

OpenCable™ Specifications

OCAP Headend Common Download and Unbound
Application Signaling Interface Specification

OC-SP-OHI-I01-061208

ISSUED

Notice

This OpenCable specification is a cooperative effort undertaken at the
direction of Cable Television Laboratories, Inc. (CableLabs®) for the
benefit of the cable industry. Neither CableLabs, nor any other entity
participating in the creation of this document, is responsible for any
liability of any nature whatsoever resulting from or arising out of use or
reliance upon this document by any party. This document is furnished
on an AS-IS basis and neither CableLabs, nor other participating entity,
provides any representation or warranty, express or implied, regarding
its accuracy, completeness, or fitness for a particular purpose.

© Copyright 2006 Cable Television Laboratories, Inc.
All rights reserved.

OC-SP-OHI-I01-061208 OpenCable™ Specifications

ii CableLabs® 12/08/06

Document Status Sheet

Document Control Number: OC-SP-OHI-I01-061208

Document Title: OCAP Headend Common Download and Unbound
Application Signaling Interface Specification

Revision History: I01 – Released December 8, 2006

Date: December 8, 2006

Status: Work in
Progress

Draft Issued Closed

Distribution Restrictions: Author
Only

CL/Member CL/ Member/
Vendor

Public

Key to Document Status Codes:

Work in Progress An incomplete document, designed to guide discussion and generate
feedback, that may include several alternative requirements for
consideration.

Draft A document in specification format considered largely complete, but
lacking review by Members and vendors. Drafts are susceptible to
substantial change during the review process.

Issued A stable document, which has undergone rigorous member and vendor
review and is suitable for product design and development, cross-vendor
interoperability, and for certification testing.

Closed A static document, reviewed, tested, validated, and closed to further
engineering change requests to the specification through CableLabs.

Trademarks:

DOCSIS®, eDOCSIS™, PacketCable™, CableHome®, CableOffice™, OpenCable™, OCAP™, CableCARD™, M-
CMTS™, and CableLabs® are trademarks of Cable Television Laboratories, Inc.

OCAP Headend Interface Specification OC-SP-OHI-I01-061208

12/08/06 CableLabs® iii

Contents

1 SCOPE AND PURPOSE...1
1.1 SCOPE...1
1.2 PURPOSE...1

2 REFERENCES ..2
2.1 NORMATIVE REFERENCES ..2
2.2 INFORMATIVE REFERENCES..2
2.3 REFERENCE ACQUISITION...2

3 TERMS AND DEFINITIONS..3

4 ABBREVIATIONS, ACRONYMS AND CONVENTIONS..4
4.1 ABBREVIATIONS AND ACRONYMS ..4
4.2 CONVENTIONS ..4

5 OVERVIEW ..5

6 INTERFACE DESCRIPTION...6
6.1 SECURITY ...6
6.2 VERSIONING ...6
6.3 XAIT SUPPORT ..6

6.3.1 XAIT Command and Control ...7
6.4 CVT SUPPORT..10

6.4.1 CVT Command and Control ..10
ANNEX A WEB SERVICES DESCRIPTION LANGUAGE (WSDL) - (NORMATIVE)............................14

ANNEX B WEB SERVICE OPERATION RETURN STATUS VALUES...20

ANNEX C MESSAGE PROTOCOL FLOW (NORMATIVE)..21

APPENDIX I CABLE SYSTEM CONFIGURATION (INFORMATIVE)..22

APPENDIX II ACKNOWLEDGMENTS...25

OC-SP-OHI-I01-061208 OpenCable™ Specifications

iv CableLabs® 12/08/06

Figures
FIGURE C–1 - MESSAGE PROTOCOL FLOW ...21
FIGURE I–1 - CABLE SYSTEM CONFIGURED WITH MULTIPLE XAITS ORIGINATING FROM A SINGLE STREAM GENERATOR

...22
FIGURE I–2 - CABLE SYSTEM CONFIGURED WITH MULTIPLE XAITS ORIGINATING FROM MULTIPLE STREAM

GENERATORS ...23
FIGURE I–3 - CABLE SYSTEM CONFIGURED WITH MULTIPLE XAITS ORIGINATING FROM A SINGLE OPENCABLE STREAM

GENERATOR* ...24

OCAP Headend Interface Specification OC-SP-OHI-I01-061208

12/08/06 CableLabs® 1

1 SCOPE AND PURPOSE

1.1 Scope

This specification provides a simple, open interface between a generic Stream Generator (SG) and a headend
controller. Specifically, this specification defines a common Web Service (WS) interface to the headend controller
that enables an SG to deliver and control transmission of OpenCable Common Download and OCAP Application
Download tables (CVT and XAIT, respectively) on the headend cable system via the headend controller.

The primary goal of this interface specification is to provide SG and headend controller developers with a detailed
description of the WS in order to build their client and server (respectively) side interfaces. Cable operators may
then employ any SG and headend controller adhering to this interface and be assured that they will be capable of
interfacing with one another using the interface features described herein.

1.2 Purpose

The purpose of this specification is to provide an open interface between a Stream Generator and a headend
controller.

OC-SP-OHI-I01-061208 OpenCable™ Specifications

2 CableLabs® 12/08/06

2 REFERENCES

2.1 Normative References

In order to claim compliance with this specification, it is necessary to conform to the following standards and other
works as indicated, in addition to the other requirements of this specification. Notwithstanding, intellectual property
rights may be required to use or implement such normative references.

