Superseded

by a later version of this document PacketCable™ 1.5 Specifications

Management Event Mechanism

PKT-SP-MEM1.5-I03-070412

ISSUED

Notice

This PacketCable specification is a cooperative effort undertaken at the direction of Cable Television Laboratories, Inc. (CableLabs[®]) for the benefit of the cable industry. Neither CableLabs, nor any other entity participating in the creation of this document, is responsible for any liability of any nature whatsoever resulting from or arising out of use or reliance upon this document by any party. This document is furnished on an AS-IS basis and neither CableLabs, nor other participating entity, provides any representation or warranty, express or implied, regarding its accuracy, completeness, or fitness for a particular purpose.

© Copyright 2004-2007 Cable Television Laboratories, Inc.

All rights reserved.

Document Status Sheet

Document Control Number:	PKT-SP-MEM	1.5-103-070412		
Document Title:	Management	Event Mechanis	m	
Revision History:	I01 – Issued January 28, 2005			
	102 – Issued A	ugust 12, 2005		
	103 – Issued A	pril 12, 2007		
Date:	April 12, 2007			
Status:	Work in Progress	Draft	Issued	Closed
Distribution Restrictions:	Author Only	CL/Member	CL/ Member/ Vendor	Public

Key to Document Status Codes:

Work in Progress	An incomplete document, designed to guide discussion and generate feedback that may include several alternative requirements for consideration.
Draft	A document in specification format considered largely complete, but lacking review by Members and vendors. Drafts are susceptible to substantial change during the review process.
Issued	A stable document, which has undergone rigorous member and vendor review and is suitable for product design and development, cross-vendor interoperability, and for certification testing.
Closed	A static document, reviewed, tested, validated, and closed to further engineering change requests to the specification through CableLabs.

TRADEMARKS:

DOCSIS[®], eDOCSISTM, PacketCableTM, CableHome[®], CableOfficeTM, OpenCableTM, OCAPTM, CableCARDTM, M-CMTSTM and CableLabs[®] are trademarks of Cable Television Laboratories, Inc.

Contents

1	INTRODUCTION1	
	1.1 Purpose	
	1.2 Scope1	
	1.3 Organization of Document1	
2	REFERENCES2)
	2.1 Normative References	2
	2.2 Informative References	2
	2.3 Reference Acquisition)
3	TERMS AND DEFINITIONS	;
4	ABBREVIATIONS AND ACRONYMS4	ŀ
5	BACKGROUND11	
6	PACKETCABLE MANAGEMENT EVENT MECHANISM FUNCTIONAL REQUIREMENTS12	2
7	MANAGEMENT EVENT REPORTING MECHANISM14	ļ
	7.1 Event Notification Categories14	Ļ
	7.1.1 Event ID Assignments	ŀ
	7.1.1 Event ID Assignments	ŀ
	7.1.1 Event ID Assignments 14 7.2 PacketCable Management Event Format 14 7.3 PacketCable Management Event Access Method 15	
	7.1.1 Event ID Assignments147.2 PacketCable Management Event Format147.3 PacketCable Management Event Access Method157.4 Management Event ID15	+ 5 5
	7.1.1 Event ID Assignments147.2 PacketCable Management Event Format147.3 PacketCable Management Event Access Method157.4 Management Event ID157.5 Management Event Severities15	555
	7.1.1 Event ID Assignments147.2 PacketCable Management Event Format147.3 PacketCable Management Event Access Method157.4 Management Event ID157.5 Management Event Severities157.5.1 Changing Default Event Severities16	
	7.1.1 Event ID Assignments 14 7.2 PacketCable Management Event Format 14 7.3 PacketCable Management Event Access Method 15 7.4 Management Event ID 15 7.5 Management Event Severities 15 7.5.1 Changing Default Event Severities 16 7.6 Notification Mechanism 16	
	7.1.1Event ID Assignments147.2PacketCable Management Event Format147.3PacketCable Management Event Access Method157.4Management Event ID157.5Management Event Severities157.5.1Changing Default Event Severities167.6Notification Mechanism167.7Local Log of Events16	
	7.1.1 Event ID Assignments147.2 PacketCable Management Event Format147.3 PacketCable Management Event Access Method157.4 Management Event ID157.5 Management Event Severities157.5.1 Changing Default Event Severities167.6 Notification Mechanism167.7 Local Log of Events167.8 Syslog17	
	7.1.1Event ID Assignments147.2PacketCable Management Event Format147.3PacketCable Management Event Access Method157.4Management Event ID157.5Management Event Severities157.5.1Changing Default Event Severities167.6Notification Mechanism167.7Local Log of Events167.8Syslog177.8.1Syslog Message Format177.8.2PRI Part of a Syslog Packet17	
	7.1.1Event ID Assignments147.2PacketCable Management Event Format147.3PacketCable Management Event Access Method157.4Management Event ID157.5Management Event Severities157.5.1Changing Default Event Severities167.6Notification Mechanism167.7Local Log of Events167.8Syslog177.8.1Syslog Message Format177.8.2PRI Part of a Syslog Packet177.8.3MSG Part of a Syslog Packet17	
	7.1.1Event ID Assignments147.2PacketCable Management Event Format147.3PacketCable Management Event Access Method157.4Management Event ID157.5Management Event Severities157.5.1Changing Default Event Severities167.6Notification Mechanism167.7Local Log of Events167.8Syslog177.8.1Syslog Message Format177.8.2PRI Part of a Syslog Packet177.8.3MSG Part of a Syslog Packet177.9Event Throttling19	
	7.1.1Event ID Assignments147.2PacketCable Management Event Format147.3PacketCable Management Event Access Method157.4Management Event ID157.5Management Event Severities157.5.1Changing Default Event Severities167.6Notification Mechanism167.7Local Log of Events167.8Syslog177.8.1Syslog Message Format177.8.3MSG Part of a Syslog Packet177.9Event Throttling197.10Severity and Priority Definition19	
8	7.1.1Event ID Assignments147.2PacketCable Management Event Format147.3PacketCable Management Event Access Method157.4Management Event ID157.5Management Event Severities157.5.1Changing Default Event Severities167.6Notification Mechanism167.7Local Log of Events167.8Syslog177.8.1Syslog Message Format177.8.2PRI Part of a Syslog Packet177.8.3MSG Part of a Syslog Packet177.9Event Throttling19	

APPENDIX B PACKETCABLE-DEFINED POWERING EVENTS	25
APPENDIX C ACKNOWLEDGEMENTS	27
APPENDIX D REVISION HISTORY	28

Tables

Table 1 - Example PacketCable defined Event	18
Table 2 - Example Vendor-specific Event	18
Table 3 - Example Management Event Data	21
Table 4 - Provisioning Events	22
Table 5 - Powering Events	25

Superseded 1 INTRODUCTION by a later version of this document

1.1 Purpose

This specification defines the Management Event Mechanism that PacketCable elements can use to report asynchronous events that indicate malfunction situations and notification about important non-fault situation.

Events are defined in this specification as conditions requiring the reporting of information to management systems and/or local log.

A goal of PacketCable is to maintain consistency with the DOCSIS® event reporting mechanism [6].

