PROGRESS_WITH_ERROR_STATE and create a
RecordingFailedException with reason INSUFFICIENT_RESOURCES. The RecordingFailedException will be
associated with the recording prior to its transition.

If the recording is in the IN_PROGESS_WITH_ERROR_STATE and resource contention allows access to the
resources, the implementation will transition the recording to IN_PROGRESS_INCOMPLETE_STATE and retain
any associated RecordingFailedException. If, in IN_PROGRESS_WITH_ERROR_STATE, the recording’s end time
is reached and no content has been recorded, the implementation will transition the recording to FAILED_STATE
and retain any associated RecordingFailedException. If the recording’s end time has been reached and content has
been recorded, the implementation will transition the recording to INCOMPLETE_STATE and retain any associated
RecordingFailedException.

If the recording is IN_PROGRESS_INCOMPLETE_STATE and RCH denies access to the resources, the
implementation will transition the recording to IN_PROGRESS_WITH_ERROR_STATE and create a
RecordingFailedException with reason INSUFFICIENT_RESOURCES. The RecordingFailedException will be
associated with the recording prior to its transition. If the recording’s end time is reached, the implementation will
transition the recording to INCOMPLETE_STATE and retain any associated RecordingFailedException.

I.4 Use Case: In progress (or in-progress insufficient space) and video/audio data is lost

If a recording is IN_PROGRESS_STATE or IN_PROGRESS_INSUFFICIENT_SPACE_STATE and video/audio
data is lost, the implementation will transition the recording to the IN_PROGRESS_WITH_ERROR_STATE and
create a RecordingFailedException with reason CONTENT_NOT_FOUND. The RecordingFailedException will be
associated with the recording prior to its transition.

The implementation will continue to attempt to find audio/video information on the tuned frequency until the
recording’s end time has been reached. If the implementation successfully finds audio/video information on the tuned
frequency, the implementation will transition the recording to IN_PROGRESS_INCOMPLETE_STATE, start the
recording, and retain any associated RecordingFailedException. If the recording’s end time is reached and no content
has been recorded, the implementation will transition the recording to FAILED_STATE and retain any associated
RecordingFailedException. If the recording’s end time is reached and content has been recorded, the implementation
will transition the recording to the INCOMPLETE_STATE and retain any associated RecordingFailedException.

If the recording is in the IN_PROGRESS_INCOMPLETE_STATE and video/audio data can no longer be found on
the tuned frequency, the implementation will transition the recording to the
IN_PROGRESS_WITH_ERROR_STATE and create a RecordingFailedException with reason
CONTENT_NOT_FOUND. The RecordingFailedException will be associated with the recording prior to its
transition. If the recording’s end time is reached, the implementation will transition the recording to the
INCOMPLETE_STATE and retain any associated RecordingFailedException.

I.5 Use Case: In progress (or in-progress insufficient space) and external drive is
removed

If the recording is IN_PROGRESS_STATE or IN_PROGRESS_INSUFFICIENT_SPACE_STATE and the
MediaStorageVolume associated with the recording (necessary for recording the program) is removed. The
implementation will transition the recording to IN_PROGRESS_WITH_ERROR_STATE and create a

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

122 CableLabs 5/30/13

RecordingFailedException with reason RESOURCES_REMOVED. The RecordingFailedException will be
associated with the recording prior to its transition.

When the recording is in the IN_PROGRESS_WITH_ERROR_STATE and the recording volume is restored, the
implementation will transition the recording to IN_PROGRESS_INCOMPLETE_STATE, restart the recording, and
retain any associated RecordingFailedException. If the recording’s end time is reached and no content has been
recorded, the implementation will transition the recording to FAILED_STATE and retain any associated
RecordingFailedException. If the recording’s end time is reached and content has been recorded, the implementation
will transition the recording to INCOMPLETE_STATE and retain any associated RecordingFailedException.

If the recording is in the IN_PROGRESS_INCOMPLETE_STATE and the recording volume is again removed, the
implementation will transition the recording to the IN_PROGRESS_WITH_ERROR_STATE and create a
RecordingFailedException with reason of RESOURCES_REMOVED. The RecordingFailedException will be
associated with the recording prior to its transition. If the recording’s end time is reached, the implementation will
transition the recording to the INCOMPLETE_STATE and retain any associated RecordingFailedException.

I.6 Use Case: In progress and insufficient space detected or recording space is
exhausted

If the recording is IN_PROGRESS_STATE and the implementation detects that there is not enough storage space
for the recording to complete, the implementation will transition the recording to
IN_PROGRESS_INSUFFICIENT_SPACE_STATE and attempt to free space by deleting expired recordings. If the
recording’s end time is reached, the implementation will transition the recording to COMPLETED_STATE.