[CCIF2.0] CableCARD Interface 2.0 Specification, OC-SP-CCIF2.0-I08-061031, October 31, 2006, Cable
Television Laboratories, Inc.

[CDL2.0] OpenCable Common Download 2.0 Specification, OC-SP-CDL2.0-I01-061031, October 31,
2006, Cable Television Laboratories, Inc.

[HTTP] Hypertext Transfer Protocol – HTTP/1.0, http://www.w3.org/Protocols/HTTP/1.0/draft-ietf-http-
spec.html

[MHP] ETSI TS 102 812 V1.2.1, Digital Video Broadcasting (DVB): Multimedia Home Platform (MHP)
Specification 1.1.1.

[OCAP] OpenCable Application Platform Profile 1.0 Specification, OC-SP-OCAP1.0-I16-050803, August
3, 2005, Cable Television Laboratories, Inc.

[WDSL] Web Services Description Language (WSDL) 1.1, W3C Note 15, March 2001,
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

2.2 Informative References
[SCTE 28] ANSI/SCTE 28 2004, HOST-POD Interface Standard.

[SGO] Stream Generator Overview, CL-SP-SGO-D01-060814, August 14, 2006, Cable Television
Laboratories, Inc.

2.3 Reference Acquisition

CableLabs Specifications:

• Cable Television Laboratories, Inc., 858 Coal Creek Circle, Louisville, CO 80027;
Phone 303-661-9100; Fax 303-661-9199; Internet: http://www.cablelabs.com /

DVB specifications:

• DVB Group, c/o EBU, 17a Ancienne Route, CH-1218 Grand Saconnex, Geneva, Switzerland;
Telephone: + 41 22 717 27 14; Fax: + 41 22 717 27 27; Internet: http://www.dvb.org/

W3C:

• http://www.w3.org

http://www.w3.org/Protocols/HTTP/1.0/draft-ietf-http-spec.html
http://www.w3.org/Protocols/HTTP/1.0/draft-ietf-http-spec.html
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.cablelabs.com/
http://www.dvb.org/

OCAP Headend Interface Specification OC-SP-OHI-I01-061208

12/08/06 CableLabs® 3

3 TERMS AND DEFINITIONS

This specification uses the following terms:

Headend controller A device used to configure and provision headend equipment, set-tops, and CableCARDs.
Handle A number assigned to an object by one system or device which is used as a reference to

that object by another system or device.
Stream Generator A DSM-CC (Digital Storage Media - Command and Control) Carousel Server.
Well-formed Constructed correctly as per a specification.

OC-SP-OHI-I01-061208 OpenCable™ Specifications

4 CableLabs® 12/08/06

4 ABBREVIATIONS, ACRONYMS AND CONVENTIONS

4.1 Abbreviations and Acronyms

This specification uses the following abbreviations:

CVT Code Version Table
HE Headend
MSO Multiple-Systems Operator
OCAP OpenCable Application Platform
OOB Out-of-Band
SG Stream Generator
SGIF Stream Generator Interface
WSDL Web Services Description Language
XAIT Extended Application Information Table

4.2 Conventions

Throughout this document, the words that are used to define the significance of particular requirements are
capitalized. These words are:

"SHALL" This word means that the item is an absolute requirement of this specification.

"SHALL NOT" This phrase means that the item is an absolute prohibition of this specification.

"SHOULD" This word means that there may exist valid reasons in particular circumstances to ignore this
item, but the full implications should be understood and the case carefully weighed before
choosing a different course.

"SHOULD NOT" This phrase means that there may exist valid reasons in particular circumstances when the
listed behavior is acceptable or even useful, but the full implications should be understood and
the case carefully weighed before implementing any behavior described with this label.

"MAY" This word or the adjective "OPTIONAL" means that this item is truly optional. One vendor
may choose to include the item because a particular marketplace requires it or because it
enhances the product, for example; another vendor may omit the same item.

OCAP Headend Interface Specification OC-SP-OHI-I01-061208

12/08/06 CableLabs® 5

5 OVERVIEW

The approach this specification describes is one in which the Stream Generator (SG) is responsible for building a
complete XAIT and/or CVT. After building the XAIT and/or CVT, the SG transmits it to the headend controller for
subsequent transmission to an OCAP-compliant end user device. Multiple XAITs and CVTs are supported to enable
capable headend systems to provide geographical and/or device level targeted downloads. An example diagram in
which multiple XAITs are being transmitted on the cable system is shown in Figure I–1 and Figure I–2 in Appendix
I.

It is the role of the headend controller to act as the conduit by which XAITs are transmitted on the cable system.
The headend controller SHALL NOT be responsible for building or merging XAITs originating from multiple
Stream Generators into either a single XAIT or multiple XAITs. Therefore, any merging of XAITs or XAIT data
into an XAIT SHALL occur before transmission to the headend controller. An example diagram is shown in
Figure I–3.

In order for the SG to build a complete XAIT or CVT, it may require information that is known only to the headend
controller. There are two methods by which this information may be provided to the SG:

• Via a network interface (i.e., Web Service) or

• Via the OpenCable stream generator operator manually entering information obtained visually from the
headend controller.

Some of the command and control features described below are defined as optional to permit both headend
controller and SG vendors the opportunity to phase in support and/or provide support in varying degrees/levels to
increase the value added to their customers.

The current SGIF system is described in [SGO].

