

Video Specifications
IP Multicast

IP Multicast Controller-Client Interface Specification

OC-SP-MC-EMCI-I01-150528

ISSUED

Notice

This OpenCable™ specification is the result of a cooperative effort
undertaken at the direction of Cable Television Laboratories, Inc. for the
benefit of the cable industry and its cu3stomers. You may download,
copy, distribute, and reference the documents herein only for the
purpose of developing products or services in accordance with such
documents, and educational use. Except as granted by CableLabs® in
a separate written license agreement, no license is granted to modify
the documents herein (except via the Engineering Change process), or
to use, copy, modify or distribute the documents for any other purpose.

This document may contain references to other documents not owned
or controlled by CableLabs. Use and understanding of this document
may require access to such other documents. Designing,
manufacturing, distributing, using, selling, or servicing products, or
providing services, based on this document may require intellectual
property licenses from third parties for technology referenced in this
document. To the extent this document contains or refers to documents
of third parties, you agree to abide by the terms of any licenses
associated with such third-party documents, including open source
licenses, if any.

 Cable Television Laboratories, Inc. 2015

OC-SP-MC-EMCI-I01-150528 IP Multicast

2 CableLabs 05/28/15

DISCLAIMER

This document is furnished on an "AS IS" basis and neither CableLabs nor its members provides any representation
or warranty, express or implied, regarding the accuracy, completeness, noninfringement, or fitness for a particular
purpose of this document, or any document referenced herein. Any use or reliance on the information or opinion in
this document is at the risk of the user, and CableLabs and its members shall not be liable for any damage or injury
incurred by any person arising out of the completeness, accuracy, or utility of any information or opinion contained
in the document.

CableLabs reserves the right to revise this document for any reason including, but not limited to, changes in laws,
regulations, or standards promulgated by various entities, technology advances, or changes in equipment design,
manufacturing techniques, or operating procedures described, or referred to, herein.

This document is not to be construed to suggest that any company modify or change any of its products or
procedures, nor does this document represent a commitment by CableLabs or any of its members to purchase any
product whether or not it meets the characteristics described in the document. Unless granted in a separate written
agreement from CableLabs, nothing contained herein shall be construed to confer any license or right to any
intellectual property. This document is not to be construed as an endorsement of any product or company or as the
adoption or promulgation of any guidelines, standards, or recommendations.

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 3

Document Status Sheet

Document Control Number OC-SP-MC-EMCI-I01-150528

Document Title IP Multicast Controller-Client Interface Specification

Revision History I01 - 05/28/2015

Date May 28, 2015

Status Work in
Progress

Draft Issued Closed

Distribution Restrictions Author Only CL/Member CL/ Member/
Vendor

Public

Key to Document Status Codes

Work in Progress An incomplete document, designed to guide discussion and generate feedback
that may include several alternative requirements for consideration.

Draft A document in specification format considered largely complete, but lacking
review by Members and vendors. Drafts are susceptible to substantial change
during the review process.

Issued A generally public document that has undergone Member and Technology
Supplier review, cross-vendor interoperability, and is for Certification testing if
applicable. Issued Specifications are subject to the Engineering Change Process.

Closed A static document, reviewed, tested, validated, and closed to further engineering
change requests to the specification through CableLabs.

Trademarks
CableLabs® is a registered trademark of Cable Television Laboratories, Inc. Other CableLabs marks are listed at
http://www.cablelabs.com/certqual/trademarks. All other marks are the property of their respective owners.

http://www.cablelabs.com/certqual/trademarks

OC-SP-MC-EMCI-I01-150528 IP Multicast

4 CableLabs 05/28/15

Contents
1 SCOPE .. 7

1.1 Overview ... 7
1.2 Purpose .. 7
1.3 Scope ... 7
1.4 Requirements ... 8

2 REFERENCES .. 9
2.1 Normative References.. 9
2.2 Informative References .. 9
2.3 Reference Acquisition.. 9

3 TERMS AND DEFINITIONS .. 10

4 ABBREVIATIONS AND ACRONYMS .. 11
5 OVERVIEW AND THEORY OF OPERATIONS ... 13

5.1 Design Principles ... 13
5.2 Functional Overview ... 13

6 CONTENT LOCATION & MANIFESTS .. 18
6.1 Content Identification .. 18

6.1.1 URL Encoding ... 18
6.1.2 URL Matching ... 18

6.2 Manifests ... 19
6.3 Multicast Zones ... 19

7 GATEWAY FUNCTIONALITY & PROTOCOL OPERATION .. 20
7.1 Gateway Configuration .. 20
7.2 Gateway HTTP Proxying & Caching .. 20
7.3 Protocol Operation ... 20

7.3.1 Configuration ... 20
7.3.2 Normal Operation .. 22

7.4 Multicast Group Membership Control ... 24
7.4.1 Join & Leave Triggers ... 24

7.5 Multicast Content Delivery .. 25

8 MC-EMC INTERFACE DEFINITION .. 26
8.1 Gateway Configuration .. 26

8.1.1 Configuration Request (ConfigReq) .. 26
8.1.2 Configuration Result (ConfigResult) ... 27
8.1.3 Configuration Request/Result Examples .. 30

8.2 Gateway Streaming Status ... 31
8.2.1 Stream Status Inform (StreamStatus) ... 31
8.2.2 Stream Status Response ... 33
8.2.3 StreamStatus Message Examples ... 35

9 HTTP PROTOCOL .. 37
9.1 Connection ... 37

9.1.1 Connection Security ... 37
9.2 Request Messages .. 37

9.2.1 Use of HTTP Methods.. 37
9.2.2 URI Format .. 37
9.2.3 HTTP Version .. 38

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 5

9.2.4 HTTP Request Headers ... 38
9.2.5 Message Body – XML .. 39
9.2.6 Message Body – JSON ... 39
9.2.7 GET and POST Request Message Examples ... 39

9.3 Response Messages ... 40
9.3.1 HTTP Status Code and Status Text .. 40
9.3.2 Caching Results ... 40
9.3.3 HTTP Response Headers ... 40
9.3.4 Message Body – XML .. 41
9.3.5 Message Body – JSON ... 41

9.4 Message Flow .. 41
9.4.1 Request-Response Flow ... 41
9.4.2 Connection Lost ... 43
9.4.3 Request Timeout ... 43

10 COMMON XML ELEMENTS .. 44
10.1 Common Simple Data Types ... 44
10.2 Complex Data Elements .. 44

10.2.1 KVPType .. 44
10.2.2 LinearAsset .. 44
10.2.3 LinearAssetAddress ... 45
10.2.4 LinearAssetContentBitrate ... 45
10.2.5 ChannelMap .. 45
10.2.6 Response .. 47

11 COMMON CODES ... 48
11.1 Response Codes ... 48

ANNEX A CONSIDERATIONS FOR HYBRID STBS (NORMATIVE) ... 49
ANNEX B SCHEMA (NORMATIVE) ... 50

APPENDIX I ACKNOWLEDGEMENTS (INFORMATIVE) .. 54

OC-SP-MC-EMCI-I01-150528 IP Multicast

6 CableLabs 05/28/15

Figures
FIGURE 1 - IP MULTICAST REFERENCE ARCHITECTURE ... 8
FIGURE 2 - INITIAL UNICAST RETRIEVAL OF NEW CONTENT .. 14
FIGURE 3 - CONTINUOUS DELIVERY OF NEW CONTENT ... 15
FIGURE 4 - MULTICAST CACHE FILLING ... 16
FIGURE 5 - CONFIGURATION STATE MACHINE ... 21
FIGURE 6 - STREAMSTATUS & GROUP MEMBERSHIP STATE MACHINE .. 24
FIGURE 7 - CONFIGREQ .. 26
FIGURE 8 - CONFIGRESULT .. 28
FIGURE 9 - STREAMSTATUS ... 32
FIGURE 10 - STREAMSTATUSRESULT ... 34
FIGURE 11 - MESSAGE FLOW: SEMI-PERSISTENT CONNECTION ... 42
FIGURE 12 - MESSAGE FLOW: PERSISTENT CONNECTION ... 42
FIGURE 13 - CHANNELMAP ELEMENT .. 46

Tables
TABLE 1 - CONFIGREQ PARAMETER DEFINITIONS .. 26
TABLE 2 - STANDARD CAPABILITIES .. 26
TABLE 3 - CONFIGREQ RESPONSE CODES .. 27
TABLE 4 - CONFIGRESULT ATTRIBUTE DEFINITIONS ... 28
TABLE 5 - URL REGEX ELEMENT DEFINITION ... 29
TABLE 6 - STANDARD CONFIGURATIONS .. 29
TABLE 7 - STREAMSTATUS ATTRIBUTE DEFINITIONS ... 33
TABLE 8 - STREAMSTATE ATTRIBUTE DEFINITIONS ... 33
TABLE 9 - STREAMSTATUS RESPONSE CODES .. 33
TABLE 10 - APPLICATION ABBREVIATIONS .. 38
TABLE 11 - COMMON DATA TYPES .. 44
TABLE 12 - KVPTYPE ATTRIBUTE DEFINITIONS .. 44
TABLE 13 - LINEARASSET ATTRIBUTE DEFINITIONS .. 44
TABLE 14 - LINEARASSETADDRESS ATTRIBUTE DEFINITIONS ... 45
TABLE 15 - LINEARASSETCONTENTBITRATE ATTRIBUTE DEFINITIONS ... 45
TABLE 16 - CHANNELMAP ATTRIBUTE DEFINITIONS ... 46
TABLE 17 - RESPONSE ATTRIBUTE DEFINITIONS .. 47
TABLE 18 - RESPONSE CODES .. 48

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 7

1 SCOPE

1.1 Overview

This specification is part of the Video family of specifications developed by Cable Television Laboratories, Inc.
(CableLabs) and published under the OpenCable License Agreement. The IP Multicast MC-EMC Interface
Specification defines an interface identified in the IP Multicast Technical Report [IPM-TR]. The intent of this
specification is to provide multi-vendor interoperability across this interface such that interoperable products can be
brought to market which support Multicast-Assisted ABR (Adaptive Bit Rate).

The IP Multicast specifications primarily adopt web services as the standard communications mechanism between
components.

1.2 Purpose

This document specifies the usage of the HTTP protocol in the IP Multicast system. This specification includes
common elements, attributes, and data types. The document also provides a common list of the reason codes,
response codes, and event codes used across the IP Multicast interface specifications.

1.3 Scope

This specification details the usage of HTTP and web services. The information in this specification applies to all of
the web service interfaces defined for IP Multicast:

• Multicast Controller to Embedded Multicast Client (mc-emc) interface: The mc-emc interface is defined
between a Multicast Controller in an operator’s back office and a Multicast Client embedded in a residential
gateway. This interface is used to signal viewing-related activity and the list of content streams available via IP
multicast.

• Multicast Controller to Multicast Server (mc-ms) interface: The mc-ms interface is defined between the
Multicast Controller, which controls what streams are available on multicast and when, and the Multicast
Server, which performs content retrieval and multicast delivery.

The interfaces defined in the IP Multicast reference architecture are shown in Figure 1.

OC-SP-MC-EMCI-I01-150528 IP Multicast

8 CableLabs 05/28/15

Figure 1 - IP Multicast Reference Architecture

1.4 Requirements

Throughout this document, the words that are used to define the significance of particular requirements are
capitalized. These words are:

"MUST" This word means that the item is an absolute requirement of this specification.
"MUST NOT" This phrase means that the item is an absolute prohibition of this specification.
"SHOULD" This word means that there may exist valid reasons in particular circumstances to ignore

this item, but the full implications should be understood and the case carefully weighed
before choosing a different course.

"SHOULD NOT" This phrase means that there may exist valid reasons in particular circumstances when
the listed behavior is acceptable or even useful, but the full implications should be
understood and the case carefully weighed before implementing any behavior described
with this label.