If the recording is IN_PROGRESS_INSUFFICIENT_SPACE_STATE and the implementation detects that sufficient
storage space is available to complete the recording, the implementation will transition the recording to
IN_PROGRESS_STATE. If the recording’s end time is reached, then sufficient storage space must have been
present. The implementation will transition the recording to COMPLETED_STATE. If the implementation
determines that no storage space remains for recordings, the implementation will transition the recording to
IN_PROGRESS_WITH_ERROR_STATE and create a RecordingFailedException with reason SPACE_FULL and
attempt to free space by deleting expired recordings. The RecordingFailedException will be associated with the
recording prior to its transition.

If the recording is in the IN_PROGRESS_WITH_ERROR_STATE and the implementation discovers that there is
sufficient space available to finish the recording, the implementation will transition the recording to
IN_PROGRESS_INCOMPLETE_STATE and retain any associated RecordingFailedException. If the recording’s
end time is reached and no content has been recorded, the implementation will transition the recording to the
FAILED_STATE and retain any associated RecordingFailedException. If the recording’s end time is reached and
content has been recorded, the implementation will transition the recording to INCOMPLETE_STATE and retain
any associated RecordingFailedException.

If the recording is in IN_PROGRESS_INCOMPLETE_STATE and the implementation discovers that no storage
space remains for recordings, the implementation will transition the recording to
IN_PROGRESS_WITH_ERROR_STATE and create a RecordingFailedException with reason SPACE_FULL and
attempt to free space by deleting expired recordings. The RecordingFailedException will be associated with the
recording prior to its transition. If the recording’s end time is reached, the implementation will transition the
recording to INCOMPLETE_STATE and retain any associated RecordingFailedException.

I.7 Use Case: About to start and CA does not allow access

When recording is about to start (a recording is either a new request or in PENDING_NO_CONFLICT_STATE and
its start time has been reached), the OCAP implementation scheduler attempts to tune to the specified service.
Authorization for the service must be checked via the CableCARD interface. If authorization fails - decryption of the

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 123

service is not authorized - the implementation must transition the recording to the
IN_PROGRESS_WITH_ERROR_STATE. The implementation will create a new RecordingFailedException with a
failure reason of CA_REFUSED and associate the RecordingFailedException with the recording. The association
will be made prior to the recording’s state transition.

The implementation must monitor CA until the recording’s end time has been reached. If CA succeeds, the
implementation will start the recording and transition the recording to IN_PROGRESS_INCOMPLETE_STATE and
will retain the current RecordingFailedException associated with the recording. If the recording’s end time has been
reached and no content has successfully been recorded, the implementation will transition the recording to the
FAILED_STATE and will retain any associated RecordingFailedException. This is a deviation from [TS102817]. If
the recording’s end time has been reached and content has been recorded, the implementation will transition the
recording to the INCOMPLETE_STATE and retain any associated RecordingFailedException.

While the recording is in the IN_PROGRESS_INCOMPLETE_STATE, the implementation will continue to monitor
CA to the service. If CA fails, and the recording’s end time has not been reached, the implementation will transition
the recording to IN_PROGRESS_WITH_ERROR_STATE, stop the current recording, and create a
RecordingFailedException with failure reason ACCESS_WITHDRAWN. The RecordingFailedException will be
associated with the recording prior to its transition. If the recording’s end time is reached, the implementation will
transition the recording to the INCOMPLETE_STATE and retain any associated RecordingFailedException.

I.8 Use Case: About to start and cannot tune to frequency

When a recording is about to start (the recording is either new or in the PENDING_NO_CONFLICT_STATE and
the recording’s start time has been reached), the OCAP implementation attempts to tune to the required service. If
the tune fails, the implementation transitions the recording to the IN_PROGRESS_WITH_ERROR_STATE and
creates a RecordingFailedException with a reason of TUNING_FAILURE. The RecordingFailedException is
associated with the recording prior to its transition.

The implementation continues to attempt tune of the service until the recording’s end time is reached. If the tune
succeeds prior to the recording’s end time, the implementation will transition the recording to the
IN_PROGRESS_INCOMPLETE_STATE and start recording content. If the recording’s end time is reached and
content has not been recorded, the implementation will transition the recording to the FAILED_STATE and retain
any associated RecordingFailedException. If the recording’s end time has been reached and content has been
recorded, the implementation will transition the recording to the INCOMPLETE_STATE and retain any associated
RecordingFailedException.

If the recording is in the IN_PROGRESS_INCOMPLETE_STATE and tuning fails prior to the recording’s end time,
the implementation will transition the recording to the IN_PROGRESS_WITH_ERROR_STATE and create a
RecordingFailedException with reason SERVICE_VANISHED. The RecordingFailedException will be associated
with the recording prior to its transition. If the recording’s end time has been reached, the implementation will
transition the recording to the INCOMPLETE_STATE and retain any associated RecordingFailedException.