OC-SP-OHI-I01-061208 OpenCable™ Specifications

6 CableLabs® 12/08/06

6 INTERFACE DESCRIPTION

6.1 Security

To secure communications between the SG and headend controller, HTTP Basic Authentication (see [HTTP],
section 11) SHALL be used to authenticate SGs to the headend controller. In addition, all communications between
the SG and the headend controller SHALL be encrypted using standard Hypertext Transfer Protocol over Secure
Socket Layer (HTTPS = HTTP over SSL).

SSL communications SHALL conform to the following:

• There will be no SSL authentication of the client by the server or of the server by the client. There will,
therefore, be no need for signed certificate or public key exchange.

• Protocol used may be SSLv2, SSLv3 or TLSv1.

• The following cipher suite SHALL be supported:

• Anonymous Diffie-Hellman authentication/key exchange, RC4 encoding, MD5 hash function.

Other cipher suites MAY optionally be supported.

6.2 Versioning

Different versions of this specification SHALL be distinguished by the endpoint URL used to access the service. As
a suggestion, the trailing portion of the URL could match the document control number of this specification as
shown in the example below.

https://example.com/service/OC-SP-OHI-I01-060128

6.3 XAIT Support

In order for the SG to have all of the information it needs to create the XAIT message, it SHALL be provided with
the following headend information:

sourceID – At least one sourceID SHALL be provided; however, several may be needed. The number of sourceIDs
needed depends on how the SG chooses to configure the carousel server applications. For example, the SG operator
may choose to associate all OCAP applications with a single sourceID, or may choose to associate each OCAP
application with a different sourceID, or some combination of the two.

Note: A sourceID is required only if the protocol for carrying the application is an Object Carousel. For example, if
the protocol for carrying the application is the Interaction Channel, then an HTTP URL would be used by the stream
generator in lieu of a sourceID.

XAIT Destination Handle – In order to support receiving multiple XAIT messages from the SG, the SG SHALL
be provided with a handle for each XAIT it creates and transmits to the headend controller.

A handle is required so that the headend controller, upon receiving an XAIT, can identify and determine where that
particular XAIT should be transmitted on the cable system. Transmission of an XAIT from the SG to the headend
controller SHALL, therefore, always be accompanied by an XAIT destination handle for that XAIT.

Optionally, the following headend information MAY be provided:

OCAP Headend Interface Specification OC-SP-OHI-I01-061208

12/08/06 CableLabs® 7

XAIT Destination Handle Description – The XAIT Destination Handle Description is intended to be a brief
description indicating where the headend controller, upon receiving the XAIT message from the SG, would deliver
the message on the OOB. Inclusion of this description may make it easier for the SG operator to identify which
handle, from a list of handles that may be provided by the headend controller, to associate with an XAIT. The
description is not required.

6.3.1 XAIT Command and Control

It is intended that the headend controller would provide the server side of a Web Service for which the operations
listed below would be made available. An SG would act as a client to the Web Service through which these
operations would be invoked. The headend controller SHALL return a single response to every operation and
SHALL NOT send an unsolicited response. See Annex B for a list of return status values and descriptions for each
of the operations that follow.

6.3.1.1 storeXAIT

The storeXAIT operation SHALL be supported by both the headend controller and the SG.

The objective of the storeXAIT operation is to transmit an XAIT table from the SG to the headend controller and
for the headend controller to store the XAIT. For convenience, the storeXAIT operation SHALL also specify
whether the headend controller should immediately start transmission of the XAIT on the headend cable system.

The storeXAIT operation SHALL include three parameters:

• data for a single completely formatted XAIT as defined in references [OCAP] and [MHP];

• an XAIT handle assigned to that XAIT by the SG;

• a transmission request parameter.

The headend controller SHALL store the XAIT (in non-volatile memory) and associate the XAIT handle with the
XAIT provided in the operation, if the XAIT handle is defined and the XAIT is well-formed. A return status value
of "SUCCESS" as defined in the list of operation return status values in Annex B SHALL be returned, if the XAIT
handle is defined and the XAIT is well-formed. The headend controller SHALL NOT store the XAIT and SHALL
ignore the association of the XAIT handle and XAIT provided in the operation, if the XAIT handle is undefined
and/or if the XAIT is not well-formed. A return status value of either "HANDLE_NOT_DEFINED" or
"CORRUPT_DATA" as defined in the list of operation return status values in Annex B SHALL be returned, if the
XAIT handle is undefined or the XAIT is not well-formed, respectively. The transmission request parameter
SHALL indicate to the headend controller the action to take with regard to the transmission of the XAIT on the
headend cable system. The transmission request parameter SHALL be set to either "ENABLED" or "DISABLED".
The headend controller SHALL immediately begin transmitting the XAIT on the headend cable system, if the
transmission request parameter is set to "ENABLED". The headend controller SHALL NOT transmit the XAIT on
the headend cable system until further operations requesting action are received, if the transmission request
parameter is set to "DISABLED".

Multiple MPEG (private) sections may be required (or used) to carry an XAIT. All sections for the XAIT SHALL
be transmitted in a single storeXAIT operation, if multiple sections are required (or used) to carry an XAIT. In order
to ensure (at a high level) that each section is well-formed, the headend controller SHALL verify three parameters
within each section. The headend controller SHALL verify that the table_id parameter in the XAIT section is equal
to 0x74, that the section_length parameter is equal to the size of the XAIT section, and that the CRC_32 parameter
in the XAIT section is correct. The headend controller SHALL NOT store the XAIT provided in the operation if
any of these parameters are found to be invalid in any of the sections and SHALL reply to the SG with an indication
of the condition using a return status value of "CORRUPT_DATA" as defined in the list of operation return status
values in Annex B.