"MAY" This word means that this item is truly optional. For example, one vendor may choose to
include the item because a particular marketplace requires it or because it enhances the
product; another vendor may omit the same item.

This document defines many features and parameters, and a valid range for each parameter is usually specified.
Equipment requirements are always explicitly stated. Equipment must comply with all mandatory (MUST and
MUST NOT) requirements to be considered compliant with this specification. Support of non-mandatory features
and parameter values is optional.

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 9

2 REFERENCES

2.1 Normative References

This specification uses the following normative references.

[MULPI] MAC and Upper Layer Protocols Interface Specification, CM-SP-MULPIv3.1-I05-150326,
March 26, 2015, Cable Television Laboratories, Inc.

[PCRE] PERL Compatible Regular Expressions, http://www.pcre.org/original/doc/html/pcrepattern.html

2.2 Informative References

This specification uses the following informative references.

[IPM-TR] IP Multicast Adaptive Bit Rate Architecture Technical Report, OC-TR-IP-MULTI-ARCH-V01-
141112, November 12, 2014, Cable Television Laboratories, Inc.

[MS-EMC] IP Multicast Server-Client Interface Specification, OC-SP-MS-EMCI-I01-150528, May 28,
2015, Cable Television Laboratories, Inc.

[RFC 2616] IETF RFC 2616, Hypertext Transfer Protocol - HTTP/1.1, June 1999.
[RFC 3376] IETF RFC 3376, Internet Group Management Protocol, Version 3, October 2002.
[RMI HTTP] Resource Management Architecture and HTTP Specification, CM-SP-RMI-HTTP-I02-150528,

May 28, 2015, Cable Television Laboratories, Inc.

2.3 Reference Acquisition

• Cable Television Laboratories, Inc., 858 Coal Creek Circle, Louisville, CO 80027;
Phone +1-303-661-9100, Fax +1-303-661-9199; http://www.cablelabs.com/

• Internet Engineering Task Force (IETF): http://www.ietf.org/

http://www.cablelabs.com/
http://www.ietf.org/

OC-SP-MC-EMCI-I01-150528 IP Multicast

10 CableLabs 05/28/15

3 TERMS AND DEFINITIONS
This specification uses the following terms:

Access Network The HFC network between the Gateway and the CCAP.
Adaptive Bit Rate A streaming video technique where Players select between multiple bit rate

encodings of the same video stream.
Bonding Group A logical set of DOCSIS® channels which support parallel transmission.
Companion Device A video playback device which is not a television such as a tablet, smartphone or PC.
Converged Cable Access
Platform

A system which provides DOCSIS and QAM-based video services to CMs,
Gateways and set-top boxes.

Content Distribution
Network

A network designed to minimizing latency by distributing network objects onto
geographically diverse servers.

Embedded Multicast
Client

The function embedded in the Gateway which joins multicast groups and receives
multicast content.

Gateway A customer premises device which facilitates delivery of video, data and other
services.

Headend The central location on the cable network that is responsible for injecting broadcast
video and other signals in the downstream direction.

Home Network A network within the subscriber premises which connects to the Access Network via
the Gateway.

IP Multicast A delivery mechanism whereby IP packets can be transmitted to/received from
devices that have explicitly joined a multicast group.

Key Server A server which provides keys as part of a DRM solution.
License Server A server which checks authorization and provides licenses as part of a DRM solution.
Linear TV A continuous content stream from a provider, e.g., a broadcast television network.
Multicast Controller A device which controls what channels are provided via multicast.
Multicast Configuration
Server

A server responsible for Gateway configuration. The configuration function is
conceptually part of the Multicast Controller, but deployments can choose to utilize a
separate server for this function.

Multicast Server A device which delivers content via multicast.
Multicast-Active Stream A stream, identified by a channelId and bitrate pair, that the Multicast Server is

currently multicasting to a specific (S,G). Multicast-Active Streams match a
URLRegex that is configured on a Gateway and are a subset of Multicast-Ready
streams which are communicated in a ChannelMap element.

Multicast-Ready Stream A stream that the Multicast Server might be multicasting currently or might be
directed to multicast in the future. Multicast Ready Streams are communicated via
ChannelMap objects. Multicast-Ready Streams match a URLRegex that is configured
on a Gateway.

Packager A device which takes continuous video streams, encodes them at different bit rates
and breaks them into shorter duration segments.

Player An application for playback of ABR video.
Serving Group A set of receivers which all receive the same transmission of a given frequency band.
Stream A series of video segments which contain the same video asset, typically at the same

bit rate encoding.
Unicast Delivery of IP packets to a single device.

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 11

4 ABBREVIATIONS AND ACRONYMS
This specification uses the following terms:

ABR Adaptive Bit Rate
BSS Business Support System
CCAP Converged Cable Access Platform
CDN Content Delivery Network
CM Cable Modem
CMS Content Management Server
COAM Customer Owned and Managed
CPE Customer Premises Equipment
DNS Domain Name System
DOCSIS® Data-Over-Cable Service Interface Specifications
EAS Emergency Alert System
EAN Emergency Action Notification
EMC Embedded Multicast Client
FEC Forward Error Correction
GW Gateway
HD High Definition
HDS HTTP Dynamic Streaming
HLS HTTP Live Streaming
HTTP Hyper Text Transfer Protocol
IGMP Internet Group Management Protocol
IP Internet Protocol
IPsec Internet Protocol Security
IP-STB IP Set-top Box
IPv4 Internet Protocol Version 4
IPv6 Internet Protocol Version 6
JSON JavaScript Object Notation
M-ABR Multicast-Adaptive Bit Rate
MC Multicast Controller
MCS Multicast Configuration Server
MLD Multicast Listener Discovery
MoCA Multimedia over Coax Alliance
MPEG Moving Picture Experts Group
MPEG-DASH Moving Picture Experts Group Dynamic Adaptive Streaming over HTTP
MS Multicast Server
MSS Microsoft Smooth Streaming
NACK Negative-Acknowledgement
NMS Network Management System
NORM NACK-Oriented Reliable Multicast

OC-SP-MC-EMCI-I01-150528 IP Multicast

12 CableLabs 05/28/15

QAM Quadrature Amplitude Modulation
QoS Quality of Service
REST Representational State Transfer
RTP Real-time Transport Protocol
RTCP RTP Control Protocol
RTSP Real-Time Streaming Protocol
RTMP Real-Time Messaging Protocol
SD Standard Definition
SDV Switched Digital Video
(S,G) (Source IP Address, Group IP Address)
SNMP Simple Network Management Protocol
STB Set-top Box
TCP Transmission Control Protocol
TLS Transport Layer Security
TR Technical Report
UA User Agent
UDP User Datagram Protocol
UE User Equipment
URI Uniform Resource Identifier
WiFi Wireless Local Area Network
XML eXtensible Markup Language

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 13

5 OVERVIEW AND THEORY OF OPERATIONS
Multicast ABR or, perhaps more accurately, Multicast-assisted ABR, is just that - a technique for using IP multicast
to assist in the delivery of ABR video segments. It is really a network-layer efficiency mechanism which is
transparent to ABR Players.

Multicast-ABR is more fully described in [IPM-TR] and the Functional Overview section of this specification.

5.1 Design Principles

This protocol was designed to provide centralized control of the streams available via multicast as well as the
multicast streams watched (or, more precisely, joined) by individual Gateways. This was done to minimize
complexity on the Gateway for reduced cost and increased service agility.

This protocol uses a web services architecture. The web services API structure is based on [RMI HTTP] as this
protocol is used to deliver other video services.

5.2 Functional Overview
A typical M-ABR system can be thought of as a standard ABR video system, which uses a transparent caching
proxy resident in the Gateway. That transparent cache can be filled either via unicast or multicast. This allows the
Player to switch seamlessly between less-popular content only available on unicast and popular content available on
multicast, as it is completely transparent to the Player whether the content is delivered to the Gateway via unicast or
multicast. In fact, the system can switch seamlessly between unicast and multicast delivery of the same stream, as
any content not delivered by multicast will be retrieved via unicast.

While this technology is referred to as "Multicast Adaptive Bit Rate (M-ABR)", it is important to note that
individual multicast streams do not “adapt” their bit rates. Rather, the term is used to refer to the multicast delivery
of video segment files to the Gateway, which subsequently delivers these segments via HTTP when they are
requested by a streaming video Player. Each multicast stream only contains a single bit rate. The pre-filling of the
Gateway’s cache is expected to result in the reliable receipt of fragments by the Player, such that the Player does not
adapt and instead chooses to remain at that bit rate. However, for robustness, the manifest still generally contains
reference to other bit rate encodings of the same content stream. These other bit rates can be provided on a separate
multicast stream or may be available only via unicast retrieval.

OC-SP-MC-EMCI-I01-150528 IP Multicast

14 CableLabs 05/28/15

The basic model for the retrieval of new content by a Player is shown in the following figure:

Figure 2 - Initial Unicast Retrieval of New Content

It is important to note that there are no multicast-related steps in this sequence diagram. This sequence is identical to
the sequence which would occur in a unicast system with a transparent caching proxy – with one very small
exception, between Step 3 and Step 4 the Gateway modifies the manifest by dropping the last segment from the list.1
This way the Gateway always knows about more segments than the Player is aware of which allows the system time
for segment delivery via multicast before the segment is requested by the Player.2 While not important for this initial
content delivery or a channel change, this is important feature for multicast delivery and will be explained in more
detail later in this section.

It is also important to note that since the steps taken are identical to that for unicast, the performance of an M-ABR
system is never worse than that of unicast and thus the QoE for the end user is also never worse than normal ABR
retrieval. This applies to both initial content access and channel changes.

Figure 1 only shows the retrieval of the very first video segment file in the content stream. The following figure
takes this one step further by showing two other aspects of this system:

The retrieval of multiple manifests and multiple segments as a video is watched.

The Gateway checking to see if a video segment is available in the cache before fetching the segment from
the CDN.

Except for the fact that the Gateway’s cache can be pre-filled by multicast delivery the system in the figure behaves
just like a unicast transparent caching proxy would.

1 Shortening the manifest which gets delivered to the Player can also be performed in the back office. Some operators have two
versions of the manifest for a given content stream – a shortened one for Players (hereafter referred to as the Player Manifest) and
a longer version for other components (hereafter referred to as the Server Manifest). Also note that the manifest can be shortened
by more than one segment; this is particularly useful to ensure the Gateway stays ahead of the Player when the segments are of a
short duration.
2 Optimizations are also possible. For example, a Gateway might choose not to shorten a manifest if it knew it had all of the
segments referenced by the manifest in its cache.

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 15

Figure 3 - Continuous Delivery of New Content

Thus, playback and channel change functions are virtually identical to unicast. Similarly, the performance in terms
of channel change times and other QoE metrics is identical to unicast. Where the system differs from unicast is in
the way the cache can be filled if a given content stream is available via multicast.

OC-SP-MC-EMCI-I01-150528 IP Multicast

16 CableLabs 05/28/15

The following figure shows how the caching subsystem utilizes multicast to fill its cache and related signaling
defined in this specification.

Figure 4 - Multicast Cache Filling

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 17

The unicast content delivery sequence and the multicast cache filling sequence are initiated by the same trigger – a
Player request for new content. If the Gateway needs to send a StreamStatus message it sends one to the Multicast
Controller. The Gateway is provisioned with a set of URL regular expressions that match configured linear video
assets that can be delivered via Multicast-ABR. If any streams being requested by Players behind the Gateway
match one of these URL regular expressions, the Gateway includes information about those streams in the
StreamStatus message. Streams that match the one of the configured URL regular expressions are streams that the
Multicast Controller might be multicasting currently or might decide to multicast in the future, this document refers
to these streams as Multicast-Ready Streams.