I.9 Use Case: About to start and cannot find video/audio on frequency

When a recording is about to start (the recording is either new or in the PENDING_NO_CONFLICT_STATE and
the recording’s start time has been reached), the OCAP implementation tunes to the specified frequency and attempts
to decode any specified audio and/or video streams. If data is not available (or corrupt) at the tuned frequency such
that audio/video cannot be decoded, the implementation will transition the recording to
IN_PROGRESS_WITH_ERROR_STATE and create a RecordingFailedException with reason
CONTENT_NOT_FOUND. The RecordingFailedException will be associated with the recording prior to its state
transition.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

124 CableLabs 5/30/13

The implementation will continue to attempt to find audio/video information on the tuned frequency until the
recording’s end time has been reached. If the implementation successfully finds audio/video information on the tuned
frequency, the implementation will transition the recording to IN_PROGRESS_INCOMPLETE_STATE, start the
recording and retain any associated RecordingFailedException. If the recording’s end time is reached and no content
has been recorded, the implementation will transition the recording to FAILED_STATE and retain any associated
RecordingFailedException. If the recording’s end time is reached and content has been recorded, the implementation
will transition the recording to the INCOMPLETE_STATE and retain any associated RecordingFailedException.

If the recording is in the IN_PROGRESS_INCOMPLETE_STATE and video/audio data can no longer be found on
the tuned frequency, the implementation will transition the recording to the
IN_PROGRESS_WITH_ERROR_STATE and create a RecordingFailedException with reason
CONTENT_NOT_FOUND. The RecordingFailedException will be associated with the recording prior to its
transition. If the recording’s end time is reached, the implementation will transition the recording to the
INCOMPLETE_STATE and retain any associated RecordingFailedException.

I.10 Use Case: About to start and bandwidth for decode is not available

When a recording is about to start (the recording is either new or in the PENDING_NO_CONFLICT_STATE and
the recording’s start time has been reached) and an implementation is able to determine that bandwidth is not
available to decode the specified program, and the implementation can determine that adequate bandwidth may
become available (i.e., the device supports the required bandwidth but current use has consumed all or most of the
bandwidth), then the implementation will transition the recording to IN_PROGRESS_WITH_ERROR_STATE and
create a RecordingFailedException with reason OUT_OF_BANDWIDTH. The RecordingFailedException will be
associated with the recording prior to its transition.

If the implementation can determine that bandwidth is not available and that bandwidth will not become available
(i.e., the requested bandwidth is not supported by the device), then the implementation will transition the recording
to FAILED_STATE and create a RecordingFailedException with reason OUT_OF_BANDWIDTH. The
RecordingFailedException will be associated with the recording prior to its transition.

If it is not possible to determine the bandwidth when a recording starts, the implementation will transition the
recording to IN_PROGRESS_STATE and attempt to start the recording. If it is determined that bandwidth is not
available after this transition, the implementation will transition the recording to
IN_PROGRESS_WITH_ERROR_STATE and create a RecordingFailedException with reason
OUT_OF_BANDWIDTH. The RecordingFailedException will be associated with the recording prior to its
transition.

If the recording is IN_PROGRESS_WITH_ERROR_STATE and the implementation can determine that bandwidth
will not become available for the recording, or the recording’s end time has been reached, and no content has been
recorded for the program, the implementation will transition the recording to FAILED_STATE and create a
RecordingFailedException with reason OUT_OF_BANDWIDTH. The RecordingFailedException will be associated
with the recording prior to its transition. However, if bandwidth becomes available prior to the recording’s end time,
the implementation will transition the recording to IN_PROGRESS_INCOMPLETE_STATE and retain any
associated RecordingFailedException. If the recording’s end time has been reached, or it can be determined that
bandwidth will not become available, and content has been recorded, the implementation will transition the recording
to INCOMPLETE_STATE and retain any associated RecordingFailedException.

If the recording is in the IN_PROGRESS_INCOMPLETE_STATE and bandwidth is lost prior to reaching the
recording’s end time, then the implementation will transition the recording to
IN_PROGRESS_WITH_ERROR_STATE and create a RecordingFailedException with reason
OUT_OF_BANDWIDTH. The RecordingFailedException will be associated with the recording prior to its
transition. If the recording’s end time is reached, the implementation will stop the recording and transition the
recording to INCOMPLETE_STATE and retain any associated RecordingFailedException.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 125

I.11 Use Case: About to start and insufficient space for recording

When a recording is about to start (the recording is either new or in the PENDING_NO_CONFLICT_STATE and
the recording’s start time has been reached), the OCAP implementation checks for available storage space to
complete the recording. If no space is available, the implementation will transition the recording to the
IN_PROGRESS_WITH_ERROR_STATE and create a RecordingFailedException with failure reason
SPACE_FULL. The RecordingFailedException will be associated with the recording prior to its transition. If
enough space is available such that the recording can begin, the implementation will transition the recording to the
IN_PROGRESS_INSUFFICIENT_SPACE_STATE and begin to record content.