OC-SP-OHI-I01-061208 OpenCable™ Specifications

8 CableLabs® 12/08/06

The headend controller SHALL replace a currently stored XAIT with the XAIT in a newly-received storeXAIT
operation, if the following three conditions exist: 1) the handle in the newly-received storeXAIT operation is valid
(currently defined in the headend controller), 2) the XAIT currently stored is associated with the XAIT handle in the
newly-received storeXAIT operation, and 3) the XAIT in the newly-received storeXAIT operation is valid (the
headend controller verified that the XAIT binary data is well-formed). The headend controller SHALL delete (only
the XAIT binary data is deleted, the XAIT handle is not deleted) a currently stored XAIT, if the following three
conditions exist: 1) the handle in the newly-received storeXAIT operation is valid (currently defined in the headend
controller), 2) the XAIT currently stored is associated with the XAIT handle in the newly-received storeXAIT
operation, and 3) the XAIT in the newly-received storeXAIT operation is corrupt (the headend controller verified
that the XAIT binary data is not well-formed).

6.3.1.2 setXAITTransmissionState

The setXAITTransmissionState operation SHALL be supported by both the headend controller and the SG.

The objective of the setXAITTransmissionState operation is to request the headend controller to either enable or
disable transmission of an XAIT on the headend cable system.

The setXAITTransmissionState operation SHALL include two parameters:

• an XAIT handle assigned to an XAIT by the SG

• a transmission state, equal to either "ENABLED" or "DISABLED", to be set upon the XAIT associated with
the XAIT handle

The headend controller SHALL reply with an indication of whether the value of the XAIT handle is defined within
the headend controller and whether an XAIT associated with the XAIT handle is currently stored in the headend
controller. A return status value of "SUCCESS" as defined in the list of operation return status values in Annex B
SHALL be returned, if the XAIT handle is defined and is associated with a currently stored XAIT. A defined handle
associated with a currently stored XAIT SHALL result in the headend controller either enabling or disabling (as
indicated by the transmission state parameter) transmission of the XAIT, associated with the XAIT handle, on the
headend cable system. An undefined handle or a handle defined but not associated with an XAIT currently stored
within the headend controller SHALL result in the headend controller taking no action other than replying with the
appropriate return status value ("HANDLE_NOT_DEFINED" or "NO_STORED_DATA_FOR_HANDLE",
respectively) indicating that condition as defined in the list of operation return status values in Annex B.

There SHALL be no pre-conditions required for this operation. That is, a request to enable transmission of an XAIT
SHALL result in the XAIT transmission state being set to "ENABLED" regardless of whether the previous state
was "ENABLED" or "DISABLED". A request to disable transmission of an XAIT SHALL result in the XAIT
transmission state being set to "DISABLED" regardless of whether the previous state was "ENABLED" or
"DISABLED".

6.3.1.3 deleteXAIT

Support of the deleteXAIT operation SHALL be supported by both the headend controller and the SG.

The objective of the deleteXAIT operation is to request the headend controller to delete an XAIT currently stored in
the headend controller.

The deleteXAIT operation SHALL include a single parameter: an XAIT handle assigned to an XAIT by the SG.
The headend controller SHALL reply with an indication of whether the value of the XAIT handle is defined within
the headend controller and whether an XAIT associated with the XAIT handle is currently stored in the headend
controller. A return status of "SUCCESS" as defined in the list of operation return status values in Annex B SHALL
be returned, if the XAIT handle is defined and is associated with a currently stored XAIT. A defined handle
associated with a currently stored XAIT SHALL result in the headend controller disabling transmission of the
XAIT, disassociating the XAIT handle with the XAIT, and deleting the XAIT from the headend controller. An

OCAP Headend Interface Specification OC-SP-OHI-I01-061208

12/08/06 CableLabs® 9

undefined handle or a handle defined but not associated with an XAIT currently stored within the headend
controller SHALL result in the headend controller taking no action other than replying with the appropriate return
status value ("HANDLE_NOT_DEFINED" or "NO_STORED_DATA_FOR_HANDLE", respectively) indicating
that condition, as defined in the list of operation return status values in Annex B.

6.3.1.4 getSourceIds

The headend controller and the SG MAY support the getSourceIds operation.

The objective of the getSourceIds operation is to request from the headend controller a list of source IDs and source
ID descriptions currently defined by the headend controller.

The SG vendor may choose to display this list of Source IDs and their associated descriptions to the SG operator for
selection when defining an XAIT. Alternatively, the SG may simply require the Source ID to be manually entered.
The extent of support is vendor-specific.

The getSourceIds operation SHALL include no parameters. The headend controller SHALL reply with a list of
Source IDs along with a description for each Source ID, if the getSourceIds operation is supported. The Source ID
list SHALL not include duplicate Source ID values. The Source ID list MAY be ordered. An operation return status
of "SUCCESS" indicating that the operation is supported, as is defined in the list of operation return status values in
Annex B, SHALL be returned if the headend controller supports the getSourceIds operation. An operation return
status of "OPERATION_NOT_SUPPORTED" indicating that the operation is not supported, as is defined in the list
of operation return status values in Annex B, SHALL be returned if the headend controller does not support the
getSourceIds operation.

Because Source IDs are assigned by the headend controller and may change over time, it is recommended that the
getSourceIds operation be called often to ensure that the SG operator is viewing the most current list of Source IDs.

6.3.1.5 getXAITHandles

The headend controller and the SG MAY support the getXAITHandles operation.