1.2 Scope

This specification is one of two documents that together define a framework for reporting Management Events in the PacketCable architecture.

This specification defines the general event reporting mechanism and framework. The mechanism consists of a set of protocols and interfaces that can be used by individual elements and components in the PacketCable architecture. This document defines how the SNMPv3 transport protocol, SYSLOG, local log, and the PacketCable Management Event MIB are used to carry management event information to an event management system.

This management event mechanism is further defined and supported by the Management Event Mechanism MIB as specified in [1], and [13] if the latter is implemented by the MTA. Consequently, each reference to the Management Event MIB in this document will correspond to the MIB as defined either in [1], or alternatively, in [1] and [13].

1.3 Organization of Document

This document is structured as follows:

- Section 5 Background information including a description of possible back office Network Management System (NMS) configurations and a brief description of supported PacketCable reporting mechanisms.
- Section 6 Management Event Mechanism Functional Requirements.
- Section 7 Detailed description of the Management Event Mechanism including definition of the event format, event access method, event IDs, event severities, event descriptions, notification mechanism, local log of events, event throttling, and definition of severities and priorities.
- Section 8 Example template for the management data.
- Appendix A PacketCable-defined provisioning events.
- Appendix B PacketCable-defined powering events.

The legal/regulatory classification of IP-based voice communications provided over cable networks and otherwise, and the legal/regulatory obligations, if any, borne by providers of such voice communications, are not yet fully defined by appropriate legal and regulatory authorities. Nothing in this specification is addressed to, or intended to affect, those issues. In particular, while this document uses standard terms such as "call," "call signaling," "telephony," etc., it will be evident from this document that while a PacketCable network performs activities analogous to these PSTN functions, the manner by which it does so differs considerably from the manner in which they are performed in the PSTN by telecommunications carriers. These differences may be significant for legal/regulatory purposes.

2 **REFERENCES**

2.1 Normative References

In order to claim compliance with this specification, it is necessary to conform to the following standards and other works as indicated, in addition to the other requirements of this specification. Notwithstanding, intellectual property rights may be required to use or implement such normative references.

- [1] PacketCable 1.5 Management Event MIB Specification, PKT-SP-EVEMIB1.5-I02-050812, August 12, 2005, Cable Television Laboratories, Inc.
- [2] PacketCable 1.5 Event Messages Specification, PKT-SP-EM1.5-I03-070412, April 12, 2007, Cable Television Laboratories, Inc.
- [3] PacketCable 1.5 MTA Device Provisioning Specification, PKT-SP-PROV1.5-I03-070412, April 12, 2007, Cable Television Laboratories, Inc.
- [4] PacketCable 1.5 MTA MIB Specification, PKT-SP-MIB-MTA1.5-I01-050128, January 28, 2005, Cable Television Laboratories, Inc.
- [5] PacketCable 1.5 Analog Interface and Powering Specification, PKT-SP-AIP1.5-I02-070412, April 12, 2007, Cable Television Laboratories, Inc.
- [6] DOCSIS 1.1 Operations Support System Interface Specifications, SP-OSSIv1.1-C01-050907, September 7, 2005, Cable Television Laboratories, Inc.
- [7] IETF RFC 3413/STD0062, Simple Network Management Protocol (SNMP) Applications, December 2002.
- [8] IETF RFC 3164, The BSD Syslog Protocol, August 2001.

2.2 Informative References

- [9] PacketCable 1.5 Architecture Framework Technical Report, PKT-TR-ARCH1.5-V02-070412, April 12, 2007, Cable Television Laboratories, Inc.
- [10] Network Maintenance: Alarm and Control for Network Elements, Bellcore GR-474.
- [11] ITU-T Recommendation M.3100, Generic Network Information Model, 1995.
- [12] ITU-T Recommendation X.733, Open Systems Interconnection Systems management: Alarm reporting function, 1992.
- [13] IETF draft, Management Event MIB for PacketCable/IPCablecom MTAs, October 2006, http://www.ietf.org/internet-drafts/draft-ietf-ipcdn-pktc-eventmess-09.txt, work in progress.

2.3 Reference Acquisition

- Cable Television Laboratories, Inc., 858 Coal Creek Circle, Louisville, CO 80027; Phone +1-303-661-9100; Fax +1-303-661-9199; Internet: www.cablelabs.com./
- Internet Engineering Task Force (IETF) Secretariat c/o Corporation for National Research Initiatives, 1895 Preston White Drive, Suite 100, Reston, VA 20191-5434, Phone +1-703-620-8990, Fax +1-703-620-9071, Internet: www.ietf.org/

Note: Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

• ITU available at http://www.itu.int/ITU-T/publications/index.html

3 TERMS AND DEFINITIONS

This document uses the following terms and definitions.

Network Layer	Layer 3 in the Open System Interconnection (OSI) architecture that provides network information that is independent from the lower layers.
Network Management	The functions related to the management of data across the network.
Network Management OSS	The functions related to the management of data link layer and physical layer resources and their stations across the data network supported by the hybrid fiber/coax system.

4 ABBREVIATIONS AND ACRONYMS

AAA	Authentication, Authorization and Accounting
AF	Assured Forwarding. A Diffserv Per Hop Behavior.
АН	Authentication header is an IPSec security protocol that provides message integrity for complete IP packets, including the IP header.
A-link	A-Links are SS7 links that interconnect STPs and either SSPs or SCPs. 'A' stands for "Access".
AMA	Automated Message Accounting., a standard form of call detail records (CDRs) developed and administered by Bellcore (now Telcordia Technologies)
AT	Access Tandem
ATM	Asynchronous Transfer Mode. A protocol for the transmission of a variety of digital signals using uniform 53-byte cells.
BAF	Bellcore AMA Format, another way of saying AMA
BPI+	Baseline Privacy Interface Plus is the security portion of the DOCSIS 1.1 standard which runs on the MAC layer.
CBC	Cipher block chaining mode is an option in block ciphers that combine (XOR) the previous block of ciphertext with the current block of plaintext before encrypting that block of the message.
CBR	Constant Bit Rate.
CA	Call Agent. In this specification "Call Agent" is part of the CMS that maintains the communication state, and controls the line side of the communication.
CDR	Call Detail Record. A single CDR is generated at the end of each billable activity. A single billable activity may also generate multiple CDRs
CIC	Circuit Identification Code. In ANSI SS7, a two octet number that uniquely identifies a DSO circuit within the scope of a single SS7 Point Code.
CID	Circuit ID (Pronounced "Kid"). This uniquely identifies an ISUP DS0 circuit on a Media Gateway. It is a combination of the circuit's SS7 gateway point code and Circuit Identification Code (CIC). The SS7 DPC is associated with the Signaling Gateway that has domain over the circuit in question.
CIF	Common Intermediate Format
CIR	Committed Information Rate.
СМ	DOCSIS Cable Modem.
CMS	Call Management Server. Controls the audio connections. Also called a Call Agent in MGCP/SGCP terminology.
CMTS	Cable Modem Termination System, the device at a cable head-end which implements the DOCSIS RFI MAC protocol and connects to CMs over an HFC network.
Codec	COder-DECoder
COPS	Common Open Policy Service Protocol. Defined in RFC2748.
CoS	Class of Service. The type 4 tuple of a DOCSIS 1.0 configuration file.
CSR	Customer Service Representative
	Directory Assistance
DA	Directory Assistance

The PacketCable project uses the following abbreviations and acronyms.