Multicast-Ready Streams being accessed by Players are of interest to the Multicast Controller and are therefore
included by the Gateway in its StreamStatus message. Streams which do not match the URL regular expressions are
either over-the-top streams from other sources or operator streams which are not available via multicast (thus, these
streams are not included by the Gateway in its StreamStatus message).

Thus, a StreamStatus message indicating a Player accessing a Multicast-Ready Stream could potentially lead to the
Multicast Controller deciding to offer this content on multicast via the Multicast Server, if this content is not already
being multicast.

The Multicast Controller responds to a StreamStatus message with a StreamStatusResult message. The
StreamStatusResult message can include a Channel Map of content available via multicast. This allows the Gateway
to (a) determine if the bit rate and channelId requested by the Player is available via multicast and (b) identify the
(S,G) for any available multicast. The StreamStatusResult message can also include a set of commanded multicast
groups for the Gateway to join. If there are commanded groups then the Gateway starts a NORM (NACK-Oriented
Reliable Multicast) receiver for any of the multicast groups which it is not already a member. However, if there are
no commanded groups then the Gateway can start a NORM multicast receiver for any multicast groups which match
the channelId and bit rate of content requested by one of the Players it services. Starting a NORM multicast receiver
for a given multicast stream triggers an IGMP/MLD Join for that multicast group.

The IGMP/MLD Join triggers a number of DOCSIS MAC-layer events which are not shown in the diagram, but
which are necessary for the Gateway’s embedded CM to receive multicast traffic.

At this point the multicast receiver in the Gateway is available to start receiving video segments via NORM. These
segments are cached and made available via the transparent proxy to fulfill requests from the Player.

However, there is a race condition here – the Player is requesting segments sequentially (and potentially requesting
segments faster than it is playing them) and the Gateway is also getting these segments delivered sequentially via
multicast. How does the system increase the likelihood that there is a cache hit and ensure that segments have been
delivered via multicast in advance of them being requested by the Player? This is where manifest manipulation
comes into play. As mentioned previously, the Gateway (or Multicast Server) typically knows about at least one
more segment than the Player. The system uses this to provide the Gateway with a timing advantage over the Player.
The goal is for the Gateway to have segment n waiting in cache when the Player requests it while, simultaneously,
the NORM multicast receiver for the stream is receiving segment n+1 and, thus, staying ahead of the Player’s
requests.

OC-SP-MC-EMCI-I01-150528 IP Multicast

18 CableLabs 05/28/15

6 CONTENT LOCATION & MANIFESTS

6.1 Content Identification

The only signal from the Player to the Gateway that identifies the content to be streamed is the URL. Thus, the URL
needs to include sufficient information to uniquely identify a stream which might be available via multicast.

An example URL for a video segment is:
http://linear.private.cableco.net/hls/AnEHD_HD_NAT_14710_0_6713276793419826123_HLS/format/hls/tra
ck/muxed/bandwidth/2946000/frag/435173/asset/20141201T175607-01-543173live.ts

6.1.1 URL Encoding
Typically, the information sufficient to identify a stream which might be available via multicast includes – the
domain of the server (i.e., is this operator provided content or not), a unique content identifier and a bit rate.

6.1.1.1 Domain
The M-ABR service is primarily designed to support operator provided content from an operator’s CDN. Thus, the
first check that a Gateway typically performs on a URL which might be of interest is on the domain/host of the URL
being requested by a Player. If the URL matches one of the configured domains/hosts the URL will be processed
further by the EMC. Otherwise the request is simply handled normally, independent of the EMC.

6.1.1.2 Channel Identifier/Linear Content Identifier
An identifier of the linear content itself (e.g., CNN, ESPNU, etc.) is also needed in the URL architecture designed
by the operator. This can either be a human-readable, but unique string such as the channel name or it can be an
encoding such as a numeric identifier.

6.1.1.3 Bitrate or Bitrate Index
Finally, as a given content stream might only be available via multicast at certain bit rates, the bit rate also needs to
be included in the URL. Instead of including the bit rate of the encoding itself in the URL, it is also possible to use a
bit rate identifier or bit rate index. For example, if an operate provides video streams at 5 bit rates it might use 5
values to represent these 5 bit rates more abstractly (e.g., 1=lowest, 2=low, 3=medium, 4=high, 5=highest). This has
the advantage of allowing the actual bit rate of the encoding to change independent of the URL. For example, using
a bit rate index the highest encoded bit rate could change from 7Mbps to 8Mbps, but the bit rate index used in the
URL could remain as “highest” (or 5, in the previous example).

6.1.2 URL Matching

PERL Compatible Regular Expressions (PCRE) are used to determine whether or not a stream is available via
multicast. The domain, content identifier and bit rate are all compared to the URL via regular expressions. If there is
a match against one of the Gateway’s configured regular expressions, the content identifier and bit rate portions of
the URL are then compared against the same fields in the channel map of available multicast content. The Gateway
MUST support PCRE as defined in [PCRE].

The system is intended to be capable of functioning with just a single regular expression, but there may be reasons to
support more than a single regular expression. For example, during a transition period between one URL format and
another it might be desirable to have the Gateway support both the “old” URL style and the “new” URL style as
content migrates from one system to the other. Thus, the system supports the option to configure more than one
regular expression on the Gateway.

An example regular expression for matching against video segment requests is:
http://linear\.private\.cableco\.net/hls/(?P<channelId>.*)/format/.*/bandwidth/(?P<bitrate>.*)/fr
ag/.*\.ts

Note this regular expression uses named capturing groups to extract the channelId and bit rate from the URL.

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 19

6.2 Manifests

For the Gateway to be able to deliver segment files to the Player from its multicast cache the Gateway needs to have
the segment files before the Player requests them. Thus, to maximize the potential for a “cache hit” for multicast
content, the Gateway needs to be at least one segment ahead of the Player in the ABR stream. To achieve this either
the Gateway trims segments from the manifest that it delivers to the Player or the system utilizes two different
versions of the variant manifest – one version for Players and one version for Multicast Servers. In either case, the
goal is the same – to keep the multicast delivery portion of the system a segment or two ahead of the unicast
delivery portion of the system.

6.3 Multicast Zones

Given that cable operators perform local ad insertion, the same channelId and bit rate can still have multiple
variations depending on the ad zone of the Gateway. Thus, the protocol communicates a multicast zoneId to the
Gateway during configuration. The Gateway communicates this zoneId to the Multicast Controller (which may not
be the same server as the configuration server) such that the Multicast Controller can provide the Gateway the
proper Channel Map. The Multicast Controller can also use this information to help it decide what set of streams to
direct the Multicast Server to provide via multicast.

Although this information is delivered to the Gateway, the Gateway itself does not generally utilize this information
in its internal logic.

OC-SP-MC-EMCI-I01-150528 IP Multicast

20 CableLabs 05/28/15

7 GATEWAY FUNCTIONALITY & PROTOCOL OPERATION

7.1 Gateway Configuration

To enable the Multicast ABR feature on a Gateway conformant with this specification, the Gateway needs to be
provisioned with the IP address/DNS hostname of a Multicast Configuration Server (refer to Section 7.3.1). The
Multicast Configuration Server address can be provisioned either through the DOCSIS CM configuration file or via
TR-069.

If TLV TBD is present in the CM configuration file, the Gateway MUST utilize this address to send its initial
ConfigReq message.

If, as part of TR-069 provisioning, the Gateway receives a MulticastConfigurationServerAddress (TBR) element, it
MUST utilize this address to send its initial ConfigReq message, unless the Multicast Configuration Server was
already configured via the CM configuration file, in which case this element is ignored.

7.2 Gateway HTTP Proxying & Caching

A fundamental requirement of the M-ABR system is that it is transparent to Players and requires no configuration on
Players. Thus, the Gateway typically examines all GET requests and compares them against its configured URL
regular expressions to determine if the request is relevant to M-ABR (i.e., whether or not the request is for a
Multicast-Ready Stream). However, some systems exist whereby the Player can be redirected or otherwise
manipulated to send requests directly to the Gateway itself. Therefore, while this is not the default mode, it is
possible to disable transparent proxying on the Gateway. Unless proxy.transparency.disable is ‘true’, the Gateway
MUST compare all GET requests that traverse it against its configured URLRegex3. Matching a URLRegex can
trigger various Gateway behaviors such as joining/leaving multicast groups and checking its internal cache for the
requested segment file. The specific requirements for these behaviors are described elsewhere in this section.

The Gateway MUST support HTTP GETs with a RangeRequest for the specific missing portion of a segment file
(e.g., a NORM FEC block). The Gateway MUST handle HTTP GETs with RangeRequests from the Player.

The Gateway receives video segments files per [MS-EMC]. The Gateway MUST cache at least one segment per
multicast session. The Gateway MUST serve HTTP GET requests for segment files in its cache without sending an
HTTP GET of its own. If the Gateway receives a request for a segment file (or portion thereof) which is not in its
cache, the Gateway MUST send an HTTP GET for the missing portion of the file requested.

7.3 Protocol Operation

7.3.1 Configuration

As operators have a variety of policies and needs, this protocol was designed to be very flexible. There are a number
of capabilities which the Gateway informs the Multicast Controller of and, in return, the Multicast Controller
informs the Gateway of its set of operating parameters.

Similarly, different operators can have different IP Multicast deployment architectures. While, conceptually, this
interface defines the communication between the Embedded Multicast Client in a Gateway and a Multicast
Controller, protocol elements have been defined which allow operators to distribute aspects of Multicast Controller
functionality across multiple servers. In particular, this specification defines a Multicast Configuration Server which
is often the same server as the Multicast Controller, but can also be a separate server. The Multicast Configuration
Server’s functionality can be further distributed between an initial configuration server and a configuration refresh
server. Again, the initial configuration server and the refresh server can be the same server or different servers.
Thus, the specification allows operators to use one, two or three different server addresses for different aspects of
the Multicast Controller functionality. Simple deployments likely use only a single server, but operators with larger
deployments can choose to distribute this functionality across multiple servers if they prefer.

3 It is important to note that substantial performance optimizations exist. For example, the Gateway can extract address and port
information from the URLRegex and utilize that information to reduce the number of GET requests which require full regex
comparisons.

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 21

At startup the Gateway MUST send a ConfigReq (refer to Section 8.1.1) message to the Multicast Configuration
Server address it was assigned via provisioning. If no Multicast Configuration Server address is assigned then the
Multicast ABR feature is disabled on the Gateway.

Figure 5 - Configuration State Machine

The Gateway MUST send a ConfigReq message every refresh.interval seconds after receiving its initial
ConfigResult.

Upon receipt of a ConfigReq for a configuration which is new or has changed, the Multicast Configuration Server
MUST send a ConfigResult (refer to Section 8.1.2) message containing the Gateway’s current configuration. Upon
receipt of a ConfigReq for a configuration which is unchanged, the Multicast Configuration Server MAY send a 304
Not Modified response. If the Gateway receives a 304 Not Modified response, it MUST continue using its current
configuration.

As part of its ConfigResult the Multicast Configuration Server MAY include a refresh.server configuration element.
If the refresh.server configuration element is included in the ConfigResult, the Gateway MUST utilize the
refresh.server address for all subsequent ConfigReq messages. If the refresh.server configuration element is not
included in the ConfigResult, the Gateway MUST utilize the Multicast Configuration Server for all subsequent
ConfigReq messages.

The Gateway MAY support manifest manipulation (i.e., reducing the manifest by n segments). If the Gateway
supports manifest manipulation it MUST set mfestManipSupport to “true” in its ConfigReq message. If the Gateway
does not support manifest manipulation it MUST set mfestManipSupport to “false” in its ConfigReq message. If a
Gateway which does not support manifest manipulation receives a ConfigResponse with a non-zero
mfest.segmentDrops value, the Gateway MUST log the error and continue operation.

The ConfigResult also includes the URL of the Multicast Controller assigned to this Gateway. The Gateway MUST
send all other messages to this Multicast Controller.