The objective of the getXAITHandles operation is to request from the headend controller a list of XAIT handles and
XAIT handle descriptions currently defined by the headend controller.

The SG vendor may choose to display the list of XAIT handles and their associated descriptions to the SG operator
for selection when defining an XAIT. Alternatively, the SG may simply require the XAIT handle to be manually
entered. The extent of support is vendor-specific.

The getXAITHandles operation SHALL include no parameters. The headend controller SHALL reply with a list of
XAIT handles along with a description for each XAIT handle, if the getXAITHandles operation is supported. An
operation return status of "SUCCESS" indicating that the operation is supported, as is defined in the list of operation
return status values in Annex B, SHALL be returned if the headend controller supports the getXAITHandles
operation. An operation return status of "OPERATION_NOT_SUPPORTED" indicating that the operation is not
supported, as is defined in the list of operation return status values in Annex B, SHALL be returned if the headend
controller does not support the getXAITHandles operation.

6.3.1.6 getXAITTransmissionStatus

The headend controller and the SG MAY support the getXAITTransmissionStatus operation.

The objective of the getXAITTransmissionStatus operation is to request from the headend controller the
transmission state of an XAIT on the headend cable system.

OC-SP-OHI-I01-061208 OpenCable™ Specifications

10 CableLabs® 12/08/06

The getXAITTransmissionStatus operation SHALL include a single parameter: an XAIT handle assigned to an
XAIT by the SG. The headend controller SHALL reply with an indication of whether the value of the XAIT handle
is defined within the headend controller and whether an XAIT associated with the XAIT handle is currently stored
in the headend controller. A return status value of "SUCCESS" as defined in the list of operation return status
values in Annex B SHALL be returned, if the getXAITTransmissionStatus operation is supported, the XAIT handle
is defined, and the XAIT handle is associated with a currently stored XAIT. A defined handle associated with a
currently stored XAIT SHALL result in the headend controller replying with the transmission state of the XAIT
associated with the XAIT handle. The transmission state SHALL be either "ENABLED" or "DISABLED". An
undefined handle or a handle defined but not associated with an XAIT currently stored within the headend
controller SHALL result in the headend controller replying with a transmission state that is undefined and an
appropriate return status value ("HANDLE_NOT_DEFINED" or "NO_STORED_DATA_FOR_HANDLE",
respectively) indicating that condition, as defined in the list of operation return status values in Annex B. An
operation return status of "OPERATION_NOT_SUPPORTED" indicating that the operation is not supported, as is
defined in the list of operation return status values in Annex B, SHALL be returned, if the headend controller does
not support the getXAITTransmissionStatus operation.

6.4 CVT Support

In order for the SG to have all of the information it needs to create the CVT message, it must be provided with the
following headend information:

CVT Destination Handle –The SG SHALL be provided with a handle for each CVT it creates and transmits to the
headend controller, in order to support receiving multiple CVT messages from the SG.

A handle is required so that the headend controller, upon receiving a CVT, can identify and determine where that
particular CVT message should be delivered. Transmission of a CVT message from the SG to the headend
controller SHALL therefore always be accompanied by a CVT destination handle for that CVT.

Optionally, the following headend information may be provided:

CVT Destination Handle Description – A brief description intending to indicate where the headend controller,
upon receiving the CVT message from the SG, would deliver the message on the OOB. Inclusion of this description
may make it easier for the SG operator to identify which handle, from a list of handles that may be provided by the
headend controller, to associate with a CVT. The description is not required.

sourceID – A sourceID MAY be required when the SG is creating a CVT as specified by reference [CCIF2.0]. A
getSourceIds operation to obtain a list of Source IDs is described in 6.3.1.4 and is intended for both XAIT and CVT
support.

6.4.1 CVT Command and Control

It is intended that the headend controller would provide the server side of a Web Service for which the operations
listed below would be made available. An SG would act as a client to the Web Service through which these
operations would be invoked. The headend controller SHALL return a single response to every operation and
SHALL NOT send an unsolicited response. See Annex B for a list of return status values and descriptions for each
of the operation that follow.

6.4.1.1 storeCVT

The storeCVT operation SHALL be supported by both the headend controller and the SG.

The objective of the storeCVT operation is to transmit a CVT table from the SG to the headend controller and for
the headend controller to store the CVT. For convenience, the storeCVT operation SHALL also specify whether the
headend controller should immediately start transmission of the CVT on the headend cable system.

OCAP Headend Interface Specification OC-SP-OHI-I01-061208

12/08/06 CableLabs® 11

The storeCVT operation SHALL include three parameters:

• data for a single, completely formatted CVT as defined in [CDL2.0];

• a CVT handle assigned to that CVT by the SG;

• a transmission request parameter.

The headend controller SHALL store the CVT (in non-volatile memory) and associate the CVT handle with the
CVT provided in the operation, if the CVT handle is defined and the CVT is well-formed. A return status value of
"SUCCESS" as defined in the list of operation return status values in Annex B SHALL be returned, if the XAIT
handle is defined and the CVT is well-formed. The headend controller SHALL NOT store the CVT and SHALL
ignore the association of the CVT handle and CVT provided in the operation, if the CVT handle is undefined and/or
if the CVT is not well-formed. A return status value of either "HANDLE_NOT_DEFINED" or
"CORRUPT_DATA" as defined in the list of operation return status values in Annex B SHALL be returned, if the
CVT handle is undefined or the CVT is not well-formed, respectively. The transmission request parameter SHALL
indicate to the headend controller the action to take with regard to the transmission of the CVT on the headend cable
system. The transmission request parameter SHALL be set to either "ENABLED" or "DISABLED". The headend
controller SHALL immediately begin transmitting the CVT on the headend cable system, if the transmission request
parameter is set to "ENABLED". The headend controller SHALL NOT transmit the CVT on the headend cable
system until further operations requesting action are received, if the transmission request parameter is set to
"DISABLED".