DHCP	Dynamic Host Configuration Protocol.
DHCP-D	DHCP Default - Network Provider DHCP Server
DNS	Domain Name Server
DSCP	Diffserv Code Point. A field in every IP packet which identifies the Diffserv Per Hop Behavior. In IP version 4, the TOS byte is redefined to be the DSCP. In IP version 6, the Traffic Class octet is used as the DSCP. Appendix A.
DOCSIS	Data Over Cable System Interface Specification.
DPC	Destination Point Code. In ANSI SS7, a 3 octet number which uniquely identifies an SS7 Signaling Point, either an SSP, STP, or SCP.
DQoS	Dynamic Quality of Service, i.e., assigned on the fly for each communication depending on the QoS requested
DTMF	Dual-tone Multi Frequency (tones)
EF	Expedited Forwarding. A Diffserv Per Hop Behavior.
E-MTA	Embedded MTA – a single node which contains both an MTA and a cable modem.
EO	End Office
ESP	IPSec Encapsulation Security Payload protocol that provides both IP packet encryption and optional message integrity, not covering the IP packet header.
ETSI	European Telecommunications Standards Institute
FGD	Feature Group D signaling
F-link	F-Links are SS7 links that directly connect two SS7 end points, such as two SSPs. 'F' stands for "Fully Associated"
FQDN	Fully Qualified Domain Name. Refer to IETF RFC 821 for details.
H.323	An ISO standard for transmitting and controlling audio and video information. The H.323 standard requires the use of the H.225/H.245 protocol for communication control between a "gateway" audio/video endpoint and a "gatekeeper" function.
HFC	Hybrid Fiber/Coaxial cable), HFC system is a broadband bi-directional shared media transmission system using fiber trunks between the head-end and the fiber nodes, and coaxial distribution from the fiber nodes to the customer locations.
H.GCP	A protocol for media gateway control being developed by ITU.
HMAC	Hashed Message Authentication Code – a message authentication algorithm, based on either SHA-1 or MD5 hash and defined in RFC 2104.
HTTP	Hyper Text Transfer Protocol. Refer to IETF RFC 1945 and RFC 2068.
IANA	Internet Assigned Numbered Authority. See www.ietf.org for details.
IC	Inter-exchange Carrier
IETF	Internet Engineering Task Force. A body responsible, among other things, for developing standards used in the Internet.
IKE	Internet Key Exchange is a key management mechanism used to negotiate and derive keys for SAs in IPSec.
IKE–	A notation defined to refer to the use of IKE with pre-shared keys for authentication.
IKE+	A notation defined to refer to the use of IKE, which requires digital certificates for authentication.
IP	Internet Protocol. An Internet network-layer protocol.
IPSec	Internet Protocol Security, a collection of Internet standards for protecting IP packets with encryption and authentication.

ISDN	Integrated Services Digital Network
ISUP	ISDN User Part is a protocol within the SS7 suite of protocols that is used for call signaling within an SS7 network.
ISTP	Internet Signaling Transport Protocol
ISTP – User	Any element, node, or software process that uses the ISTP stack for signaling communications.
ITU	International Telecommunication Union
IVR	Interactive Voice Response System
LATA	Local Access and Transport Area
LD	Long Distance
LIDB	Line Information Data Base, containing information on customers required for real-time access such as calling card personal identification numbers (PINs) for real-time validation
LLC	Logical Link Control, used here to mean the Ethernet Packet header and optional 802.1P tag which may encapsulate an IP packet. A sublayer of the Data Link Layer.
LNP	Local Number Portability. Allows a customer to retain the same number when switching from one local service provider to another.
LSSGR	LATA Switching Systems Generic Requirements
MAC	Media Access Control. It is a sublayer of the Data Link Layer. It normally runs directly over the physical layer.
MC	Multipoint Controller
MD5	Message Digest 5 - a one-way hash algorithm which maps variable length plaintext into fixed length (16 byte) ciphertext.
MDCP	A media gateway control specification submitted to IETF by Lucent. Now called SCTP.
MDU	Multi-Dwelling Unit. Multiple units within the same physical building. The term is usually associated with high rise buildings
MEGACO	Media Gateway Control IETF working group. See www.ietf.org for details.
MG	The media gateway provides the bearer circuit interfaces to the PSTN and transcodes the media stream.
MGC	An Media Gateway Controller is the overall controller function of the PSTN gateway. It receives, controls and mediates call signaling information between the PacketCable and PSTN.
MGCP	Media Gateway Control Protocol. Protocol follow on to SGCP.
MIB	Management Information Base
MIC	Message integrity code, a fixed length data item that is sent together with a message to ensure integrity, also known as a MAC.
MMC	Multi-Point Mixing Controller. A conferencing device for mixing media streams of multiple connections.
MSO	Multi-System Operator, a cable company that operates many head-end locations in several cities.
MSU	Message Signal Unit
MTA	Media Terminal Adapter – contains the interface to a physical voice device, a network interface, CODECs, and all signaling and encapsulation functions required for VoIP transport, class features signaling, and QoS signaling.

MTP	The Message Transfer Part is a set of two protocols (MTP 2, 3) within the SS7 suite of protocols that are used to implement physical, data link and network level transport facilities within an SS7 network.
MWD	Maximum Waiting Delay
NANP	North American Numbering Plan
NANPNAT	North American Numbering Plan Network Address Translation
NAT Network Layer	Network Address Translation Layer 3 in the Open System Interconnection (OSI) architecture; the layer that provides services to establish a path between open systems.
NCS	Network Call Signaling
NPA-NXX	Numbering Plan Area (more commonly known as area code) NXX (sometimes called exchange) represents the next three numbers of a traditional phone number. The N can be any number from 2-9 and the Xs can be any number. The combination of a phone number's NPA-NXX will usually indicate the physical location of the call device. The exceptions include toll-free numbers and ported number (see LNP)
NTP	Network Time Protocol, an internet standard used for synchronizing clocks of elements distributed on an IP network
NTSC	National Television Standards Committee which defines the analog color television, broadcast standard used today in North America.
OSP	Operator Service Provider
OSS-D	OSS Default – Network Provider Provisioning Server
OSS	Operations Systems Support. The back office software used for configuration, performance, fault, accounting and security management.
PAL	Phase Alternate Line – the European color television format which evolved from the American NTSC standard.
PDU	Protocol Data Unit
PKCS	Public Key Cryptography Standards, published by RSA Data Security Inc. Describes how to use public key cryptography in a reliable, secure and interoperable way.
PKI	Public Key Infrastructure - a process for issuing public key certificates, which includes standards, Certification Authorities, communication between authorities and protocols for managing certification processes.
PKINIT	The extension to the Kerberos protocol that provides a method for using public key cryptography during initial authentication.
PHS	Payload Header Suppression, a DOCSIS technique for compressing the Ethernet, IP and UDP headers of RTP packets.
PSC	Payload Service Class Table, a MIB table that maps RTP payload Type to a Service Class Name.
PSFR	Provisioned Service Flow Reference. An SFR that appears in the DOCSIS configuration file.
PSTN	Public Switched Telephone Network.
PCM	Pulse Code Modulation – A commonly employed algorithm to digitize an analog signal (such as a human voice) into a digital bit stream using simple analog to digital conversion techniques.
QCIF	Quarter Common Intermediate Format
QoS	Quality of Service, guarantees network bandwidth and availability for applications.