OC-SP-MC-EMCI-I01-150528 IP Multicast

22 CableLabs 05/28/15

As part of its ConfigResult the Multicast Configuration Server MAY include a
multicast.channelMap.sourceAddress, multicast.channelMap.groupAddress and multicast.channelMap.port. This
attribute indicates the (S,G) where ChannelMapMsgs are sent4. (Refer to the Channel Map Message section of the
[MS-EMC] specification for the message definition.) Upon receipt of a ConfigResult message containing a
multicast.channelMap.sourceAddress, multicast.channelMap.groupAddress and multicast.channelMap.port, the
Gateway MUST join the corresponding (S,G). Upon joining this (S,G), the Gateway MUST replace any internally
cached channel map with the most recent ChannelMapMsg sent to this address. (Note, the ChannelMap element can
also be sent via the unicast StreamStatusResult message.) If any of the three multicast.channelMap configuration
parameters is omitted, the Gateway MUST log an error, ignore the remaining multicast.channelMap parameters and
continue operation.

7.3.2 Normal Operation

After completing configuration, the Gateway can start sending StreamStatus messages to the Multicast Controller.
The transmission of StreamStatus message by the Gateway can be event-based (i.e. based on the event of a Player
requesting a Multicast-Ready Stream, with an optional delay) and/or time-based (i.e., strictly based on time). Thus,
as detailed in this and subsequent sections, the Gateway can function in one of three modes based on its
configuration:

1. Time-Based – StreamStatus messages are strictly periodic and independent of Player requests. (Timer T1;
streamStatus.interval > 0 and streamStatus.eventing.eventDelay < 0)

2. Event-Based – StreamStatus messages are triggered solely by Player requests for Multicast-Ready Streams.
(Timer T2; streamStatus.interval <= 0 and streamStatus.eventing.eventDelay >=0)

3. Time- & Event-Based – Stream status messages are triggered either by events or by time depending on
which protocol timer triggers first. (Timer T1 or T2; streamStatus.interval > 0 and
streamStatus.eventing.eventDelay >= 0)

By default, the Gateway is in Time-Based mode and sends StreamStatus messages strictly periodically. However, to
address different operational models the other modes are supported as well.

This section details the protocol requirements related to these configuration elements.

Upon receipt of its initial ConfigResponse, if the streamStatus.interval is > 0 then the Gateway MUST set timer T1
to streamStatus.interval seconds. If the streamStatus.interval is <= 0 then the Gateway MUST ignore timer T1. Upon
the expiration of timer T1, the Gateway MUST send a StreamStatus message. Upon transmission of a StreamStatus
message, the Gateway MUST set timer T1 to streamStatus.interval seconds, if timer T1 is in use. Refer to Figure 6.

When sending a StreamStatus (refer to Section 8.2.1) message, the Gateway MUST include the StreamState of all
streams that match one of its configured URL regular expressions (URLRegex) and have been requested within
streamStatus.active.threshold seconds. Streams that match the one of the configured URL regular expressions are
streams that the Multicast Controller might be multicasting currently or might decide to multicast in the future, this
document refers to these streams as Multicast-Ready Streams. When sending a StreamStatus message, the Gateway
MUST include StreamHistory elements for Multicast-Ready Streams requested since the last StreamStatus message
transmission. The Gateway MUST limit the number of StreamHistory elements to the streamStatus.history.depth
count. If the Gateway has received request for more than streamStatus.history.depth Multicast-Ready Streams since
its last StreamStatus transmission, the Gateway SHOULD include the StreamHistory elements for the streams with
the largest number of requests. A value of zero for streamStatus.history.depth indicates that the history feature is
disabled and the Gateway MUST NOT include any StreamHistory elements in its StreamStatus message. Zero is the
default value of streamStatus.history.depth.

If the value of streamStatus.eventing.eventDelay is greater 0 then, after every Player request for an unjoined
Multicast-Ready Stream, the Gateway MUST set timer T2 to streamStatus.eventing.eventDelay seconds. If timer T2
expires before another request from the same Player for an unjoined Multicast-Ready Stream or the
streamStatus.eventing.eventDelay is equal to 0, then the Gateway MUST send the Multicast Controller a

4 While standard mechanisms are defined for the Multicast Controller to POST a ChannelMap to a Multicast Server for multicast
transmission, it is possible that the Multicast Controller or other device multicasts the ChannelMapMsg to this (S,G) via NORM.

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 23

StreamStatus message. Upon transmission of a StreamStatus message, the Gateway MUST ignore timer T2 until it is
set again by another request for an unjoined Multicast-Ready Stream.

The StreamStatusResult (refer to Section 8.2.2) and ChannelMapMsg messages can include a ChannelMap element
indicating a set of Multicast-Active Streams (i.e., streams which are actively being transmitted to an (S,G) by the
Multicast Server). The Gateway MUST store the most recent ChannelMap received via either message. The
Gateway MUST use this ChannelMap for associating channelId-bit rate tuples with multicast addresses when
joining the multicast group for a given multicast stream. The Gateway MUST use this ChannelMap for identifying
streams which are no longer actively being transmitted via multicast and can be left (per the rules in Section 7.4).

The StreamStatusResult message can directly/indirectly control the multicast group membership of the Gateway as
described in Section 7.4. Upon receipt of a StreamStatus message, if the set of Multicast-Active Streams is new or
modified, the Multicast Controller MUST send a StreamStatusResult message. Upon receipt of a StreamStatus
message, if its ChannelMap is unmodified, the Multicast Controller MAY send a 304 Not Modified response or omit
the ChannelMap in its StreamStatusResult. If the Gateway receives a 304 Not Modified response or no
ChannelMap, it MUST continue using its current ChannelMap.

OC-SP-MC-EMCI-I01-150528 IP Multicast

24 CableLabs 05/28/15

7.4 Multicast Group Membership Control

The AssignedStreamList (refer to Section 8.2.2.1.3) is the set of multicast streams the Gateway is assigned to. The
AssignedStreamList can be explicitly signaled by the Multicast Controller for centralized control of group
membership or the Multicast Controller can allow the Gateway to participate in determining which multicast groups
to maintain.

Figure 6 - StreamStatus & Group Membership State Machine

7.4.1 Join & Leave Triggers
The Multicast Controller can either explicitly or implicitly control the multicast group membership of the Gateway.
With implicit control, some membership decisions could be made by the Gateway itself.

7.4.1.1 Explicit Triggers
If the Multicast Controller receives a StreamStatus message from a Gateway indicating that a Player is requesting
segments for a Multicast-Active Stream, the Multicast Controller MAY explicitly signal AssignedStreamList in its
StreamStatusResult. If the AssignedStreamList no longer contains the (S,G) for a group which the Gateway is
currently a member, then the Gateway MUST perform an IGMPv3 or MLDv2 Leave for that (S,G). If the

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 25

AssignedStreamList contains the (S,G) for a group which the Gateway is not currently a member, then the Gateway
MUST perform an IGMPv3 or MLDv2 Join for that (S,G).

7.4.1.2 Implicit Triggers
If a Player has been requesting segments from a Multicast-Active Stream for multicast.start.delay seconds (this is
timer T3 in Figure 6), the last StreamStatusResult did not contain an AssignedStreamList and the Gateway does not
have sufficient resources to receive that stream via multicast then the Gateway MAY leave one of its current
multicast groups. The Gateway SHOULD factor the timeSinceLastRetrieval for each of its multicast streams when
deciding which group to leave. For example, the multicast stream with the largest timeSinceLastRetrieval value is
the least recently used stream and its associated multicast group could be left.

If a Player has been requesting segments from a Multicast-Active Stream for multicast.start.delay seconds, the last
StreamStatusResult did not contain an AssignedStreamList and the Gateway has sufficient resources to receive that
stream, then the Gateway MUST perform an IGMPv3 or MLDv2 Join for the associated (S,G).

If a Player has not requested a segment for a Multicast-Active Stream for multicast.stop.delay seconds (this is timer
T4 in Figure 6), then the Gateway MUST leave the multicast group associated with that stream.

7.5 Multicast Content Delivery

The Multicast Controller controls the set of streams transmitted by the Multicast Server. After a Gateway
successfully joins a multicast group it starts receiving ABR video segment files via multicast and caching them for
subsequent retrieval by the Player.

A variety of events could occur which prevent the Gateway from receiving multicast video segment files as
anticipated or which result in Players not requesting video segment files which are successfully being received via
multicast. The StreamStatus message contains two attributes which can help the Multicast Controller or other
management system recognize these situations – the multicastRxBytes and cacheHitBytes. The Gateway MUST
include these counters when reporting the StreamStatus of streams with a deliveryState of ‘multicast’.

Video segment files are delivered to the Gateway’s EMC as described in [MS-EMC].

OC-SP-MC-EMCI-I01-150528 IP Multicast

26 CableLabs 05/28/15

8 MC-EMC INTERFACE DEFINITION

8.1 Gateway Configuration

Gateway configuration occurs at initial boot up, but can also occur periodically such that the configuration of a
Gateway can be refreshed after initialization.

8.1.1 Configuration Request (ConfigReq)

The ConfigReq message is used to identify the Gateway to the Multicast Configuration System (MCS) and to
communicate any capabilities from the Gateway to the MCS.

Request Direction: EMC to MCS

Method: HTTP POST

Message URL: http://<device-url>/mcs/ConfigReq/<deviceId>

Children: Capability (0..N)

Table 1 - ConfigReq Parameter Definitions

Parameter Use Data Type Description
deviceId Required xs:string The MAC address of the transmitting Gateway in xx-xx-xx-xx-xx-xx form.

Figure 7 - ConfigReq

8.1.1.1 Capability
A Capability element contains a key and a value attribute as defined in the common KVPType.

Table 2 - Standard Capabilities

Key Use Description
maxMcastBitrate Required The maximum total multicast delivery bit rate this Gateway can receive.

maxStreamRate Required The maximum encoded bit rate the Gateway can support for an individual stream.

maxMcastSessions Required The maximum number of M-ABR sessions this Gateway can receive.

mfestManipSupport Required Whether or not the Gateway supports manifest manipulation. Valid values are “true” and
“false”.

vendorId Required The Organization Unique Identifier of the Gateway MAC address.

model Required This string's syntax is that used by the Gateway vendor to identify hardware models.

softwareVersion Required This string's syntax is that used by the Gateway software vendor to identify software versions.

defaultRoute Required The IPv4 or IPv6 address of the Gateway’s default route.

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 27

All standard Gateway capabilities are in the form “gateway.capability.[key]=[value]”. The MCS MUST ignore
capabilities it does not recognize. The MCS MUST NOT respond with an error when it receives a capability which
it does not recognize.

8.1.2 Configuration Result (ConfigResult)

On a successful processing of a ConfigReq, the Multicast Configuration System (MCS) MUST return 200 OK with
an XML response carrying the ConfigResult element, detailing the Gateway’s configuration information. The
ConfigResult element is defined in Section 8.1.2.1.

If the MCS does not have a record for the requested deviceId, the MCS MUST return a 404 Not Found error.

On standard HTTP protocol errors, the MCS MUST return the appropriate HTTP status code and status text.

If the request fails due to reasons other than unknown deviceId or standard HTTP protocol errors, the MCS MUST
return a status code of 500 Internal Server Error and provide a ConfigResult element with details about the failure in
its Response element.

Table 3 - ConfigReq Response Codes

Status Code Meaning
200 OK

400 Bad Request

404 Not Found

500 Internal Server Error

OC-SP-MC-EMCI-I01-150528 IP Multicast

28 CableLabs 05/28/15

8.1.2.1 ConfigResult Message

Figure 8 - ConfigResult

Children: Result (1)
 ConfigDetails (0..1)

8.1.2.1.1 Response

The Response element is defined in Section 10.2.6. The Multicast Controller MUST provide a response code value
of 200 on a successful completion of the Config request. Standard Config failure response codes are detailed in the
Section 11.1.