The headend controller SHALL also verify two parameters within the CVT itself to ensure (at a high level) that the
CVT is well-formed. The headend controller SHALL verify that the code_version_table_tag parameter in the CVT
is equal to either 0x9F9C02 or 0x9F9C05 and that the length_field() parameter in the CVT is equal to the size of the
CVT data provided in the operation. The headend controller SHALL NOT store the CVT and SHALL ignore the
association of the CVT handle and CVT provided in the operation if any of these parameters are found to be invalid
and SHALL reply to the SG with an indication of the condition using the appropriate return status value of
"CORRUPT_DATA" as defined in the list of operation return status values in Annex B.

The headend controller SHALL replace a currently stored CVT with the CVT in a newly-received storeCVT
operation, if the following three conditions exist: 1) the handle in the newly-received storeCVT operation is valid
(currently defined in the headend controller), 2) the CVT currently stored is associated with the CVT handle in the
newly-received storeCVT operation, and 3) the CVT in the newly-received storeCVT operation is valid (the
headend controller verified that the CVT binary data is well-formed). The headend controller SHALL delete (only
the CVT binary data is deleted, the CVT handle is not deleted) a currently stored CVT, if the following three
conditions exist: 1) the handle in the newly-received storeCVT operation is valid (currently defined in the headend
controller), 2) the CVT currently stored is associated with the CVT handle in the newly-received storeCVT
operation, and 3) the CVT in the newly-received storeCVT operation is corrupt (the headend controller verified that
the CVT binary data is not well-formed).

6.4.1.2 setCVTTransmissionState

The setCVTTransmissionState operation SHALL be supported by both the headend controller and the SG.

The objective of the setCVTTransmissionState operation is to request the headend controller to either enable or
disable transmission of a CVT on the headend cable system.

The setCVTTransmissionState operation SHALL include two parameters:

• a CVT handle assigned to a CVT by the SG;

• a transmission state, equal to either "ENABLED" or "DISABLED", to be set upon the CVT associated with the
CVT handle.

OC-SP-OHI-I01-061208 OpenCable™ Specifications

12 CableLabs® 12/08/06

The headend controller SHALL reply with an indication of whether the value of the CVT handle is defined within
the headend controller and whether a CVT associated with the CVT handle is currently stored in the headend
controller. A return status value of "SUCCESS", as defined in the list of operation return status values in Annex B,
SHALL be returned if the CVT handle is defined and is associated with a currently stored CVT. A defined handle
associated with a currently stored CVT SHALL result in the headend controller either enabling or disabling (as
indicated by the transmission state parameter) transmission of the CVT, associated with the CVT handle, on the
headend cable system. An undefined handle or a handle defined but not associated with a CVT currently stored
within the headend controller SHALL result in the headend controller taking no action, other than replying with the
appropriate return status value ("HANDLE_NOT_DEFINED" or "NO_STORED_DATA_FOR_HANDLE",
respectively) indicating that condition as defined in the list of operation return status values in Annex B.

There SHALL be no pre-conditions required for this operation. That is, a request to enable transmission of a CVT
SHALL result in the CVT transmission state being set to "ENABLED", regardless of whether the previous state was
"ENABLED" or "DISABLED". A request to disable transmission of a CVT SHALL result in the CVT transmission
state being set to "DISABLED", regardless of whether the previous state was "ENABLED" or "DISABLED".

6.4.1.3 deleteCVT

The deleteCVT operation SHALL be supported by both the headend controller and the SG.

The objective of the deleteCVT operation is to request the headend controller to delete a CVT currently stored in the
headend controller.

The deleteCVT operation SHALL include a single parameter: a CVT handle assigned to a CVT by the SG. The
headend controller SHALL reply with an indication of whether the value of the CVT handle is defined within the
headend controller and whether a CVT associated with the CVT handle is currently stored in the headend controller.
A return status of "SUCCESS", as defined in the list of operation return status values in Annex B, SHALL be
returned if the CVT handle is defined and is associated with a currently stored CVT. A defined handle associated
with a currently stored CVT SHALL result in the headend controller disabling transmission of the CVT,
disassociating the CVT handle with the CVT, and deleting the CVT from the headend controller. An undefined
handle or a handle defined but not associated with a CVT currently stored within the headend controller SHALL
result in the headend controller taking no action other than replying with the appropriate return status value
("HANDLE_NOT_DEFINED" or "NO_STORED_DATA_FOR_HANDLE", respectively) indicating that
condition, as defined in the list of operation return status values in Annex B.

6.4.1.4 getCVTHandles

The headend controller and the SG MAY support the getCVTHandles operation.

The objective of the getCVTHandles operation is to request from the headend controller a list of CVT handles and
CVT handle descriptions currently defined by the headend controller.

The SG vendor may choose to display the list of CVT handles and their associated descriptions to the SG operator
for selection when defining a CVT. Alternatively, the SG may simply require the CVT handle to be manually
entered. The extent of support is vendor-specific.