When the recording is in the IN_PROGRESS_WITH_ERROR_STATE, the implementation will monitor space to
determine availability. If enough space becomes available such that the recording can start, and the recording’s end
time has not been reached, the implementation will transition the recording to the
IN_PROGRESS_INCOMPLETE_STATE and retain any associated RecordingFailedException. If the recording’s
end time has been reached and no content has been recorded, the implementation will transition the recording to the
FAILED_STATE and retain any associated RecordingFailedException. If the recording’s end time has been reached
and content has been recorded, the implementation will transition the recording to the INCOMPLETE_STATE and
retain any associated RecordingFailedException.

If the Recording is in the IN_PROGRESS_INCOMPLETE_STATE and space is exhausted (no more storage space
is available for recording), the implementation will stop the recording. If the recording’s end time has not been
reached, the implementation will transition the recording into the IN_PROGRESS_WITH_ERROR_STATE and
create a RecordingFailedException with failure reason SPACE_FULL. The RecordingFailedException will be
associated with the recording prior to its transition. If the recording’s end time has been reached, the implementation
will transition the recording to the INCOMPLETE_STATE and retain any associated RecordingFailedException.

If the recording is in the IN_PROGRESS_INSUFFICIENT_SPACE_STATE and recording space is exhausted (no
more storage space is available for recording), the implementation will stop the recording and transition it into the
IN_PROGRESS_WITH_ERROR_STATE. The implementation will create a RecordingFailedException with failure
reason of SPACE_FULL and associate the RecordingFailedException with the recording, prior to the recording’s
transition. However, if space becomes available (while the recording is in the
IN_PROGRESS_INSUFFICIENT_SPACE_STATE) the implementation will transition the recording to the
IN_PROGRESS_STATE. If the recording’s end time is reached (while the recording is in the
IN_PROGRESS_INSUFFICIENT_SPACE_STATE), then space must have been available for the recording. The
implementation will transition the recording to the COMPLETED_STATE.

If the recording is in the IN_PROGRESS_STATE and the implementation determines that there is not sufficient
space for the recording to complete, the implementation will transition the recording to the
IN_PROGRESS_INSUFFICIENT_SPACE_STATE. If the recording’s end time has been reached, the
implementation will transition the recording to the COMPLETED_STATE.

I.12 Use Case: Power restored and recording was previously in progress, scheduled end
time has not been reached

Upon power restoration, the implementation will examine all recordings to determine if recordings were in
IN_PROGRESS_STATE, IN_PROGRESS_WITH_ERROR_STATE,
IN_PROGRESS_INSUFFICIENT_SPACE_STATE, or IN_PROGRESS_INCOMPLETE_STATE. When the
implementation discovers a recording in this state, whose start time is in the past and whose end time is in the future,
the implementation will transition the recording to the IN_PROGRESS_WITH_ERROR_STATE and create a
RecordingFailedException with reason of POWER_INTERRUPTION. The RecordingFailedException will be
associated with the recording prior to its transition.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

126 CableLabs 5/30/13

When the recording is in the IN_PROGRESS_WITH_ERROR_STATE, the implementation will monitor the cause
of the error and attempt to restart the recording if the condition goes away, until the recording's end time is reached.
If the recording is successfully restarted, the implementation will transition the recording to
IN_PROGRESS_INCOMPLETE_STATE and retain any associated RecordingFailedException. If the recording’s
end time is reached and no content has been recorded, then the implementation will transition the recording to
FAILED_STATE and retain any associated RecordingFailedException. If the recording’s end time is reached and
content has been recorded, the implementation will transition the recording to INCOMPLETE_STATE and retain
any associated RecordingFailedException.

If the recording is in the IN_PROGRESS_INCOMPLETE_STATE and a failure is detected, the implementation will
transition the recording to the IN_PROGRESS_WITH_ERROR_STATE and create the appropriate
RecordingFailedException (as described in this document). The RecordingFailedException will be associated with
recording prior to its transition. If the recording’s end time is reached, the implementation will transition the
recording to the INCOMPLETE_STATE and retain any associated RecordingFailedException.

I.13 Use Case: Power restored and recording was previously in progress, scheduled end
time has been reached

Upon power restoration, the implementation will examine all recordings to determine if recordings were in
IN_PROGRESS_STATE, IN_PROGRESS_WITH_ERROR_STATE,
IN_PROGRESS_INSUFFICIENT_SPACE_STATE, or IN_PROGRESS_INCOMPLETE_STATE. If a recording in
found in one of these states, and its end time has been reached and no content has been recorded, the implementation
will transition the recording to FAILED_STATE and create a RecordingFailedException with reason
POWER_INTERRUPTION. The RecordingFailedException will be associated with the recording prior to its
transition. If content has been recorded, the implementation will transition the recording to the
INCOMPLETE_STATE and create a RecordingFailedException with reason POWER_INTERRUPTION. The
RecordingFailedException will be associated with the recording prior to its transition.