8.1.2.1.2 ConfigDetails

Table 4 - ConfigResult Attribute Definitions

Attribute Use Data Type Description
multicastControllerURL Required xs:integer The URL of the multicast controller assigned to this Gateway.

zoneId Required xs:string The multicast zone assigned to this Gateway.

Children: URLRegex (1..n)
 Config (0..n)

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 29

8.1.2.1.3 URLRegex

The URLRegex element contains a regular expression the Gateway will use to match content requests.

Children: None

Table 5 - URL Regex Element Definition

Data Type Description
xs:string Regular expression for URL matching.

8.1.2.1.4 Config

The Config element contains a Gateway configuration item.

Children: None

Common Type: KVPType

Table 6 - Standard Configurations

Key Use Description Default
streamStatus.interval Optional Number of seconds the Gateway waits between sending

StreamStatus messages to the Multicast Controller.
A value of -1 indicates that the Gateway MUST NOT send time-
based StreamStatus messages.

300secs

multicast.start.delay Optional Number of seconds the Gateway waits after the first segment is
delivered on a given stream before joining the multicast stream.

30secs

multicast.stop.delay Optional Number of seconds the Gateway waits between the last GET for
a segment on the stream and when it leaves the multicast
stream.

7200secs

multicast.channelMap.
sourceAddress

Optional The S part of the (S,G) for the multicast address where the
Gateway listens for ChannelMapMsgs.
This is either an IPv4 address, an IPv6 address or a FQDN.

none

multicast.channelMap.
groupAddress

Optional The G part of the (S,G) for the multicast address where the
Gateway listens for ChannelMapMsgs.
This is either an IPv4 address, an IPv6 address or a FQDN.

none

multicast.channelMap.
port

Optional The port for the (S,G) for the multicast address where the
Gateway listens for ChannelMapMsgs.

none

multicast.norm.unicast
NackServer

Optional If configured, the Gateway sends unicast NORM NACKs to this
address.

none

refresh.server Optional Address of a server for refreshing configurations during run time. Same as MCS

refresh.interval Optional Number of seconds the Gateway waits between configuration
refreshes.

86400

mfest.segmentDrops Optional Number of segments the Gateway is to drop from the manifest if
it supports manifest manipulation.

0

streamStatus.active.
threshold

Optional Number of seconds since the most recent GET request for a
Multicast-Ready Stream segment before the Gateway considers
the stream inactive in its StreamStatus reporting.

30secs

streamStatus.history.
depth

Optional The number of channel change history events to include in
StreamStatus messages.

0

streamStatus.eventing.
eventDelay

Optional The number of seconds to wait after a channel change to a
Multicast-Ready Stream before sending a StreamStatus.
A value of -1 indicates that the Gateway MUST NOT send event-
based StreamStatus messages.

-1

OC-SP-MC-EMCI-I01-150528 IP Multicast

30 CableLabs 05/28/15

Key Use Description Default
proxy.transparency.
disable

Optional A boolean indicating whether or not the Gateway should disable
transparent proxying. The default is ‘false’ indicating that
transparent proxying enabled. A value of ‘true’ indicates that the
Player has been manipulated to request segments directly from
the Gateway and, thus, the transparent proxy function in the
Gateway is not needed.

false

All standard Gateway configurations are in the form “gateway.config.[key]=[value]”. The Gateway MUST ignore
configuration keys it does not recognize. The Gateway MUST log an error when it receives a configuration key
which it does not recognize and continue operation.

8.1.3 Configuration Request/Result Examples

8.1.3.1 Configuration Request
GET /mcs/ConfigReq/01-de-ca-fb-ad-01 HTTP/1.1
Host: mcs
User-Agent: emc
Content-Type: application/xml
Content-Length: ...
<ConfigReq
 xmlns="urn:com:cablelabs:ipmulticast:2015:02:13">
 <Capability
 key="gateway.capability.maxMcastBitrate"
 value="16000000"/>
 <Capability
 key="gateway.capability.maxMcastSessions"
 value="2"/>
 <Capability
 key="gateway.capability.maxStreamRate"
 value="8000000"/>
 <Capability
 key="gateway.capability.mfestManipSupport"
 value="true"/>
 <Capability
 key="gateway.capability.vendorId"
 value="0aa00a"/>
 <Capability
 key="gateway.capability.model"
 value="HAL-9000"/>
 <Capability
 key="gateway.capability.softwareVersion"
 value="1.2.3"/>
 <Capability
 key="gateway.capability.defaultRoute"
 value="10.0.0.1"/>
</ConfigReq>

8.1.3.2 Configuration Result Example: Success
HTTP/1.1 200 OK
Server: mcs 1.1
Cache-Control: no-cache
<ConfigResult
 xmlns="urn:com:cablelabs:ipmulticast:2015:02:13">
 <Response responseCode=”200”/>
 <ConfigDetails
 zoneId="zone1"
 multicastControllerURL="http://mc101.mabr.tvcdn.net/mc/StreamStatus">
 <URLRegex>http://linear\.private\.cableco\.net/hls/(?P<channelId>.*)/format/.*/bandwidth/
(?P<bitrate>.*)/frag/.*\.ts</URLRegex>
 <Config
 key="gateway.config.streamStatus.interval"

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 31

 value="180"/>
 <Config
 key="gateway.config. multicast.start.delay"
 value="60"/>
 </ConfigDetails>
</ConfigResult>

8.1.3.3 Configuration Result Example: Internal Server Error
HTTP/1.1 500 Internal Server Error
Server: mcs 1.1
Cache-Control: no-cache
<ConfigResult
 xmlns="urn:com:cablelabs:ipmulticast:2015:02:13">
 <Response responseCode=”701”
 responseText=”MC-EMCI Error: missing required capability.”/>
</ConfigResult>

8.2 Gateway Streaming Status

8.2.1 Stream Status Inform (StreamStatus)

As described in Section 7.3.2, the Gateway StreamStatus message to the Multicast Controller either periodically or
in response to content requests (depending on its configuration). The purpose of sending the StreamStatus is to
indicate that the Gateway is still operational and to communicate the relevant video streams that Players behind this
Gateway are viewing.

Request Direction: Gateway to Multicast Controller

Method: HTTP POST

Message URL: http://<device-url>/mc/StreamStatus

Children: StreamState (0..n)
 StreamHistory (0..n)

OC-SP-MC-EMCI-I01-150528 IP Multicast

32 CableLabs 05/28/15

Figure 9 - StreamStatus

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 33

Table 7 - StreamStatus Attribute Definitions

Attribute Use Data Type Description
deviceId Required xs:string The MAC address of the transmitting Gateway in xx-xx-xx-xx-xx-xx form.

zoneId Required xs:string A unique identifier for a multicast zone.

curChannelMapId Required xs:string The unique identifier for a channel map from the most recently received
ChannelMap (whether received in a StreamStatusResult or a
ChannelMapMsg).

8.2.1.1 StreamState
This element represents the state of a given Multicast-Ready Stream (i.e., stream who’s URL matches against a
configured URLRegex) being streamed by this Gateway.

Children: StreamId (1) refer to Section 10.2.4

Table 8 - StreamState Attribute Definitions

Attribute Use Data Type Description
duration Required xs:string Seconds elapsed since the first segment in this stream was requested.

deliveryState Required StreamDelivery
Type enum

The delivery state of the associated Multicast-Ready Stream. If the Gateway
is currently joined to the corresponding multicast group for the stream then
the Gateway MUST indicate the deliveryState as “multicast”. Otherwise, the
Gateway MUST indicate the deliveryState for the stream as “unicast”.

timeSinceLast
Retrieval

Required xs:unsignedInt Seconds since the Player last made a request for a segment in this stream.

multicastRxBytes Optional xs:unsignedInt The number of bytes successfully received for this stream via multicast.
(i.e., unerrored FEC bytes).

cacheHitBytes Optional xs:unsignedInt The number of bytes retrieved from this stream’s multicast cache.

8.2.2 Stream Status Response

On successful processing of a StreamStatus request, the Multicast Controller MUST return a 200 OK with an XML
response carrying the StreamStatusResult element or a 304 Not Modified response. The StreamStatusResult element
is defined in Section 8.2.2.1.

If the Gateway specifies an unknown deviceId, the Multicast Controller must return a status code of 404 Not Found.
Upon receipt of a 404 Not Found, the Gateway SHOULD reinitialize and re-perform initial configuration.

On standard HTTP protocol errors, the Multicast Controller MUST return the appropriate HTTP status code and
status text.

If the request fails due to reasons other than unknown deviceId or standard HTTP protocol errors, the Multicast
Controller MUST return a status code of 500 Internal Server Error and provide the StreamStatusResult element in
the XML body with details about the failure in a Response element. Other failure responses include the HTTP status
code and status text that specifies the error.

Table 9 - StreamStatus Response Codes

Status Code Meaning
200 OK

304 Not Modified

400 Bad Request

404 Not Found

500 Internal Server Error

OC-SP-MC-EMCI-I01-150528 IP Multicast

34 CableLabs 05/28/15

8.2.2.1 StreamStatusResult Message

Figure 10 - StreamStatusResult

Children: Response (1)
 ChannelMap (0..1)
 AssignedStreamList (0..1)

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 35

8.2.2.1.1 Response

The Response element is defined in Section 10.2.6. The Multicast Controller MUST provide a response code value
of 200 on a successful completion of the StreamStatus request. Standard StreamStatus failure response codes are
detailed in the Section 11.1.

8.2.2.1.2 ChannelMap

The ChannelMap element contains a series of MulticastStreams which provide a mapping between a tuple of
channelId and bit rate to (S,G). It is defined in Section 10.2.5.

8.2.2.1.3 AssignedStreamList

The AssignedStreamList element contains a set of (S,G) addresses that the Multicast Controller is commanding the
Gateway to be a member of. It is defined in Section 10.2.3.

8.2.3 StreamStatus Message Examples

8.2.3.1 StreamStatus Request Example
POST /mc/StreamStatus HTTP/1.1
Host: mc
User-Agent: emc
Content-Type: application/xml
Content-Length: ...
<StreamStatus
 xmlns="urn:com:cablelabs:ipmulticast:2015:02:13"
 deviceId="01-de-ca-fb-ad-01"
 zoneId="zone1">
 <StreamState
 duration="876"
 timeSinceLastRetrieval="5"
 deliveryState="multicast">
 <StreamId
 channelId="ESPN2HD"
 bitrate="3800000"/>
 </StreamState>
</StreamStatus>

8.2.3.2 StreamStatusResult Example
HTTP/1.1 200 OK
Server: MC 1.0
Cache-Control: no-cache
<StreamStatusResult
 xmlns="urn:com:cablelabs:ipmulticast:2015:02:13">
 <Response responseCode=”200”/>
 <ChannelMap>
 <MulticastStream
 sourceURL="https://www.tvcdn.net/espn2.m3u8?bitrate=3800&channelId=ESPNHD"
 sessionId="6c68ebc0-6ab0-11e4-b116-123b93f75cba">
 <StreamId
 channelId="ESPNHD"
 bitrate="3800000"/>
 <Address
 groupAddress="224.1.1.1"
 groupPort="12345"
 sourceAddress="10.10.10.10"/>
 </MulticastStream>
 <MulticastStream
 sourceUrl=" https://www.tvcdn.net/espn2.m3u8?bitrate=3800&channelId=ESPN2HD"
 sessionId="502faa5a-6a41-4384-8254-d4ff13f48f60">
 <StreamId
 channelId="ESPN2HD" bitrate="3800000"/>
 <Address

OC-SP-MC-EMCI-I01-150528 IP Multicast

36 CableLabs 05/28/15

 groupAddress="224.1.1.2"
 groupPort="12345"
 sourceAddress="10.10.10.10"/>
 </MulticastStream>
 </ChannelMap>
 <AssignedStreamList>
 <Address
 groupAddress="224.1.1.1"
 groupPort="12345"
 sourceAddress="10.10.10.10"/>
 </AssignedStreamList>
</StreamStatusResult>

8.2.3.3 StreamStatus Result Example: Internal Server Error
HTTP/1.1 500 Internal Server Error
Server: MC 1.0
Cache-Control: no-cache
<StreamStatusResult
 xmlns="urn:com:cablelabs:ipmulticast:2015:02:13">
 <Response responseCode=”703”
 responseText=”MC-EMCI Error: incorrect zoneId.”/>
</StreamStatusResult>

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 37

9 HTTP PROTOCOL

9.1 Connection

In most cases, any device that interfaces with another device can initiate an HTTP request. Therefore, the HTTP
request transmitter is considered the client and the HTTP request receiver is considered the server. The client always
initiates the connection. Once the connection is established, that connection can be used for multiple requests, as
discussed later in this specification. However, if a client initiates a request and the server has an HTTP request that it
needs to transmit to the device (in effect, making the server the client in the context of the new message); a new
connection MUST be established for the new HTTP request message.