RADIUS	<u>Remote Access Dial-In User Service</u> , an internet protocol (RFC 2138 and RFC 2139) originally designed for allowing users dial-in access to the internet through remote servers. Its flexible design has allowed it to be extended well beyond its original intended use
RAS	Registration, Admissions and Status. RAS Channel is an unreliable channel used to convey the RAS messages and bandwidth changes between two H.323 entities.
RC4	A variable key length stream cipher offered in the ciphersuite, used to encrypt the media traffic in PacketCable.
RFC	Request for Comments. Technical policy documents approved by the IETF which are available on the World Wide Web at http://www.ietf.cnri.reston.va.us/rfc.html
RFI	The DOCSIS Radio Frequency Interface specification.
RJ-11	Standard 4-pin modular connector commonly used in the United States for connecting a phone unit into the wall jack
RKS	Record Keeping Server, the device which collects and correlates the various Event Messages
RSVP	Resource reSerVation Protocol
RTCP	Real Time Control Protocol
RTO	Retransmission Timeout
RTP	Real Time Protocol, a protocol defined in RFC 1889 for encapsulating encoded voice and video streams.
S-MTA	Standalone MTA – a single node which contains an MTA and a non DOCSIS MAC (e.g., ethernet).
SA	Security Association - a one-way relationship between sender and receiver offering security services on the communication flow.
SAID	Security Association Identifier - uniquely identifies SAs in the BPI+ security protocol, part of the DOCSIS 1.1 specification.
SCCP	The Signaling Connection Control Part is a protocol within the SS7 suite of protocols that provides two functions in addition to those that are provided within MTP. The first is the ability to address applications within a signaling point. The second function is Global Title Translation.
SCP	A Service Control Point is a Signaling Point within the SS7 network, identifiable by a Destination Point Code, that provides database services to the network.
SCTP	Simple Control Transmission Protocol.
SDP	Session Description Protocol.
SDU	Service Data Unit. Information that is delivered as a unit between peer service access points.
SF	Service Flow. A unidirectional flow of packets on the RF interface of a DOCSIS system.
SFID	Service Flow ID, a 32-bit integer assigned by the CMTS to each DOCSIS Service Flow defined within a DOCSIS RF MAC domain. Any 32-bit SFID must not conflict with a zero-extended 14-bit SID. SFIDs are considered to be in either the upstream direction (USFID) or downstream direction (DSFID). USFIDs and DSFIDs are allocated from the same SFID number space.
SFR	Service Flow Reference, a 16-bit message element used within the DOCSIS TLV parameters of Configuration Files and Dynamic Service messages to temporarily identify a defined Service Flow. The CMTS assigns a permanent SFID to each SFR of a message.

SG	Signaling Gateway. An SG is a signaling agent that receives/sends SCN native signaling at the edge of the IP network. In particular the SS7 SG function translates variants ISUP and TCAP in an SS7-Internet Gateway to a common version of ISUP and TCAP.
SGCP	Simple Gateway Control Protocol. Earlier draft of MGCP.
SHA-1	Secure Hash Algorithm 1 - a one-way hash algorithm.
SID	Service ID. A 14-bit number assigned by a CMTS to identify an upstream virtual circuit. Each SID separately requests and is granted the right to use upstream bandwidth.
SIP	Session Initiation Protocol is an application layer control (signaling) protocol for creating, modifying and terminating sessions with one or more participants.
SIP+	Session Initiation Protocol Plus is an extension to SIP.
SNMP	Simple Network Management Protocol
SOHO	Small Office/Home Office
SPI	Security Parameters Index - a field in the IPSEC header that along with the destination IP address provides a unique number for each SA.
SS7	Signaling System Number 7. SS7 is an architecture and set of protocols for performing out-of-band call signaling with a telephone network.
SSP	Signal Switching Point. SSPs are points within the SS7 network that terminate SS7 signaling links and also originate, terminate, or tandem switch calls.
STP	Signal Transfer Point. An STP is a node within an SS7 network that routes signaling messages based on their destination address. It is essentially a packet switch for SS7. It may also perform additional routing services such as Global Title Translation.
ТСАР	Transaction Capabilities Application Protocol. A protocol within the SS7 stack that is used for performing remote database transactions with a Signaling Control Point.
ТСР	Transmission Control Protocol
TD	Timeout for Disconnect
TFTP	Trivial File Transfer Protocol
TFTP-D	Default – Trivial File Transfer Protocol
TGS	Ticket Granting Server used to grant Kerberos tickets.
TGW	Telephony Gateway
TIPHON	Telecommunications & Internet Protocol Harmonization Over Network.
TLV	Type-Length-Value tuple within a DOCSIS configuration file.
TN	Telephone Number
ToD	Time of Day Server
TOS	Type of Service. An 8-bit field of every IP version 4 packet. In a Diffserv domain, the TOS byte is treated as the Diffserv Code Point, or DSCP.
TSG	Trunk Subgroup
UDP	User Datagram Protocol, a connectionless protocol built upon Internet Protocol (IP).
VAD	Voice Activity Detection
VBR	Variable bit-rate
VoIP	Voice over IP

WBEM	Web-Based Enterprise Management (WBEM) is the umbrella under which the DMTF (Desktop Management Task Force) will fit its current and future specifications. The goal of the WBEM initiative is to further management standards using Internet technology in a manner that provides for interoperable management of the Enterprise. There is one DMTE standard today within WBEM and that is CIM (Common
	There is one DMTF standard today within WBEM and that is CIM (Common Information Model). WBEM compliance means adhering to the CIM. See
	www.dmtf.org

5 BACKGROUND

The PacketCable architecture is an end-end broadband architecture that supports voice, video, and other multimedia services. The individual components that compose the PacketCable architecture are defined in [9].

The OSS back office contains business, service, and network management components supporting the core business processes. The PacketCable set of specifications defines a limited set of OSS functional components and interfaces to support MTA Device Provisioning [3], Event Messaging to carry billing information [2], and the Management Event Mechanism defined in this document to carry fault and other data.

In addition to the Management Event Mechanism, the PacketCable architecture supports the following additional reporting mechanism:

- PacketCable Events Messages for billing information [2]. This reporting mechanism uses the RADIUS transport protocol, a pre-defined set of Event Message attributes (e.g., BillingCorrelationID, CalledPartyNumber, TrunkGroupID, etc.), and the PacketCable Event Messages data format to carry per-call information between PacketCable network elements (CMS, CMTS, MGC) and a Record Keeping Server (RKS). For each call, the RKS combines all associated Event Messages into a single Call Detail Record (CDR) which may be sent to a back office billing, fraud detection or other system. Vendor-proprietary data attributes may be included along with the PacketCable-defined set of attributes in a PacketCable Event Message.
- *Other Reporting Methods.* It is possible that PacketCable elements implement reporting methods specified in DOCSIS MIBs, PacketCable MIBs or other standard MIBs. It is possible that PacketCable elements implement methods such as SNMPv3, CMIP, TL1. These event-reporting mechanisms are not defined in this document.