I.14 Use Case: Power restored and recording was pending no conflict, scheduled start
time has been reached/exceeded, end time has not been reached

Upon power restoration, the implementation will examine all recordings in PENDING_WITH_CONFLICT_STATE
and PENDING_NO_CONFLICT_STATE. If a recording is found in PENDING_NO_CONFLICT, its start time is in
the past, and its end time is in the future, the implementation will transition the recording to
IN_PROGRESS_WITH_ERROR_STATE and create a RecordingFailedException with reason
POWER_INTERRUPTION. The RecordingFailedException will be associated with the recording prior to its
transition.

When the recording is in the IN_PROGRESS_WITH_ERROR_STATE, the implementation will attempt to start the
recording until its end time is reached. If the recording is successfully started, the implementation will transition the
recording to IN_PROGRESS_INCOMPLETE_STATE and retain any associated RecordingFailedException. If the
recording’s end time is reached and no content has been recorded, the implementation will transition the recording to
FAILED_STATE and retain any associated RecordingFailedException. If the recording’s end time is reached and
content has been recorded, the implementation will transition the recording to INCOMPLETE_STATE and retain
any associated RecordingFailedException.

When the recording is in the IN_PROGRESS_INCOMPLETE_STATE and an error occurs, the implementation will
transition the recording to IN_PROGRESS_WITH_ERROR_STATE and create an appropriate
RecordingFailedException, as specified in this document. The RecordingFailedException will be associated with the
recording prior to its transition. If the recording’s end time is reached, the implementation will transition the
recording to INCOMPLETE_STATE and retain any associated RecordingFailedException.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 127

I.15 Use Case: Power restored and recording was pending no conflict, scheduled end
time has been reached/exceeded

Upon power restoration, the implementation will examine all recordings in PENDING_WITH_CONFLICT_STATE
and PENDING_NO_CONFLICT_STATE. If a recording is found in PENDING_NO_CONFLICT and its end time
is in the past, the implementation will transition the recording to FAILED_STATE and create a
RecordingFailedException with reason POWER_INTERRUPTION.

I.16 Use Case: Power restored and recording was pending with conflict, scheduled start
time has been reached/exceeded

When power is restored, the implementation will examine all recordings that were/are in
PENDING_WITH_CONFLICT_STATE, PENDING_NO_CONFLICT_STATE, IN_PROGRESS_STATE,
IN_PROGRESS_INSUFFICIENT_SPACE_STATE, IN_PROGRESS_WITH_ERROR_STATE, or
IN_PROGRESS_INCOMPLETE_STATE. For each recording found in the
PENDING_WITH_CONFLICT_STATE, if the recording’s scheduled start time occurs in the past, the
implementation will transition the recording to the FAILED_STATE and create a RecordingFailedException with
reason INSUFFICIENT_RESOURCES. The RecordingFailedException will be associated with the recording prior
to its transition.

An illustration of this transition can be found below.

I.17 Use Case: Recording’s start time reached/exceeded, recording pending with conflict

If a recording is in the PENDING_WITH_CONFLICT_STATE and its scheduled start time has been reached (or
occurs in the past), the implementation will transition the recording to the IN_PROGRESS_WITH_ERROR_STATE
and create a RecordingFailedException with reason INSUFFICIENT_RESOURCES. The RecordingFailedException
will be associated with the recording prior to its transition.

When in the IN_PROGRESS_WITH_ERROR_STATE, if resource contention activity releases resources or changes
the priority order of the recording such that resources can be reserved by the recording, the implementation will
transition the recording to the IN_PROGRESS_INCOMPLETE_STATE and retain any associated
RecordingFailedException. If the end time is reached and content has not been recording, the implementation will
transition the recording to the FAILED_STATE and retain any associated RecordingFailedException. If the end time
is reached and content has been recorded, the implementation will transition the recording to the
INCOMPLETE_STATE and retain any associated RecordingFailedException.

When in the IN_PROGRESS_INCOMPLETE_STATE, if an error occurs before the recording’s end time, the
implementation will transition the recording to the IN_PROGRESS_WITH_ERROR_STATE and create a
RecordingFailedException as specified in this document (appropriate for the failure). If the end time is reached and
content has not been recorded, the implementation will transition the recording to the FAILED_STATE and retain
any associated RecordingFailedException. If the end time is reached and content has been recorded, the
implementation will transition the recording to INCOMPLETE_STATE and retain any associated
RecordingFailedException.

If power is restored, the recording is in the PENDING_WITH_CONFLICT_STATE, and the recording’s end-time
occurs in the past, the implementation will transition the recording to the FAILED_STATE and create a
RecordingFailedException with reason POWER_INTERRUPTED. The RecordingFailedException will be
associated with the recording prior to its transition.