For example, on the MC-EMC interface, the Multicast Controller is the server and the Embedded Multicast Client is
the client. However, on the MC-MS interface, the Multicast Controller is the client and the Multicast Server is the
server. Since the device which is the client varies depending on which interface is being considered, this section uses
the generic language of “client” and “server” as it applicable to both interfaces.

Communication between the client and server MUST use the HTTP/1.1 protocol, as specified in [RFC 2616]. In
HTTP/1.1, connections are persistent by default. The connection remains open unless either the client or server
explicitly indicates the connection should close. The HTTP response includes the header Connection: close in order
to indicate that the connection should be closed.

During periods when no messages are being exchanged, the client or server MAY close the connection to conserve
resources. If the client does not transmit a message for 60 seconds, then the client MUST close the connection.

9.1.1 Connection Security

For communications between client and server components in the IP Multicast system, it is expected that secure
communication channels will be used. The methods and protocols used to secure the communications between
entities are outside of the scope of this specification.

9.2 Request Messages

9.2.1 Use of HTTP Methods
A client MUST only use the GET or POST methods for HTTP requests. The client MUST use the GET method
when retrieving existing information from the server. For example, when the client is requesting the state of a
session a GET method would be used. The client MUST use the POST method to execute a task or action on the
server other than retrieving existing information. For example, when the client is setting up or tearing down a
session a POST method would be used. The client MAY use a POST method if the request includes many
parameters or complex parameters. In that case, the parameters can be specified in Extensible Markup Language
(XML) included in the POST operation. For example, the client specifies a query that includes a list of parameters.

The client MUST NOT use the PUT and DELETE HTTP methods.

9.2.2 URI Format

To allow for proxies to be inserted in any communication, the client MUST use the absolute format of the Uniform
Resource Identifier (URI). The path of the URI identifies the application name and the method name. The format of
the path is shown below.

path = “/” app_abbreviation “/” operation

The app_abbreviation is the abbreviated application name. Including this in the URI allows multiple applications to
be sourced from the same server. The client MUST use the application abbreviations listed in Table instead of
component or application names.

OC-SP-MC-EMCI-I01-150528 IP Multicast

38 CableLabs 05/28/15

Table 10 - Application Abbreviations

Component or Application Name app_abbreviation

Multicast Controller mc

Multicast Server ms

Note: the Embedded Multicast Client is not listed as the protocol does not require server support on this device.

The operation indicates the task to perform. Operations are defined with each of the individual messages.

If a request is simply getting or setting a value, and it uses the GET or POST HTTP method, then the client
SHOULD omit the operation name and simply indicate the data or information being retrieved or set. That is, the
operation words "Get" and "Set" do not need to be included in the operation.

For example, consider the path required to retrieve Multicast Server state data (multicast). The Multicast Controller
can issue an HTTP GET to retrieve the state details from a Multicast Server it manages, or the Multicast Controller
can issue an HTTP POST to start a multicast stream. In either case, the operation is simply the name "multicast".
Notice that it does not include "Get" or "Set".

The full HTTP headers for the “multicast” method are:
POST http://<device>/ms/multicast HTTP/1.1
GET http://<device>/ms/multicast HTTP/1.1

When the client uses the GET method, the URI MAY include an optional list of parameters, formatted according to
the HTTP protocol as specified in [RFC 2616]. Note that data in the parameter list MUST be URL encoded.

The POST method does not include any parameters in the URI; parameters are specified in an XML Body.

9.2.3 HTTP Version

The client and server MUST implement HTTP version 1.1, as specified in [RFC 2616].

9.2.4 HTTP Request Headers

Compliance with HTTP 1.1 requires the use of the Host header. In addition, when a message body is present, the
Content-Length header is also required. In this specification set, "..." is used as the value of this header, although
an accurate count of characters in the message is required by HTTP 1.1.

The client MUST include the User-Agent header in all requests to aid in troubleshooting. The value of this header
SHOULD describe the client application along with the version of the application.

When there is no message body, the client MUST use the Accept header. Use of the Accept header simplifies any
future extension of media encodings for an interface.

When a message body is included in the request, the client MUST use the Content-Type header. When a message
body is included, the client MAY use the Accept header.

The client MAY include the If-Modified-Since header in requests when the request has been made previously. If the
client includes the If-Modified-Since header, it MUST include the time of the last response (i.e., the time of its
current state) in the request. If the server returns a response code of 304 Not Modified, the client MUST continue to
use its existing state with respect to that request.

The client MAY include other headers. The server MAY ignore non-required headers without changing the expected
behavior.

An example HTTP request header is shown below (body not shown):
POST /mc/StreamStatus HTTP/1.1
Host: mc
User-Agent: emc
Content-Type: application/xml
Content-Length: ...

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 39

9.2.5 Message Body – XML

The message body for an HTTP POST request is XML. The root element of the XML MUST match the operation
specified in the URI.

Unlike [RMI HTTP] where each interface has its own namespace, for IP Multicast interfaces the functions across
the interfaces are different enough that only a single namespace was used for all of the interfaces. The namespace
used in the XML is shown below:

xmlns="urn:com:cablelabs:ipmulticast:2015:02:13"

There is no message body for an HTTP GET message.

9.2.6 Message Body – JSON

TBD

9.2.7 GET and POST Request Message Examples

GET Request Message Example:
GET /mcs/ConfigReq/01-de-ca-fb-ad-01 HTTP/1.1
Host: mcs
User-Agent: emc
Content-Type: application/xml
Content-Length: ...
<ConfigReq
 xmlns="urn:com:cablelabs:ipmulticast:2015:02:13">
 <Capability
 key="gateway.capability.maxMcastBitrate"
 value="7600000"/>
 <Capability
 key="gateway.capability.maxMcastSessions"
 value="2"/>
</ConfigReq>

POST Request Message Example
POST /mc/StreamStatus HTTP/1.1
Host: mc
User-Agent: emc
Content-Type: application/xml
Content-Length: ...
<StreamStatus
 xmlns="urn:com:cablelabs:ipmulticast:2015:02:13"
 deviceId="01-de-ca-fb-ad-01"
 zoneId="zone1">
 <StreamState
 duration="876"
 timeSinceLastRetrieval="5"
 deliveryState="multicast">
 <StreamId
 channelId="ESPN2HD"
 bitrate="3800000"/>
 </StreamState>
</StreamStatus>

OC-SP-MC-EMCI-I01-150528 IP Multicast

40 CableLabs 05/28/15

9.3 Response Messages

9.3.1 HTTP Status Code and Status Text

The Status Code and Status Text in the response indicate whether the server successfully processed the request or
failed to process the request.

For a successful response, the server MUST return a 200 OK status if the response includes a message body. If a
successful response only includes an HTTP header, the server MUST return a 204 No Content status.

The server MUST return a 307 Temporary Redirect when the client has to be redirected to a different server to
process the request. The server MUST specify the alternate server URL in the Location HTTP header.

The server MUST return one of the following status codes to indicate a client-side request error:

400 Bad Request – Malformed HTTP request

403 Forbidden – Client does not have sufficient privileges to execute the operation

404 Not Found – Item specified in the GET parameters is not found.

The server MUST return one of the following status codes to indicate a server-side error:

500 Internal Server Error – This is the most common type of error condition. It indicates that the server
failed to process the request. The server MUST include the exact details of the error in the XML in
the Response element.

501 Not Implemented – Request method is not supported

505 HTTP Version Not Supported

9.3.2 Caching Results

The server's default action MUST be to disable the caching of HTTP response messages. This is accomplished by
including the cache-control: no-cache header in the HTTP response message. This action prevents intermediary
HTTP servers from caching the results. However, the client application MAY cache the results as specified in the
individual interfaces.

There are conditions when some results are cacheable at the protocol level on HTTP servers. These exception cases
will be explicitly specified in the interface definitions. For these cases, the server MUST include the Cache-Control:
max-age header in the HTTP response to specify the maximum amount of time that the HTTP response can be
cached Time to Live (TTL value).

9.3.3 HTTP Response Headers

Compliance with HTTP 1.1 requires that the Content-Length header be provided when a message body is present.
This is unchanged for the interfaces specified here. In this specification set, "..." is used as the value of this
header, although an accurate count of characters in the message is required by HTTP 1.1.

To aid in troubleshooting, the server MUST include the Server header in all responses. The value of this header
SHOULD describe the server application and the version of the application.

The server MUST include the Cache-Control header to ensure that any intermediate caches handle the response
appropriately. The server MUST support the cache response directives no-cache and max-age.

When there is a message body, the server MUST use the Content-Type header. The server MAY include other
headers. The client MAY ignore non-required headers without changing the expected behavior.

An example HTTP response example with XML body is shown here (body not shown):

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 41

HTTP/1.1 200 OK
Server: MC 1.0
Content-Type: application/xml
Content-Length: ...
Cache-Control: no-cache

An example HTTP response with no message body is shown here:
HTTP/1.1 204 No Content
Server: MC 1.0
Cache-Control: no-cache

9.3.4 Message Body – XML
The server MAY include XML in the message body in the response message to a successful request. The name of
the root element of the XML depends on the request.

For an HTTP GET response, the root element MUST match the operation name specified in the URI of the HTTP
GET request.

For an HTTP POST response, the root element operation name specified in the URI of the HTTP POST request, is
used with "Result" appended to the end. For example, if the URI of the POST is "/mc/StreamStatus", then the root
element of the XML in the response message body will be "StreamStatusResult". The addition of "Result" is used to
differentiate the XML element in the response from the XML element in the request.

The namespace used for the XML document is specified in Section 9.2.5.

9.3.5 Message Body – JSON

TBD

9.4 Message Flow

9.4.1 Request-Response Flow

The client connects to the server, sends an HTTP request, and waits for an HTTP response. The client MAY pipeline
requests; that is, the client can send multiple requests on the same connection before receiving a response to the first
request. The server MUST process all requests and return responses in the order they were sent.

Alternatively, the client MAY open multiple connections to the server and issue multiple requests in parallel. The
server MUST process each request and send an HTTP response to the client on the same connection that the request
was received.

Based on the HTTP headers, the client or server MAY close the connection or the connection can be left open for
subsequent requests from the client.

The client MAY have several open connections to the server at any given time.

Figure 11 shows the message flow sequence between the client and server when the connection is closed after a
single request-response pair.

OC-SP-MC-EMCI-I01-150528 IP Multicast

42 CableLabs 05/28/15

Client Server

Connect
to Host

HTTP Request (POST)

HTTP Response

Close
Connection

Connect
to Server

Figure 11 - Message Flow: Semi-Persistent Connection

Figure 12 shows the message flow sequence between the client and the server when the connection remains open
between request-response pairs.