6 PACKETCABLE MANAGEMENT EVENT MECHANISM FUNCTIONAL REQUIREMENTS

The functional requirements addressed by the Message Event Mechanism specification are as follows:

- 1. The event report MUST provide either the FQDN or IP address of the reporting device. (Note: It is highly recommended that the device provide the FQDN.)
- 2. The PacketCable management event reporting mechanism MUST support 2 types of events: PacketCable-specific and Vendor-specific.
- 3. The management event reporting mechanism MUST support the PacketCable 1.5 Management Event MIB.] All the events that can be generated by the PacketCable device MUST be included in the MIB table 'pktcDevEventDescrTable'.
- 4. The PacketCable management event reporting mechanism MUST support the BSD syslog protocol [8].
- 5. The management event reporting mechanism MUST support SNMPv3/v2c Traps and SNMPv3/v2c Informs.
- 6. The management event reporting mechanism MUST comply with SNMP Applications [7] since these MIBs provide the mechanism for distributing SNMPv3 traps and informs. The elements MUST support a mechanism to allow the element management system to map each event to a reported notification mechanism(s). For example: none, local, SYSLOG, SNMPv3/v2c Trap, SNMPv3/v2c INFORM.

Note: Refer to the PacketCable 1.5 MTA Device Provisioning Specification [3] for more information about SNMP configuration.

- 7. Each event MUST be uniquely identifiable to the point of origin such as a specific endpoint on an MTA.
- 8. The capability SHOULD exist to map event IDs to priorities in the back office.
- 9. PacketCable elements MUST send a timestamp with each management event.
- 10. PacketCable elements MUST send a Severity level with each management event. Elements MAY use the Severity level within the network element to determine the order in which events are sent in compliance with Bellcore GR474's Section 2.2.3 and Section 7.10 of this document.
- 11. The severity level of management events generated by the network element MUST be modifiable on the PacketCable element by the management system.
- 12. The display string of management events generated by the PacketCable element MUST be modifiable on the network element by the management system.
- 13. A default notification mechanism MUST be associated with each event.
- 14. PacketCable-specific event definitions SHOULD contain a NULL display string in order to reduce memory requirements on the PacketCable element.
- 15. Event definitions MUST contain a display string.

- 16. Vendor-specific event definitions MAY contain a NULL display string in order to reduce memory requirements on the PacketCable element.
- 17. Event throttling mechanism MUST be configurable by the management system.
- 18. All events are uniquely identified by vendor through the IANA assigned enterprise number. PacketCable events use the CableLabs IANA assigned enterprise number.
- 19. An event MUST provide the Event ID of the event.

7 MANAGEMENT EVENT REPORTING MECHANISM

The Management Event Mechanism and the associated Management Event MIB MUST be implemented on the MTA.

The Management Event Mechanism and the associated Management Event Mechanism MIB MAY be implemented on any PacketCable element such as the CMS, MGC, and others.

7.1 Event Notification Categories

All events delivered by (event mechanism document) fit into two main categories:

- PacketCable-specific
- Vendor-specific

PacketCable-specific events are defined in this document and referenced by concerned specifications where as vendor-specific events are left to vendor implementation and are out of scope of this specification.

Each Event has an associated Event ID as described in the next sub-section. PacketCable-Specific events are identical if their EventIDs are identical. The PacketCable-Specific EventIDs are specified by the PacketCable Specifications, including this specification. For each particular vendor, Vendor-specific events are identical if the corresponding Event IDs are identical. The Vendor-specific EventIDs are defined by particular vendors and is out of scope for this specification.

Example:

Two or more PacketCable Events with the same Event ID (Say 4000950100) are considered to be identical irrespective of the description or other parameters.

Two or more Vendor-Specific Events, from the same vendor (Say XYZ) with the same Event ID (Say 10) are considered to be identical irrespective of the description or other parameters.

For identical events occurring consecutively, the MTA MAY choose to store only a single event. In such a case, the event description recorded MUST reflect the most recent event.

Aside from the procedures defined in this document, event recording MUST conform to the requirements of [1] and Event Descriptions MUST not be longer than 127 characters.

7.1.1 Event ID Assignments

- The EventID is a 32-bit unsigned integer.
- PacketCable-specific EventIDs MUST be defined in the range of 0x80000000 (decimal 2,147,483,648) to 0xFFFFFFF (decimal 4,294,967,295).
- Vendor-specific EventIDs MUST be defined in the range of 0x00000000 (decimal 0) to 0x7FFFFFFF (decimal 2,147,483,647)).
- Vendor-specific EventIDs MUST be unique for a particular vendor's enterprise number in sysObjectID.

7.2 PacketCable Management Event Format

The format of a PacketCable Management Event is made up of the following information:

- Event Counter indicator of event sequence
- Event Time time of occurrence
- Event severity severity of condition as defined in Section 7.5

- Event Enterprise number Vendor specific enterprise number
- Event ID determines event function
- Event Text describes the event in human readable form
- FQDN/Endpoint ID describes the device FQDN and the specific endpoint associated with the event

7.3 PacketCable Management Event Access Method

The PacketCable event access methods is defined through the use of SNMPv3 in the case of local log access and trap or inform access. The SYSLOG uses UDP packets to convey the event data.

For local event log access, an EMS MAY send SNMP GET, GET-NEXT or GET-BULK requests to the PacketCable element, accessing rows of the local event table. Each row MUST contain the event data in the format as defined in Section 7.1.

The SYSLOG method of accessing events involves sending the events to a SYSLOG server via the UDP protocol to the UDP SYSLOG port as defined in DOCSIS specification 'SP-OSSIv1.1-I01-000407'. This event data MUST follow the event data format as defined in Section 7.1.

The SNMPv3 Trap and Inform access methods involve defining a notification within the PacketCable Management Event MIB. The notification MUST contain the event data in the format as defined in Section 7.1.

Any notification MUST be generated according to the entries in the associated SNMPv3 tables described in RFC 2573 in a vendor dependent manner. These provide the ability to address one or more management systems, the option to send traps or informs, and specify the security requirements for each management system.

7.4 Management Event ID

PacketCable management events are defined in an appendix of PacketCable specifications. Not all PacketCable specifications define management events. Each management event described in the appendix of a PacketCable specification is assigned a PacketCable Event ID. For a complete list of PacketCable Event IDs, refer to Appendix A and Appendix B in this document.

7.5 Management Event Severities

Each event is assigned an initial (default) PacketCable MultiMedia-centric Severity. The definitions for the PacketCable MultiMedia-centric severities are loosely based on ITU-T M.3100 [11] and OSI System Management Alarm Reporting Function X.733 [12]. PacketCable expands on the definition provided in Bellcore's GR-474 (see Section 7.10) to include the following list:

critical(1) – A service-affecting condition that requires immediate corrective action.

major(2) – A service-affecting condition that requires urgent corrective action.

minor(3) – A non-service-affecting fault condition which warrants corrective action in order to avoid a more serious fault.

warning(4) – A potential or impending condition which can lead to a fault; diagnostic action is suggested.

information(5) – Normal event meant to convey information.