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

128 CableLabs 5/30/13

I.18 Use Case: Recording in-progress is stopped by application (USER_STOP)

If the recording is in IN_PROGRESS_STATE, IN_PROGRESS_INSUFFICIENT_SPACE_STATE,
IN_PROGRESS_WITH_ERROR_STATE, or IN_PROGRESS_INCOMPLETE_STATE and the application stops
the recording: If content has been recorded, the implementation will transition the recording to the
INCOMPLETE_STATE; If content has not been recorded, the implementation will transition the recording to
FAILED_STATE. The implementation will create a RecordingFailedException with reason USER_STOP. The
RecordingFailedException will be associated with the recording prior to its transition.

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 129

Appendix II Revision History (Informative)

II.1 ECNs included in OC-SP-OCAP-DVR-I02-050524

ECN Date
Accepted

Summary

OCAP-DVR-N-04.0647-3 8/23/04 Improving design of RecordingManager.record().

OCAP-DVR-N-04.0657-1 8/23/04 Support for JMF controls not specified when playing recorded content.

OCAP-DVR-N-04.0658-1 8/23/04 Support for recorded content playback via JMF.

OCAP-DVR-N-04.0695-2 11/2/04 Time shift options (All Java).

OCAP-DVR-N-04.0707-1 11/18/04 Recorded Applications.

OCAP-DVR-N-04.0719-1 1/6/05 AES Security Change

OCAP-DVR-N-05.0738-3 5/3/05 Establishment of a Common Core.

II.2 ECNs included in OC-SP-OCAP-DVR-I03-070508

ECN Date
Accepted

Summary

OCAP-DVR-N-05.0798-2 7/19/05 Time Shift Buffer Allocation

OCAP-DVR-N-05.0805-5 12/12/05 MHP PDR Compliance

OCAP-DVR-N-05.0806-3 10/13/05 Deletion Policy

OCAP-DVR-N-05.0817-8 5/2/06 Seamless TimeShift Buffer

OCAP-DVR-N-05.0818-3 11/2/05 Mistakes in Java API method signatures

OCAP-DVR-N-05.0819-1 10/20/05 Reset a content playback rate to 1.0 when an application that set the rate is
terminated.

OCAP-DVR-N-05.0829-1 12/12/05 Identifying a RecordingRequest after deletion

OCAP-DVR-N-05.0830-2 12/12/05 Recording Priority

OCAP-DVR-N-05.0836-3 1/17/06 Remove obsolete Table 10-2; add clarifying wording

OCAP-DVR-N-05.0842-1 12/19/05 System property identifying DVR extension

OCAP-DVR-N-05.0856-2 1/31/06 Scheduled recording delay at cold boot

OCAP-DVR-N-06.0862-2 2/14/06 Don't allow rate change to prevent unexpected change of a playback state

OCAP-DVR-N-06.0863-1 2/7/06 Correction of System property identifying DVR extension

OCAP-DVR-N-06.0874-1 5/11/06 Legal states for setRecordingProperties

OCAP-DVR-N-06.0887-2 5/16/06 Recording in standby without presentation

OCAP-DVR-N-06.0891-2 5/16/06 Free Space Listener

OCAP-DVR-N-06.0892-1 5/30/06 Typo of RECORDED_SERVICE_TYPE

OCAP-DVR-N-06.0897-4 7/11/06 ServiceDetails clarification

OCAP-DVR-N-06.0898-3 9/21/06 Clarification of events during playback of recorded contents

OCAP-DVR-N-06.0903-1 6/29/06 Clarification of a return value of a record() method

OCAP-DVR-N-06.0911-10 2/8/07 Media Time Tags

OCAP-DVR-N-06.0929-3 11/16/06 Disabled MediaStorageVolume

OCAP-DVR-N-06.0931-1 9/21/06 Set Presentation

OCAP-DVR-N-06.0943-1 10/31/06 TimeShiftProperties imports

OCAP-DVR-N-07.0977-2 2/8/07 OcapRecordingProperties fix

OC-SP-OCAP-DVR-I09-130530 OCAP Extensions

130 CableLabs 5/30/13

ECN Date
Accepted

Summary

OCAP-DVR-N-07.0994-2 4/24/07 Recording Permissions PRF Extension

OCAP-DVR-N-07.1017-1 4/24/07 MHP-PVR (A088r2) common core compliance

II.3 ECNs included in OC-SP-OCAP-DVR-I04-071220

ECN Date
Accepted

Summary

OCAP-DVR-N-07.1027-3 6/26/07 Stream_type 0xC0 for ETV support

OCAP-DVR-N-07.1048-2 8/14/07 LightweightTriggerSession method additions

OCAP-DVR-N-07.1049-1 9/18/07 Add resource priority to OcapRecordingProperties

OCAP-DVR-N-07.1057-1 7/16/07 Clarify organization name string usage

OCAP-DVR-N-07.1062-1 7/16/07 Correct ocap:monitorapplication reference

OCAP-DVR-N-07.1070-1 9/18/07 DVR SharedResourceUsage extends OCAP SharedResource Usage