Client Server

Connect
to Host

HTTP Request (POST)

HTTP Response

Connection
Remains Open

HTTP Request (POST)

HTTP Response

Connect
to Server

Figure 12 - Message Flow: Persistent Connection

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 43

9.4.2 Connection Lost

During the HTTP transaction, if the connection to the server is lost at any time prior to the client receiving a valid
HTTP response message, the client MUST treat the request as failed. The client SHOULD immediately retry the
request. If the retry fails, the client MAY discard the request or retry the request at a later time. The method of
handling the failure is implementation specific, and can vary by importance of the request type.

In most cases, the server will have started processing the request prior to connection loss. If the connection to the
client is lost, the server SHOULD finish processing the request. The server MUST NOT establish a connection with
the client in order to return the response. It is up to the client to reconnect and retransmit the request.

9.4.3 Request Timeout
The client sets a timer when it sends an HTTP request. This timer represents the maximum amount of time that the
client will wait for a response from the server. The client SHOULD set a timeout period of two (2) seconds.

If the client fails to receive an HTTP response before the timer expires, the client MUST treat the request as failed.
The client MAY discard the request, immediately retry the request, or retry the request at a later time. The method of
handling the failure is implementation specific, and may vary by importance of the request type.

OC-SP-MC-EMCI-I01-150528 IP Multicast

44 CableLabs 05/28/15

10 COMMON XML ELEMENTS

10.1 Common Simple Data Types

The following simple data types have been created to support the IPM HTTP protocol.

Table 11 - Common Data Types

Data Type Name Base Type Type Constraints Description
IPOrDomainType xs:string Refer to DVB SDNS v1.4 A dotted decimal IPv4 address or a domain name.

StreamDeliveryType xs:string “unicast”
“multicast”

Indicates whether a Multicast-Ready Stream is currently
being received via unicast or multicast.

10.2 Complex Data Elements

This section contains complex data types that have been created to support the IPM HTTP protocol.

10.2.1 KVPType

The KVPType allows for the encoding of key-value pairs in the protocol. It is loosely typed as both the key and the
value portion are encoded as strings, but the encoded value can be of a different data type.

Table 12 - KVPType Attribute Definitions

Attribute Use Data Type Description
key Required xs:string The key of the key-value pair.

value Required xs:string The value of the key-value pair.

10.2.2 LinearAsset

The LinearAsset object provides stream and address information for a given linear asset multicast session.

Children: LinearAssetContentBitrate (1)

LinearAssetAddress (1)

Table 13 - LinearAsset Attribute Definitions

Attribute Use Data Type Description
sessionId Required xs:string Globally unique identifier for this session

sourceURL Optional xs:string URL of the top level manifest.

10.2.2.1 Example LinearAsset XML
 <MulticastStream
 sessionId="6c68ebc0-6ab0-11e4-b116-123b93f75cba"
 sourceURL="https://www.tvcdn.net/espn2.m3u8?bitrate=3800&channelId=ESPNHD">
 <StreamId
 channelId="ESPN"
 bitrate="3800000"/>
 <Address
 groupAddress="224.1.1.1"
 groupPort="65535"
 sourceAddress="10.10.10.10"/>
 </MulticastStream>

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 45

10.2.3 LinearAssetAddress
Table 14 - LinearAssetAddress Attribute Definitions

Attribute Use Data Type Description
groupAddress Required dvb:IPOrDomainType

groupPort Required xs:unsignedShort Port number

sourceAddress Required dvb:IPOrDomainType URL of the master manifest.

10.2.3.1 Example LinearAssetAddress XML
 <Address
 groupAddress="224.1.1.1"
 groupPort="12345"
 sourceAddress="10.10.10.10"/>

10.2.4 LinearAssetContentBitrate
Table 15 - LinearAssetContentBitrate Attribute Definitions

Attribute Use Data Type Description
channelId Required xs:string Globally unique identifier for this linear asset

bitrate Required xs:unsignedLong URL of the master manifest.

10.2.4.1 Example LinearAssetContentBitrate XML
 <StreamId
 channelId="ESPN"
 bitrate="3800000"/>

10.2.5 ChannelMap

The ChannelMap object can be embedded in a number of different messages and can be delivered both unicast and
multicast.

Children: MulticastStream (1..n) (of LinearAssetType described above)

OC-SP-MC-EMCI-I01-150528 IP Multicast

46 CableLabs 05/28/15

Figure 13 - ChannelMap Element

Table 16 - ChannelMap Attribute Definitions

Attribute Use Data Type Description
channelMapId Required xs:string Globally unique identifier for this channel map.

10.2.5.1 Example ChannelMap XML
 <ChannelMap
 channelMapId=”0589d210-ad55-11e4-89d3-123b93f75cba”>
 <MulticastStream
 sourceURL="https://www.tvcdn.net/espn2.m3u8?bitrate=3800&channelId=ESPNHD"
 sessionId="6c68ebc0-6ab0-11e4-b116-123b93f75cba">
 <StreamId
 channelId="ESPNHD"
 bitrate="3800000"/>
 <Address
 groupAddress="224.1.1.1"
 groupPort="12345"
 sourceAddress="10.10.10.10"/>
 </MulticastStream>
 <MulticastStream
 sourceUrl=" https://www.tvcdn.net/espn2.m3u8?bitrate=3800&channelId=ESPN2HD"
 sessionId="502faa5a-6a41-4384-8254-d4ff13f48f60">
 <StreamId

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 47

 channelId="ESPN2HD"
 bitrate="3800000"/>
 <Address
 groupAddress="224.1.1.2"
 groupPort="12345"
 sourceAddress="10.10.10.10"/>
 </MulticastStream>
 </ChannelMap>

10.2.6 Response

The Response element indicates the results of an operation. The Response element only appears in the XML of a
HTTP GET or POST response message. The client MUST provide a value in the responseCode attribute that
specifies the result code of the operation. The client MAY include a value in the responseText attribute to specify
detailed information about the result if the result was not a failure. If the result was a failure, the client MUST
include a failure reason in the responseText attribute.

Children: None

Table 17 - Response Attribute Definitions

Attribute Use Data Type Description
responseCode Required xs:integer Integer value that indicates the result of the operation. A response

code of 0 indicates no error.

responseText Conditionally
Required

xs:string Detailed description of the results of the operation. Typically
included in failures to specify details about the failure.

10.2.6.1 Response Element XML Example
<Response
 responseCode="772"
 responseText="Server Setup Failed – SOP Not Available">
</Response>

OC-SP-MC-EMCI-I01-150528 IP Multicast

48 CableLabs 05/28/15

11 COMMON CODES

11.1 Response Codes

Table lists common response codes for errors in the IP Multicast (IPM) system. These codes are used in the
responseCode attribute of the Response element.

Table 18 - Response Codes

Code Description
200 No Error

400 Bad Request – Request had missing or unexpected parameters.

403 Forbidden – User does not have the appropriate privileges to access the data.

404 Not Found – Requested data could not be found.

405 Method Not Allowed

408 Request Time Out

 600-range MC-MS Interface Errors

600 MC-MSI Error: Other

601 MC-MSI Error: Invalid sourceAddress specified.

602 MC-MSI Error: Invalid groupAddress specified.

602 MC-MSI Error: Error retrieving manifestUrl.

603 MC-MSI Error: Commanded bit rate not included in manifest.

604 MC-MSI Error: Error retrieving stream variant manifest.

605 MC-MSI Error: Error retrieving first stream segment.

606 MC-MSI Error: Error sending first segment to directed multicast group

607 MC-MSI Error: Unable to support requested FEC parameters.

608 MC-MSI Error: Encoded bit rate is less than specified multicast rate.

610 MC-MSI Error: Error contacting accessServer.

611 MC-MSI Error: CDN token-related error.

 700-range MC-EMC Interface Errors

701 MC-EMCI Error: missing required capability.

702 MC-EMCI Error: capabilities incompatible with multicast service offering.

703 MC-EMCI Error: incorrect zoneId.

 800-range Vendor-Specific Errors

800-899 Reserved for vendor-specific response codes.

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 49

Annex A Considerations for Hybrid STBs (Normative)
Hybrid set-tops are set-tops that support both QAM-based/CAS-based video delivery and IP-based/DRM-based
video delivery. The primary issue with this type of device is: how does it know when to get a given linear content
feed/channel via QAM-based delivery versus IP-based delivery?

The system described in the IP Multicast specifications essentially overlays multicast on a unicast IP ABR delivery
architecture as an optimization. Thus, it fails back to unicast delivery whenever there is a multicast-related delivery
issue. This mechanism is fairly fundamental to the system and makes it difficult for a hybrid set-top to use QAM-
based video delivery as a fallback for IP-multicast video delivery as unicast IP video delivery already plays that role
in the system.

However, using QAM-based video as the primary video source and then falling back to IP-based video fits well
within the specified IP multicast. The details of how this would be achieved are beyond the scope of this
specification, but it is recommended that operators/vendors considering incorporating IP Multicast into a hybrid
STB and using these interface specifications consider that approach.

Another specification suite, the Converged-Policy, Session and Resource Management specification suite, is being
developed to address related issues. It is recommended that parties interested in hybrid STBs look at these
specifications as well when considering their architecture.

OC-SP-MC-EMCI-I01-150528 IP Multicast

50 CableLabs 05/28/15

Annex B Schema (Normative)
<xs:schema xmlns="urn:com:cablelabs:ipmulticast:2015:02:13"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="urn:com:cablelabs:ipmulticast:2015:02:13"
xmlns:dvb="urn:dvb:metadata:iptv:sdns:2008-1"
targetNamespace="urn:com:cablelabs:ipmulticast:2015:02:13" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:import namespace="urn:dvb:metadata:iptv:sdns:2008-1" schemaLocation="./sdns_v1.4r13.xsd"/>
 <!-- Simple Types & Attributes -->
 <xs:simpleType name="StreamDeliveryType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="unicast"/>
 <xs:enumeration value="multicast"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="MulticastStreamStatusType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="not-started"/>
 <xs:enumeration value="running"/>
 <xs:enumeration value="stopped"/>
 <xs:enumeration value="error"/>
 <xs:enumeration value="failed"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="LinearAssetAddressType">
 <xs:attributeGroup ref="SSMAddressType"/>
 </xs:complexType>
 <xs:complexType name="LinearAssetContentBitrateType">
 <xs:attributeGroup ref="ContentStreamBitrateType"/>
 </xs:complexType>
 <xs:complexType name="KVPType">
 <xs:attributeGroup ref="KVPAttType"/>
 </xs:complexType>
 <xs:complexType name="CapabilityType">
 <xs:sequence/>
 </xs:complexType>
 <xs:complexType name="ConfigType">
 <xs:sequence/>
 </xs:complexType>
 <xs:attributeGroup name="SSMAddressType">
 <xs:attribute name="sourceAddress" type="dvb:IPOrDomainType" use="required"/>
 <xs:attributeGroup ref="McastAddressType"/>
 </xs:attributeGroup>
 <xs:attributeGroup name="McastAddressSrcOptType">
 <xs:attribute name="sourceAddress" type="dvb:IPOrDomainType" use="optional"/>
 <xs:attributeGroup ref="McastAddressType"/>
 </xs:attributeGroup>
 <xs:attributeGroup name="McastAddressType">
 <xs:attribute name="groupAddress" type="dvb:IPOrDomainType" use="required"/>
 <xs:attribute name="groupPort" type="xs:unsignedShort" use="required"/>
 </xs:attributeGroup>
 <xs:attributeGroup name="SourceManifestRateType">
 <xs:attribute name="manifestUrl" type="xs:string" use="required"/>
 <xs:attribute name="bitrate" type="xs:string" use="optional"/>
 </xs:attributeGroup>
 <xs:attributeGroup name="NormOptionsType">
 <xs:attribute name="fecEnable" type="xs:boolean" use="optional"/>
 <xs:attribute name="fecBlockSize" type="xs:unsignedByte" use="optional"/>
 <xs:attribute name="fecRepairCount" type="xs:unsignedByte" use="optional"/>
 </xs:attributeGroup>
 <xs:attributeGroup name="MulticastTxOptionsType">
 <xs:attribute name="multicastDscp" type="xs:unsignedByte" use="optional"/>
 <xs:attribute name="multicastRate" type="xs:unsignedInt" use="optional"/>
 </xs:attributeGroup>
 <xs:attributeGroup name="ContentStreamBitrateType">
 <xs:attribute name="channelId" type="xs:string" use="required"/>
 <xs:attribute name="bitrate" type="xs:integer" use="required"/>