Events, if they need to be cleared, MUST be cleared by other events.

Each application (e.g., DOCSIS, PacketCable) has its own event space. There is no predetermined relationship of event severity defined or enforced between application.

When managing events that affect multiple applications two scenarios are possible. They are as follows:

- 1. A particular application is considered the master. The master application sends the multiple destination events to its element manager. The application's element manages then broadcasts that event to all other element managers that are interested in that event. Severity translation is vendor dependent.
- 2. When an event occurs, every application interested in that event has its own event notification data template defined. An event is then sent out by each interested application according to its event notification data template.

Event vendor in conjunction with the MSOs will implement its mechanism based on one of the scenarios described above.

7.5.1 Changing Default Event Severities

The default event severity MUST be changeable to a different value for each given event via the SNMP interface.

7.6 Notification Mechanism

The notification mechanism for each event MUST be programmable via the SNMP interface.

Each event MUST be able to be sent to one or more notification mechanisms.

The notification mechanism definitions are as follows:

- local: The event is stored locally on the device in which it is generated. The event can be retrieved via polling from the SNMP agent interface.
- trap: The event is sent via the SNMPv3 TRAP mechanism to the targeted management systems. Due to the unacknowledged nature of the SNMPv3 TRAP mechanism, these event notifications are not guaranteed to be delivered to the targeted management systems.
- inform: The event is sent via the SNMPv3 INFORM mechanism to the targeted management systems. Since the SNMPv3 INFORM mechanism is acknowledged, these events will be reliably transmitted to the targeted management systems.
- syslog: The event is sent to the SYSLOG server.
- none: No reporting action is taken, this is the equivalent of disabling the event. If "none" is specified, the other notification mechanism choices MUST be ignored.

7.7 Local Log of Events

The MTA MUST support local logging of events. The local log MUST be accessed via SNMP using the objects defined in the [1]. A vendor may provide alternative access procedures.

The MTA MAY implement local logging either in volatile memory, non-volatile memory or both. The index provided in [1] provides relative ordering of events in the log. The creation of local volatile and local-nonvolatile logs necessitates a method for synchronizing index values between the two local logs after reboot. If both volatile and non-volatile logs are maintained then the following procedure MUST be used after reboot:

- the values of the index maintained in the local non-volatile log MUST be renumbered beginning with one.
- the local volatile log MUST then be initialized with the contents of the local non volatile log.
- the first event recorded in the new active session's local-volatile log MUST use as its index, an increment by one of the last restored non-volatile index.

Also, a reset of the log initiated through an SNMP SET operation applied to the corresponding MIB objects of the Management Event MIB MUST clear both the local-volatile and local-nonvolatile logs.

7.8 Syslog

All Syslog messages sent by a PacketCable eMTA MUST comply with the following requirements:

- REQ7332 It MUST use UDP as the transport mechanism with 514 as the destination port as defined in Section 2 of the BSD syslog protocol [8].
- REQ7354 t SHOULD use port 514 as the source port, as recommended in Section 2 of SNMP applications [8].
- REQ7333 It MUST comply with the Packet Format and Contents as defined in Section 4 of [8] as applicable to the origination of the message and use the format as described in the following subsection.

7.8.1 Syslog Message Format

This sub-section defines the usage of the Syslog fields as defined in Section 4 of [8].

7.8.2 PRI Part of a Syslog Packet

For the PRI part defined in Section 4.1.1 the facility to use MUST be:

16 local use 0 (local0)

The severity is the severity as indicated in the definition of the Event message (0-7).

The 'Priority Code' is as defined in Section 4.1 and ranges between 128 and 135 for PacketCable.

7.8.3 MSG Part of a Syslog Packet

The MTA MUST include the following components:

TIMESTAMP, HOSTNAME, TAG and the CONTEXT.

Where

- TIMESTAMP is the time recorded by the MTA (This MUST reflect the time in UTC as obtained from the Cable Modem).
- HOSTNAME MUST be the hostname received by the MTA in Option 12 of the DHCP ACK. (Refer to [3] for more details).
- The TAG field MUST be set to the string 'MTA', without the quotes.
- The PID field MUST be implemented and used as an 'Event Type Identifier'. The value MUST be:
- PACKETCABLE for all PacketCable defined Event Messages.
- A vendor-specific unique identifier for vendor-defined Event Messages. While the vendor-specific choices are out of scope of this specification, a vendor MUST use the same unique identifier for all messages originating from a device)
- The CONTEXT part of the message MUST be formatted as follows:

<eventID><correlationID> Description

Where:

- eventID MUST be the Event ID defined for each Event Message enclosed within angular braces.
- correlationID MUST the correlation ID generated by the MTA as defined in Section 5.4.5 of the Device Provisioning specification [3].

• Description MUST be the description associated for the particular event as stored in the Management Event MIB [1].

Example 1:

PROV-EV-1 is a PacketCable defined 'Event', defined as follows:

Event Name	Event Priority	Default Display String	PacketCable EventID	Comments
PROV-EV-1	Critical	"Waiting for DNS Resolution of Provisioning Realm Name"	4000950100	A DNS SRV Request has been transmitted for requesting the Provisioning Realm Information, but no response has been received from the DNS server.

Assuming that the MTA has been requested to send SYSLOG messages (Refer to [3] and [1] for more information on turning on SYSLOG messages):

- The Event Priority for critical is 2 (Refer to [1] for more information) and hence the 'Priority Code' is 130.
- Since this is a PacketCable Defined event, the 'Event Type Identifier' is 'PACKETCABLE'.
- The defined Event ID is 4000967295 and the assuming the default string has not been changed, the associated text is 'Waiting for Provisioning Realm Name DNS Resolution'.
- Assume the hostname to be CL_mta_1 and a correlation ID of 100

Thus, the event, if triggered will be sent as the following SYSLOG message:

```
<130>Jan 1 09:00:00 CL_mta_1 MTA[PACKETCABLE]:<4000850100><100>
Waiting for DNS Resolution of Provisioning Realm Name.
```

Example 2:

Assume the following hypothetical vendor-specific event defined by vendor 'XYZ Inc', with vendor ID 'XYZ'.

Event Name	Event Priority	Display String	Vendor Specific EventID	Comments
XYZ-EV-1	Warning	"AC Power Failure; running on battery"	10	AC Power Failure occurred and the device is running on battery power

 Table 2 - Example Vendor-specific Event

Again, assuming that the MTA has been requested to send SYSLOG messages (Refer to [3] and [1] for more information on turning on SYSLOG messages):

- The Event Priority for warning is 4 (Refer to [1] for more information) and hence the 'Priority Code' is 132.
- Vendor ID is 'XYZ' as stated in the example.
- The defined Event ID is 10 and the display string as indicated is: 'AC Power Failure; running on battery'.

• Assume the hostname to be CL_mta_2 and a correlation ID of 150

Thus, the event, if triggered will be sent as the following SYSLOG message:

<132> Jan 11 21:04:03 CL_mta_2 MTA[XYZ]:<10><150>AC Power Failure; running on battery

7.9 Event Throttling

Throttling is implemented globally through a rate based threshold mechanism, as defined in the PacketCable Management Event MIB.