The getCVTHandles operation SHALL include no parameters. The headend controller SHALL reply with a list of
CVT handles along with a description for each CVT handle, if the getCVTHandles operation is supported. An
operation return status of "SUCCESS" indicating that the operation is supported, as is defined in the list of operation
return status values in Annex B, SHALL be returned if the headend controller supports the getCVTHandles
operation. An operation return status of "OPERATION_NOT_SUPPORTED" indicating that the operation is not
supported, as is defined in the list of operation return status values in Annex B, SHALL be returned if the headend
controller does not support the getCVTHandles operation.

OCAP Headend Interface Specification OC-SP-OHI-I01-061208

12/08/06 CableLabs® 13

6.4.1.5 getCVTTransmissionStatus

The headend controller and the SG MAY support the getCVTTransmissionStatus operation.

The objective of the getCVTTransmissionStatus operation is to request from the headend controller the transmission
state of a CVT on the headend cable system.

The getCVTTransmissionStatus operation SHALL include a single parameter: a CVT handle assigned to a CVT by
the SG. The headend controller SHALL reply with an indication of whether the value of the CVT handle is defined
within the headend controller and whether a CVT associated with the CVT handle is currently stored in the headend
controller. A return status value of "SUCCESS", as defined in the list of operation return status values in Annex B,
SHALL be returned if the getCVTTransmissionStatus operation is supported, the CVT handle is defined, and the
CVT handle is associated with a currently stored CVT. A defined handle associated with a currently stored CVT
SHALL result in the headend controller replying with the transmission state of the CVT associated with the CVT
handle. The transmission state SHALL be either "ENABLED" or "DISABLED". An undefined handle or a handle
defined but not associated with a CVT currently stored within the headend controller SHALL result in the headend
controller replying with a transmission state that is undefined and an appropriate return status value
("HANDLE_NOT_DEFINED" or "NO_STORED_DATA_FOR_HANDLE", respectively) indicating that
condition, as defined in the list of operation return status values in Annex B. An operation return status of
"OPERATION_NOT_SUPPORTED" indicating that the operation is not supported, as is defined in the list of
operation return status values in Annex B, SHALL be returned if the headend controller does not support the
getCVTTransmissionStatus operation.

OC-SP-OHI-I01-061208 OpenCable™ Specifications

14 CableLabs® 12/08/06

Annex A Web Services Description Language (WSDL) - (Normative)

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions xmlns:intf="http://www.cablelabs.com/HEControllerDownloadService"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
 targetNamespace="http://www.cablelabs.com/HEControllerDownloadService">
 <wsdl:types>
 <schema
 targetNamespace="http://www.cablelabs.com/HEControllerDownloadService"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <simpleType name="TransmissionState">
 <restriction base="xsd:string">
 <enumeration value="ENABLED" />
 <enumeration value="DISABLED" />
 </restriction>
 </simpleType>
 <complexType name="XAITHandleInfos">
 <complexContent>
 <extension base="intf:HandleInfos"/>
 </complexContent>
 </complexType>
 <complexType name="SourceInfo">
 <sequence>
 <element name="sourceId" type="xsd:unsignedShort" />
 <element name="sourceName" nillable="false"
 type="xsd:string" />
 </sequence>
 </complexType>
 <complexType name="ArrayOfSourceInfo">
 <sequence>
 <element name="sourceInfo" type="intf:SourceInfo"
 minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 </complexType>
 <complexType name="SourceIDInfo">
 <sequence>
 <element name="sourceInfos" nillable="true"
 type="intf:ArrayOfSourceInfo" />
 <element name="status" nillable="false"
 type="intf:returnStatus" />
 </sequence>
 </complexType>
 <complexType name="HandleInfo">
 <sequence>
 <element name="description" nillable="true"
 type="xsd:string" />
 <element name="handle" type="xsd:int" />
 </sequence>
 </complexType>
 <complexType name="ArrayOfHandleInfo">
 <sequence>
 <element name="handleInfo"
 type="intf:HandleInfo" minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 </complexType>
 <complexType name="ArrayOfByteArray">
 <sequence>
 <element name="byteArray" type="xsd:base64Binary"
 minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 </complexType>
 <complexType name="TransmissionStatusInfo">
 <sequence>
 <element name="state" type="intf:TransmissionState" />
 <element name="status" nillable="false"
 type="intf:returnStatus" />
 </sequence>
 </complexType>
 <complexType name="HandleInfos">
 <sequence>
 <element name="handles" nillable="true"
 type="intf:ArrayOfHandleInfo" />