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 51

 </xs:attributeGroup>
 <xs:attributeGroup name="KVPAttType">
 <xs:attribute name="key" type="xs:string" use="required"/>
 <xs:attribute name="value" type="xs:string" use="required"/>
 </xs:attributeGroup>
 <!-- Complex Types -->
 <xs:complexType name="ChannelMapType">
 <xs:sequence>
 <xs:element name="MulticastStream" type="LinearAssetType" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="channelMapId" use="required"/>
 </xs:complexType>
 <xs:complexType name="AssignedStreamListType">
 <xs:sequence>
 <xs:element name="Address" type="LinearAssetAddressType" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="StreamStatusResultType">
 <xs:sequence>
 <xs:element name="Response" type="ResponseType"/>
 <xs:element name="ChannelMap" type="ChannelMapType" minOccurs="0"/>
 <xs:element name="AssignedStreamList" type="AssignedStreamListType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ConfigReqType">
 <xs:sequence>
 <xs:element name="Capability" type="KVPType" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <!-- xs:attribute name="gatewayId" type="xs:string" use="required"/ -->
 </xs:complexType>
 <xs:complexType name="ResponseType">
 <xs:attribute name="responseCode" type="xs:integer" use="required"/>
 <xs:attribute name="responseText" type="xs:string" use="optional"/>
 </xs:complexType>
 <xs:complexType name="ConfigDetailsType">
 <xs:sequence>
 <xs:element name="URLRegex" type="xs:string" maxOccurs="unbounded"/>
 <xs:element name="Config" type="KVPType" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="multicastControllerURL" type="xs:string" use="required"/>
 <xs:attribute name="zoneId" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="ConfigResultType">
 <xs:sequence>
 <xs:element name="Response" type="ResponseType"/>
 <xs:element name="ConfigDetails" type="ConfigDetailsType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="LinearAssetType">
 <xs:sequence>
 <xs:element name="StreamId" type="LinearAssetContentBitrateType"/>
 <xs:element name="Address" type="LinearAssetAddressType"/>
 </xs:sequence>
 <xs:attribute name="sessionId" type="xs:string" use="required"/>
 <xs:attribute name="sourceURL" type="xs:string"/>
 </xs:complexType>
 <xs:complexType name="MulticastStatusType">
 <xs:attribute name="status" type="MulticastStreamStatusType" use="required"/>
 <xs:attribute name="sessionId" type="xs:string" use="required"/>
 <xs:attribute name="sourceAddress" type="dvb:IPOrDomainType" use="required"/>
 <xs:attribute name="errorMsg" type="xs:string" use="optional"/>
 <xs:attribute name="errorTime" type="xs:dateTime" use="optional"/>
 <xs:attribute name="bytesSent" type="xs:unsignedLong" use="optional"/>
 <xs:attribute name="lastSegmentFileSent" type="xs:string" use="optional"/>
 </xs:complexType>
 <xs:complexType name="MulticastStatusResultType">
 <xs:sequence>

OC-SP-MC-EMCI-I01-150528 IP Multicast

52 CableLabs 05/28/15

 <xs:element name="Setup" type="StartMulticastReqType"/>
 <xs:element name="Status" type="MulticastStatusType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="MulticastStatusListType">
 <xs:sequence>
 <xs:element name="Status" type="MulticastStatusResultType" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="StreamStatusType">
 <xs:sequence>
 <xs:element name="StreamState" type="StreamStateType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="StreamHistory" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="StreamId" type="LinearAssetContentBitrateType"/>
 </xs:sequence>
 <xs:attribute name="requests" use="required">
 <xs:annotation>
 <xs:documentation>Number of GET requests for this Multicast-Ready Stream since last
StreamStatus sent.</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="deviceId" type="xs:string" use="required"/>
 <xs:attribute name="zoneId" type="xs:string" use="required"/>
 <xs:attribute name="curChannelMapId" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="StreamStateType">
 <xs:sequence>
 <xs:element name="StreamId" type="LinearAssetContentBitrateType"/>
 </xs:sequence>
 <xs:attribute name="duration" type="xs:integer" use="required">
 <xs:annotation>
 <xs:documentation>Seconds elapsed since first stream segment requested</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="deliveryState" type="StreamDeliveryType" use="required">
 <xs:annotation>
 <xs:documentation>Delivery States: (a) Unicast (b) Multicast</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="timeSinceLastRetrieval" type="xs:integer" use="required">
 <xs:annotation>
 <xs:documentation>Seconds since the Player last made a request for a segment in this
stream.</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="multicastRxBytes" type="xs:unsignedInt">
 <xs:annotation>
 <xs:documentation>Bytes received for this stream via multicast.</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="cacheHitBytes" type="xs:unsignedInt">
 <xs:annotation>
 <xs:documentation>Bytes retrieved from this stream's multicast cache.</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:complexType>
 <xs:complexType name="StartMulticastDetailsType">
 <xs:attribute name="sessionId" type="xs:string" use="required"/>
 <xs:attribute name="statusMsg" type="xs:string" use="optional"/>
 <xs:attributeGroup ref="SSMAddressType"/>
 </xs:complexType>
 <xs:complexType name="SendChannelMapDetailsType">

IP Multicast Controller-Client Interface Specification OC-SP-MC-EMCI-I01-150528

05/28/15 CableLabs 53

 <xs:attribute name="statusMsg" type="xs:string" use="optional"/>
 <xs:attributeGroup ref="SSMAddressType"/>
 </xs:complexType>
 <xs:complexType name="SendChannelMapReqType">
 <xs:sequence>
 <xs:element name="ChannelMap" type="ChannelMapType"/>
 </xs:sequence>
 <xs:attributeGroup ref="McastAddressSrcOptType"/>
 </xs:complexType>
 <xs:complexType name="ChannelMapMsgType">
 <xs:sequence>
 <xs:element name="ChannelMap" type="ChannelMapType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="SendChannelMapResultType">
 <xs:sequence>
 <xs:element name="Response" type="ResponseType"/>
 <xs:element name="SendChannelMapDetails" type="SendChannelMapDetailsType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="StartMulticastReqType">
 <xs:attributeGroup ref="McastAddressSrcOptType"/>
 <xs:attributeGroup ref="SourceManifestRateType"/>
 <xs:attributeGroup ref="NormOptionsType"/>
 <xs:attributeGroup ref="MulticastTxOptionsType"/>
 <xs:attribute name="multicastManifestEnable" type="xs:boolean" use="optional"/>
 <xs:attribute name="accessServer" type="dvb:IPOrDomainType" use="optional"/>
 </xs:complexType>
 <xs:complexType name="StartMulticastResultType">
 <xs:sequence>
 <xs:element name="Response" type="ResponseType"/>
 <xs:element name="StartMulticastDetails" type="StartMulticastDetailsType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="MulticastStatusListResultType">
 <xs:sequence>
 <xs:element name="MulticastStatus" type="MulticastStatusResultType" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <!-- Message Elements -->
 <xs:element name="ConfigReq" type="ConfigReqType"/>
 <xs:element name="ConfigResult" type="ConfigResultType"/>
 <xs:element name="StreamStatus" type="StreamStatusType"/>
 <xs:element name="SendChannelMapReq" type="SendChannelMapReqType"/>
 <xs:element name="SendChannelMapResult" type="SendChannelMapResultType"/>
 <xs:element name="ChannelMapMsg" type="ChannelMapMsgType"/>
 <xs:element name="StreamStatusResult" type="StreamStatusResultType"/>
 <xs:element name="StartMulticastReq" type="StartMulticastReqType"/>
 <xs:element name="StartMulticastResult" type="StartMulticastResultType"/>
 <xs:element name="MulticastStatusResult" type="MulticastStatusResultType"/>
 <xs:element name="MulticastStatusListResult" type="MulticastStatusListResultType"/>
</xs:schema>

OC-SP-MC-EMCI-I01-150528 IP Multicast

54 CableLabs 05/28/15

Appendix I Acknowledgements (Informative)

On behalf of the cable industry and our member companies, CableLabs would like to thank the following
individuals for their contributions to the development of this specification.

Contributor Company Affiliation

Bill Blum ARRIS

Dan Torbet ARRIS

Ian Wheelock ARRIS

Sangeeta Ramakrishnan Cisco

Coby Young Comcast

Bart De Vleeschauwer Telenet

Matt White – CableLabs

Andrew Sundelin – Consultant to CableLabs

	1 SCOPE
	1.1 Overview
	1.2 Purpose
	1.3 Scope
	1.4 Requirements

	2 REFERENCES
	2.1 Normative References
	2.2 Informative References
	2.3 Reference Acquisition

	3 TERMS AND DEFINITIONS
	4 ABBREVIATIONS AND ACRONYMS
	5 OVERVIEW AND THEORY OF OPERATIONS
	5.1 Design Principles
	5.2 Functional Overview

	6 CONTENT LOCATION & MANIFESTS
	6.1 Content Identification
	6.1.1 URL Encoding
	6.1.2 URL Matching

	6.2 Manifests
	6.3 Multicast Zones

	7 GATEWAY FUNCTIONALITY & PROTOCOL OPERATION
	7.1 Gateway Configuration
	7.2 Gateway HTTP Proxying & Caching
	7.3 Protocol Operation
	7.3.1 Configuration
	7.3.2 Normal Operation

	7.4 Multicast Group Membership Control
	7.4.1 Join & Leave Triggers

	7.5 Multicast Content Delivery

	8 MC-EMC INTERFACE DEFINITION
	8.1 Gateway Configuration
	8.1.1 Configuration Request (ConfigReq)
	8.1.2 Configuration Result (ConfigResult)
	8.1.3 Configuration Request/Result Examples

	8.2 Gateway Streaming Status
	8.2.1 Stream Status Inform (StreamStatus)
	8.2.2 Stream Status Response
	8.2.3 StreamStatus Message Examples

	9 HTTP PROTOCOL
	9.1 Connection
	9.1.1 Connection Security

	9.2 Request Messages
	9.2.1 Use of HTTP Methods
	9.2.2 URI Format
	9.2.3 HTTP Version
	9.2.4 HTTP Request Headers
	9.2.5 Message Body – XML
	9.2.6 Message Body – JSON
	9.2.7 GET and POST Request Message Examples

	9.3 Response Messages
	9.3.1 HTTP Status Code and Status Text
	9.3.2 Caching Results
	9.3.3 HTTP Response Headers
	9.3.4 Message Body – XML
	9.3.5 Message Body – JSON

	9.4 Message Flow
	9.4.1 Request-Response Flow
	9.4.2 Connection Lost
	9.4.3 Request Timeout

	10 COMMON XML ELEMENTS
	10.1 Common Simple Data Types
	10.2 Complex Data Elements
	10.2.1 KVPType
	10.2.2 LinearAsset
	10.2.3 LinearAssetAddress
	10.2.4 LinearAssetContentBitrate
	10.2.5 ChannelMap
	10.2.6 Response

	11 COMMON CODES
	11.1 Response Codes

	Annex A Considerations for Hybrid STBs (Normative)
	Annex B Schema (Normative)
	Appendix I Acknowledgements (Informative)