OCAP-DVR-N-07.1076-2 10/2/07 Clarify recording to a detached device

OCAP-DVR-N-07.1084-1 9/25/07 Corrections regarding Lightweight triggers

OCAP-DVR-N-07.1096-1 10/16/07 Add TimeShiftProperties.removeTimeShiftListener() method

OCAP-DVR-N-07.1098-1 10/16/07 MediaStorageVolume.getFreeSpace accounts for all uses

II.4 ECNs included in OC-SP-OCAP-DVR-I05-090612

ECN Date
Accepted

Summary

OCAP-DVR-N-07.1135-2 1/22/08 ResourceUsage clarification: Disambiguate implicit TSB used for recording from
BWP

OCAP-DVR-N-07.1157-2 2/19/08 Changes to Recording Playback Listener

OCAP-DVR-N-08.1175-2 3/25/08 LightweightTriggers and encrypted streams

OCAP-DVR-N-08.1180-1 3/25/08 Update GEM PVR reference in DVR spec

OCAP-DVR-N-08.1183-1 3/25/08 Recording Resources

OCAP-DVR-N-08.1184-1 3/25/08 6.2.1.1.1 RecordingRequest should be RecordingSpec

OCAP-DVR-N-08.1197-3 4/22/08 Add behavior of DVR during EAS

OCAP-DVR-N-08.1252-1 7/14/08 FrameControl.move for non-paused players

OCAP-DVR-N-08.1258-3 6/12/09 Specific RecordingFailedException reasons for certain errors

OCAP-DVR-N-08.1259-2 6/12/09 Extend callable methods for deleted RecordingRequest

OCAP-DVR-N-08.1275-2 6/12/09 Additional clarifications for LightweightTriggerHandler notification

OCAP-DVR-N-08.1279-1 6/12/09 Add getService method to LightweightTriggerSession

OCAP-DVR-N-08.1296-1 6/12/09 Correct DvbServiceContext.getNI issue in GEM DVR

OCAP-DVR-N-08.1321-2 6/12/09 Recording State Transitions and Failed Reasons changes and clarifications

OCAP-DVR-N-08.1325-4 6/12/09 OcapRecordingProperties clarifications and OcapRecordingRequest.setParent
method

OCAP-DVR-N-08.1349-5 6/12/09 Synchronous Methods Clarification

OCAP-DVR-N-09.1390-1 6/12/09 Update references to base OCAP and Host specs

OCAP-DVR-N-09.1391-1 6/12/09 Remove DVR Unchecked Exceptions

OCAP Digital Video Recorder (DVR) OC-SP-OCAP-DVR-I09-130530

5/30/13 CableLabs 131

II.5 ECN included in OC-SP-OCAP-DVR-I06-100603

ECN Date
Accepted

Summary

OCAP-DVR-N-09.1471-4 6/3/10 TSB Interruption

II.6 ECNs included in OC-SP-OCAP-DVR-I07-110512

ECN Date
Accepted

Summary

OCAP-DVR-N-10.1553-2 5/12/11 Clarify state change behavior using LeafRecordingRequest.stop() method

OCAP-DVR-N-10.1578-1 5/12/11 Storage limited DVR Profile

OCAP-DVR-N-10.1594-1 5/12/11 Synchronous Stop Behavior

OCAP-DVR-N-11.1666-3 5/12/11 OCAP DVR Reference edits for OpenCable bundle inclusion

II.7 ECN included in OC-SP-OCAP-DVR-I08-120112

ECN Date
Accepted

Summary

OCAP-DVR-N-11.1722-1 1/12/12 DVR:SharedResourceUsage changes for NetResourceUsage API

II.8 ECNs included in OC-SP-OCAP-DVR-I09-130530

ECN Date
Accepted

Summary Author

OCAP-DVR-N-13.1825-1 5/30/13 Deletion of Recording Requests Millard

OCAP-DVR-N-13.1837-2 5/30/13
Orphaned RecordingService When MediaStorageVolume is
Unavailable

Millard

OCAP-DVR-N-13.1838-1 5/30/13 RecordingSpec TSB Clarification Millard

	1 SCOPE
	1.1 OCAP DVR Purpose
	1.2 OCAP DVR Requirements
	1.3 OCAP DVR Application Areas (informative)
	1.3.1 Personal Video Recorder (PVR)
	1.3.2 Time Shift
	1.3.3 Pushed Content