Control of the throttling mechanism is through a MIB object that specifies one of four states.

- Event generation inhibited events defined through the event mechanism are no longer sent via syslog, traps, or informs.
- Throttling inhibited events are sent without any throttling.
- Dynamic thresholding enabled threshold based throttling is enabled
- Manual thresholding enabled manual intervention is required to resume event generation after crossing the initial threshold halts event generation.

Manual intervention through setting a MIB object is used to resume event generation when manual thresholding is enabled.

Inhibiting the generation of events MUST be handled through the use of the MIB objects, one to specify a number of events, and one to specify a time period over which those events are generated. The default frequency is defined as two events per second in the Management Event MIB. When event generation exceeds this rate, no more events are sent via SYSLOG, traps, or informs. The throttling of Local logging of events is vendor specific.

Dynamic thresholding requires setting MIB objects to resume events. One object specifies the number of events, and the other is the time period object specified above. The default frequency is defined as one event per second. This defines the rate at which event generation is resumed.

Threshold settings are not persistent, and MUST be reinitialized when the PacketCable element reboots.

In addition to this mechanism, vendors may support other throttling mechanisms.

7.10 Severity and Priority Definition

Severity is the degree of failure related to a specific event by a reporting device. Bellcore document GR-474-CORE [10], Network Maintenance: Alarm and Control for Network Elements defines three degrees of severity:

- Critical Used to indicate a severe, service-affecting condition has occurred and that immediate corrective action is imperative, regardless of the time of day or day of the week.
- Major Used for hardware and software conditions that indicate a serious disruption of service or the malfunctioning or failure of important circuits. These troubles require the immediate attention and response of a craftsperson to restore or maintain system capability. The urgency is less than in critical situations because of a lesser immediate or impending effect on service or system performance.
- Minor Used for troubles that do not have a serious effect on service to customers or for troubles in circuits that are not essential to Network Element operation.

Priority is the precedence established by order of importance or urgency. The back office manages the priority of how and when a particular event is serviced based on the severity of the reported event. According to Bellcore GR-474-CORE [10], Network Maintenance: Alarm and Control for Network Elements, the following priority sequences for trouble notifications shall prevail:

- Critical alarms have the highest priority and shall be serviced before any major or minor alarms.
- Major alarms have higher priority than minor alarms and shall be serviced before any minor alarms.
- Minor alarms shall be serviced before non-alarmed trouble notifications.

8 PACKETCABLE MANAGEMENT EVENT DATA TEMPLATE

In order to ensure multi-vendor interoperability of network management functionality, the specific meaning of PacketCable management events are defined. Because the PacketCable management events are based on conditions identified in PacketCable specifications, management events are defined in the separate appendices of this document.

The following table shows the data required to describe the meaning of PacketCable management events. The data contained in this table is for informational purposes only, this table will contain specific data when added as an appendix to this specification.

Enterprise Number	Event Name	Default Severity for event raises	Default Display String	Comments	Associated Events
4491	PL-EV-1	informational	"AC Power Fail"	Telemetry pin 1 has been asserted.	PL-EV-2
4491	PL-EV-2	informational	"AC Power Restore"	Telemetry pin 1 has been de-asserted.	PL-EV-1
4491	PROV-EV-1	error	"MTA Missing Name"	The MTA was not provisioned with an FQDN.	none

Appendix A PacketCable-defined Provisioning Events

Note: For sake of simplicity and continuity Event IDs from 4000950100 upwards are reserved for Provisioning Events.

Event Name	Default Severity for Event	Default Display String	Packet- Cable EventID	Comments
PROV-EV-1	Error	"Waiting for DNS Resolution of Provisioning Realm Name"	4000950100	A DNS SRV Request has been transmitted for requesting the Provisioning Realm Information, but no response has been received from the DNS server.
PROV-EV- 1.1	Critical	"Provisioning Realm Name unknown to the DNS Server"	4000950101	The DNS SRV Response from the DNS server did not resolve the Provisioning Realm Name.
PROV-EV-2	Error	"Waiting for DNS resolution of MSO/Provisioning KDC FQDN"	4000950200	A DNS Request has been transmitted to request the MSO KDC (or Provisioning KDC) FQDN, but no response has been received.
PROV-EV- 2.1	Critical	"MSO/Provisioning KDC FQDN unknown to the DNS Server"	4000950201	The DNS Response from the DNS server did not resolve the MSO/Provisioning KDC FQDN.
PROV-EV-3	Error	"Waiting For MSO/Provisioning KDC AS Reply"	4000950300	A Kerberos AS Request has been transmitted to the MSO KDC (or Provisioning KDC), but no AS Response has been received.
PROV-EV- 2.2	Error	"Waiting for DNS resolution of Provisioning Server FQDN"	4000950202	A DNS Request has been transmitted to request the Provisioning Server FQDN, but no response has been received.
PROV-EV- 2.3	Critical	"Provisioning Server FQDN unknown to the DNS Server"	4000950203	The DNS Response from the DNS server did not resolve the Provisioning Server FQDN.
PROV-EV- 3.1	Warning	"MSO/Provisioning KDC did not accept the AS Request"	4000950301	The Kerberos MSO/Provisioning KDC rejected the AS-Request (KRB_ERROR)
PROV-EV-4	Error	"Waiting For MSO/Provisioning KDC TGS Reply"	4000950400	A Kerberos TGS Request has been transmitted to the MSO KDC (or Provisioning KDC), but no TGS Response has been received.

Event Name	Default Severity for Event	Default Display String	Packet- Cable EventID	Comments
PROV-EV- 4.1	Warning	"MSO/Provisioning KDC did not accept AS Request"	4000950401	The MSO/Provisioning KDC rejected the Kerberos AS Request. (KRB_ERROR)
PROV-EV-5	Critical	"Waiting for Provisioning Server AP Reply"	4000950500	A Kerberos AP Request has been transmitted to the MSO Provisioning Server (SNMP Entity), but no AP Response has been received.
PROV-EV- 5.1	Warning	"Provisioning Server/SNMP Entity rejected the Provisioning AP Request"	4000950501	The Provisioning Server/SNMP Entity rejected the Kerberos AP Request. (KRB_ERROR)
PROV-EV-6	Critical	"SNMPv3 INFORM transmitted; Waiting for SNMPv3 GET and/or SNMPv3 SET messages"	4000950600	SNMPv3 INFORM message has been transmitted and the device is waiting on optional (iterative) SNMv3 GET requests or an SNMPv3 SET.
PROV-EV- 6.1	Critical	"SNMPv2c INFORM transmitted; Waiting for SNMPv2c GET and/or SNMPv2c SET messages"	4000950601	SNMPv2c INFORM message has been transmitted and the device is waiting on optional (iterative) SNMv2c GET requests or an SNMPv2c SET.
PROV-EV-8	Error	"Waiting For DNS Resolution of TFTP FQDN"	4000950800	A DNS Request has been transmitted to request the TFTP FQDN, but no response has been received.
PROV-EV- 8.1	Critical	"TFTP FQDN unknown to the DNS Server"	4000950801	The DNS Response from the DNS server did not resolve the TFTP FQDN.
PROV-EV-9	Critical	"Waiting for TFTP Response"	4000950900	A TFTP request has been transmitted and no response has been received. (This could be for any TFTP Request during the download process).
PROV-EV- 9.1	Critical	"Configuration File Error – Bad Authentication"	4000950901	The config file authentication value did not agree with the value in pktcMtaDevProvConfigHash or the authentication parameters were invalid.
PROV-EV- 9.2	Critical	"Configuration File Error – Bad Privacy"	4000950902	The privacy parameters were invalid.
PROV-EV- 9.3	Critical	"Configuration File Error – Bad Format"	4000950903	The format of the configuration file was not as expected.