	2 REFERENCES
	2.1 Normative References
	2.2 Reference Acquisition
	2.2.1 OpenCable Bundle Requirements
	2.2.2 Other References

	3 DEFINITIONS AND ABBREVIATIONS
	3.1 Definitions
	3.2 Abbreviations

	4 CONVENTIONS
	4.1 Specification Language
	4.2 Organization

	5 GENERAL CONSIDERATIONS
	5.1 Introduction
	5.2 Relationship with OCAP and GEM Specifications
	5.3 Basic Architecture (Informative)
	5.3.1 Limited Storage Profile

	5.4 API Support Properties
	5.5 EAS

	6 RECORDING AND PLAYBACK PROCESS
	6.1 DVB-GEM Specification Correspondence
	6.2 OCAP DVR Specific Requirements
	6.2.1 Extensions to [TS102817] MHP PVR/PDR Common Core

	7 RECORDING AND PLAYBACK APIS
	7.1 DVB-GEM Specification Correspondence
	7.2 OCAP DVR Specific Requirements
	7.2.1 Extensions to [TS102817] MHP PVR/PDR Common Core

	8 SIGNALING
	9 APPLICATION MODEL
	10 SECURITY
	10.1 DVB-GEM Specification Correspondence
	10.2 OCAP DVR Specific Requirements
	10.2.1 Extensions to [TS102817] MHP PVR/PDR Common Core

	11 MINIMUM PLATFORM CAPABILITIES
	11.1 DVB-GEM Specification Correspondence
	11.2 OCAP DVR Specific Requirements
	11.2.1 Extensions to [TS102817] MHP PVR/PDR Common Core

	12 REGISTRY OF CONSTANTS
	Annex A Application Recording Description (Normative)
	A.1 DVB-GEM Specification Correspondence

	Annex B Responsibilities of this Specification (Informative)
	Annex C External References; Errata, Clarifications, and Exemptions (Normative)
	C.1 DVB-GEM Specification Correspondence
	C.2 org.ocap.shared.dvr.ServiceRecordingSpec
	C.3 org.ocap.shared.dvr.LocatorRecordingSpec

	Annex D OCAP DVR API (org.ocap.dvr)
	Annex E OCAP DVR Storage API (org.ocap.dvr.storage)
	Annex F OCAP Shared DVR API (org.ocap.shared.dvr) - see [TS102817]
	Annex G OCAP Shared DVR Navigation API (org.ocap.shared.dvr.navigation) - see [TS102817]
	Annex H OCAP Shared Media API (org.ocap.shared.media) - see [TS102817]
	Annex I (void)
	Annex J OCAP DVR Event API (org.ocap.dvr.event)
	Appendix I Recording Use Cases (Informative)
	I.1 Use Case: In progress (or in-progress insufficient space) and CA revokes access
	I.2 Use Case: In progress (or in-progress insufficient space) and signal is lost
	I.3 Use Case: In progress (or in-progress insufficient space) and Resource Contention denies access to resource for recording
	I.4 Use Case: In progress (or in-progress insufficient space) and video/audio data is lost
	I.5 Use Case: In progress (or in-progress insufficient space) and external drive is removed
	I.6 Use Case: In progress and insufficient space detected or recording space is exhausted
	I.7 Use Case: About to start and CA does not allow access
	I.8 Use Case: About to start and cannot tune to frequency
	I.9 Use Case: About to start and cannot find video/audio on frequency
	I.10 Use Case: About to start and bandwidth for decode is not available
	I.11 Use Case: About to start and insufficient space for recording
	I.12 Use Case: Power restored and recording was previously in progress, scheduled end time has not been reached
	I.13 Use Case: Power restored and recording was previously in progress, scheduled end time has been reached
	I.14 Use Case: Power restored and recording was pending no conflict, scheduled start time has been reached/exceeded, end time has not been reached
	I.15 Use Case: Power restored and recording was pending no conflict, scheduled end time has been reached/exceeded
	I.16 Use Case: Power restored and recording was pending with conflict, scheduled start time has been reached/exceeded
	I.17 Use Case: Recording’s start time reached/exceeded, recording pending with conflict
	I.18 Use Case: Recording in-progress is stopped by application (USER_STOP)

	Appendix II Revision History (Informative)
	II.1 ECNs included in OC-SP-OCAP-DVR-I02-050524
	II.2 ECNs included in OC-SP-OCAP-DVR-I03-070508
	II.3 ECNs included in OC-SP-OCAP-DVR-I04-071220
	II.4 ECNs included in OC-SP-OCAP-DVR-I05-090612
	II.5 ECN included in OC-SP-OCAP-DVR-I06-100603
	II.6 ECNs included in OC-SP-OCAP-DVR-I07-110512
	II.7 ECN included in OC-SP-OCAP-DVR-I08-120112
	II.8 ECNs included in OC-SP-OCAP-DVR-I09-130530