Event Name	Default Severity for Event	Default Display String	Packet- Cable EventID	Comments
PROV-EV- 9.4	Critical	"Configuration File Error – Missing Parameter"	4000950904	Mandatory parameter of the configuration file is missing.
PROV-EV- 9.5	Error	"Configuration File Error– Bad Parameter"	4000950905	Parameter within the configuration file had a bad value.
PROV-EV- 9.6	Error	"Configuration File Error– Bad Linkage"	4000950906	Table linkages in the configuration file could not be resolved.
PROV-EV- 9.7	Error	"Configuration File Error– Misc."	4000950907	Configuration File error - Miscellaneous.
PROV-EV-12	Warning	"Telephony KDC did not accept AS Request"	4000951200	The Telephony KDC rejected the AS- Request (KRB_ERROR)
PROV-EV- 12.1	Error	"Waiting for Telephony KDC AS Reply"	4000951201	A Kerberos AS Request has been transmitted to the Telephony KDC, but no AS Response has been received.
PROV-EV-13	Error	"Waiting For Telephony KDC TGS Reply"	4000951300	A Kerberos TGS Request has been transmitted to the Telephony KDC, but no TGS Response has been received.
PROV-EV- 13.1	Warning	"Telephony KDC did not accept TGS Request"	4000951301	The Telephony KDC rejected the Kerberos TGS Request. (KRB_ERROR)
PROV-EV-14	Critical	"Waiting for CMS AP Reply"	4000951400	A Kerberos AP Request has been transmitted to the CMS (For IPSec), but no AP Response has been received.
PROV-EV- 14.1	Warning	"CMS rejected the AP Request (IPSec)"	4000951401	The CMS rejected the Kerberos AP Request. (KRB_ERROR)
PROV-EV-15	Informatio nal	"Provisioning Complete"	4000951500	The MTA successfully completed Provisioning.
PROV-EV- 15.1	Warning	"Provisioning Complete - Warnings"	4000951501	The MTA successfully completed Provisioning, but with warnings.
PROV-EV- 15.2	Critical	"Provisioning Complete - Fail"	4000951502	The MTA completed Provisioning, but there was a failure.

Appendix B PacketCable-defined Powering Events

Note: For sake of simplicity and continuity Event IDs from 4000850100 – 4000950099 are reserved for Powering Events.

MTAs that comply with [5] MUST support the following Powering events.

All Powering events MUST be defined as a matched pair of "set" and "cleared" events. The eight Powering events may be redefined to support a meaning other than the battery-related meanings defined in this document. If these Powering events are redefined, then the definition of the new meaning and any coordination between systems to support this new meaning is out of the scope of PacketCable.

The "set" and "clear" events for the alarm signals defined in [6] is summarized below.

Telemetry Signal 1 – AC Fail

- PL-EV-1: active alarm state of telemetry signal 1; default meaning "On Battery" and default severity MINOR
- PL-EV-2: inactive alarm state of telemetry signal 1, default meaning "AC Restored"; PL-EV-2 always clears PL-EV-1

Telemetry Signal 2 – Replace Battery

- PL-EV-3: active alarm state of telemetry signal 2; default meaning "Battery Bad" and default severity MINOR
- PL-EV-4: inactive alarm state of telemetry signal 2; default meaning "Battery Good"; PL-EV-4 always clears PL-EV-3

Telemetry Signal 3 - Battery Missing

- PL-EV-5: active alarm state of telemetry signal 3; default meaning "Battery Missing" and default severity MINOR
- PL-EV-6: inactive alarm state of telemetry signal 3; default meaning "Battery Present"; PL-EV-6 always clears PL-EV-5

Telemetry Signal 4 - LowBattery

- PL-EV-7: active alarm state of telemetry signal 4; default meaning "Depleted Battery" and default severity MINOR
- PL-EV-8: inactive alarm state of telemetry signal 4; default meaning "Battery Charging"; PL-EV-8 always clears PL-EV-7

Event Name	Default Severity	Default Display String	PacketCable EventID	Comments	Associated Events
PL-EV-1	Informati onal	"On Battery"	4000850100	The UPS has detected an AC power failure and is operating off battery backup.	PL-EV-2
PL-EV-2	Informati onal	"AC Restored"	4000850200	The UPS has detected AC power restoral and is no longer operating off battery backup.	PL-EV-1

Table 5 - Powering Events

Event Name	Default Severity	Default Display String	PacketCable EventID	Comments	Associated Events
PL-EV-3	Informati onal	"Battery Bad"	4000850300	The UPS has determined that the battery has reached the end of its life expectancy and should be replaced.	PL-EV-4
PL-EV-4	Informati onal	"Battery Good"	4000850400	The UPS has detected the battery to be good.	PL-EV-3
PL-EV-5	Informati onal	"Battery Missing"	4000850500	The UPS does not detect the presence of a battery.	PL-EV-6
PL-EV-6	Informati onal	"Battery Present"	4000850600	The UPS detects that a battery is present.	PL-EV-5
PL-EV-7	Informati onal	"Depleted Battery"	4000850700	The UPS has determined that the remaining battery charge is low. There is only enough charge remaining to sustain operation for a short period of time.	PL-EV-8
PL-EV-8	Informati onal	"Battery Charging"	4000850800	The UPS detects that the battery has charged above the "battery low" threshold.	PL-EV-7

Appendix C Acknowledgements

On behalf of CableLabs and its participating member companies, we would like to extend a heartfelt thanks to all those who contributed to the development of this specification. Certainly all the participants of the provisioning focus team have added value to this effort by participating in the review and weekly conference calls. Particular thanks are given to:

Eugene Nechamkin (Broadcom Corp.) Paul Duffy (Cisco Systems) Satish Kumar (Texas Instruments) Roy Spitzer (Telogy Corp.) Kevin Marez (Motorola, Inc.) Rick Vetter (Motorola, Inc.)

John Berg and Sumanth Channabasappa (CableLabs, Inc.)

Appendix D Revision History

The following ECNs were incorporated in PKT-SP-MEM1.5-I02-050812.

ECN	ECN Date	Summary
MEM1.5-N-05.0245-1	3/14/05	Clarification of event IDs and Mac Address reporting
MEM1.5-N-05.0277-2	7/11/05	Provisioning events

The following ECN was incorporated in PKT-SP-MEM1.5-I03-070412.

ECN	ECN Date	Summary
MEM1.5-N-07.0393-4	3/12/07	Incorporate implementation of IETF MIBs by MTAs