OCAP Headend Interface Specification OC-SP-OHI-I01-061208

12/08/06 CableLabs® 15

 <element name="status" nillable="false"
 type="intf:returnStatus" />
 </sequence>
 </complexType>
 <complexType name="CVTHandleInfos">
 <complexContent>
 <extension base="intf:HandleInfos"/>
 </complexContent>
 </complexType>
 <simpleType name="returnStatus">
 <restriction base="xsd:string">
 <enumeration value="SUCCESS" />
 <enumeration value="HANDLE_NOT_DEFINED" />
 <enumeration value="NO_STORED_DATA_FOR_HANDLE" />
 <enumeration value="CORRUPT_DATA" />
 <enumeration value="OPERATION_NOT_SUPPORTED" />
 <enumeration value="CONTROLLER_ERROR" />
 </restriction>
 </simpleType>
 <complexType name="TransmissionRequest">
 <sequence>
 <element name="handle" nillable="false"
 type="xsd:int" />
 <element name="transmissionState" nillable="false"
 type="intf:TransmissionState" />
 </sequence>
 </complexType>
 <complexType name="XAITStoreRequest">
 <sequence>
 <element name="sections" nillable="false"
 type="intf:ArrayOfByteArray" />
 <element name="transmissionRequest" nillable="false"
 type="intf:TransmissionRequest" />
 </sequence>
 </complexType>
 <complexType name="CVTStoreRequest">
 <sequence>
 <element name="cvt" nillable="false"
 type="xsd:base64Binary" />
 <element name="transmissionRequest" nillable="false"
 type="intf:TransmissionRequest" />
 </sequence>
 </complexType>
 <element name="returnStatus" type="intf:returnStatus" />
 <element name="XAITStoreRequest" type="intf:XAITStoreRequest" />
 <element name="XAITTransmissionRequest" type="intf:TransmissionRequest" />
 <element name="TransmissionStatusInfo" type="intf:TransmissionStatusInfo" />
 <element name="XAITHandleInfos" type="intf:XAITHandleInfos" />
 <element name="SourceIDInfo" type="intf:SourceIDInfo" />
 <element name="CVTStoreRequest" type="intf:CVTStoreRequest" />
 <element name="CVTTransmissionRequest" type="intf:TransmissionRequest" />
 <element name="CVTHandleInfos" type="intf:CVTHandleInfos" />
 <element name="xaitHandleForStatus" type="xsd:int" />
 <element name="cvtHandleForStatus" type="xsd:int" />
 <element name="xaitHandleToDelete" type="xsd:int" />
 <element name="cvtHandleToDelete" type="xsd:int" />
 <element name="SourceIdsRequest">
 <complexType/>
 </element>
 <element name="XAITHandlesRequest">
 <complexType/>
 </element>
 <element name="CVTHandlesRequest">
 <complexType/>
 </element>

 </schema>
 </wsdl:types>
 <wsdl:message name="XAITStoreRequest">
 <wsdl:part name="xaitStoreRequest"
 element="intf:XAITStoreRequest" />
 </wsdl:message>
 <wsdl:message name="XAITStoreResponse">
 <wsdl:part name="XAITStoreReturn" element="intf:returnStatus" />
 </wsdl:message>
 <wsdl:message name="XAITTransmissionRequest">
 <wsdl:part name="transmissionRequest"
 element="intf:XAITTransmissionRequest" />
 </wsdl:message>
 <wsdl:message name="XAITTransmissionResponse">

OC-SP-OHI-I01-061208 OpenCable™ Specifications

16 CableLabs® 12/08/06

 <wsdl:part name="XAITTransmissionReturn"
 element="intf:returnStatus" />
 </wsdl:message>
 <wsdl:message name="XAITTransmissionStatusRequest">
 <wsdl:part name="handle" element="intf:xaitHandleForStatus" />
 </wsdl:message>
 <wsdl:message name="XAITTransmissionStatusResponse">
 <wsdl:part name="XAITTransmissionStatusReturn"
 element="intf:TransmissionStatusInfo" />
 </wsdl:message>
 <wsdl:message name="CVTTransmissionStatusRequest">
 <wsdl:part name="handle" element="intf:cvtHandleForStatus" />
 </wsdl:message>
 <wsdl:message name="CVTTransmissionStatusResponse">
 <wsdl:part name="CVTTransmissionStatusReturn"
 element="intf:TransmissionStatusInfo" />
 </wsdl:message>
 <wsdl:message name="XAITDeleteRequest">
 <wsdl:part name="handle" element="intf:xaitHandleToDelete" />
 </wsdl:message>
 <wsdl:message name="XAITDeleteResponse">
 <wsdl:part name="XAITDeleteReturn" element="intf:returnStatus" />
 </wsdl:message>
 <wsdl:message name="XAITHandlesRequest">
 <wsdl:part name="dummyPart" element="intf:XAITHandlesRequest" />
 </wsdl:message>
 <wsdl:message name="XAITHandlesResponse">
 <wsdl:part name="XAITHandlesReturn"
 element="intf:XAITHandleInfos" />
 </wsdl:message>
 <wsdl:message name="SourceIdsRequest">
 <wsdl:part name="dummyPart" element="intf:SourceIdsRequest" />
 </wsdl:message>
 <wsdl:message name="SourceIdsResponse">
 <wsdl:part name="SourceIdsReturn" element="intf:SourceIDInfo" />
 </wsdl:message>
 <wsdl:message name="CVTTransmissionRequest">
 <wsdl:part name="transmissionRequest"
 element="intf:CVTTransmissionRequest" />
 </wsdl:message>
 <wsdl:message name="CVTTransmissionResponse">
 <wsdl:part name="CVTTransmissionReturn"
 element="intf:returnStatus" />
 </wsdl:message>
 <wsdl:message name="CVTDeleteRequest">
 <wsdl:part name="handle" element="intf:cvtHandleToDelete" />
 </wsdl:message>
 <wsdl:message name="CVTDeleteResponse">
 <wsdl:part name="CVTDeleteReturn" element="intf:returnStatus" />
 </wsdl:message>
 <wsdl:message name="CVTStoreRequest">
 <wsdl:part name="cvtStoreRequest"
 element="intf:CVTStoreRequest" />
 </wsdl:message>
 <wsdl:message name="CVTStoreResponse">
 <wsdl:part name="CVTStoreReturn" element="intf:returnStatus" />
 </wsdl:message>
 <wsdl:message name="CVTHandlesRequest">
 <wsdl:part name="dummyPart" element="intf:CVTHandlesRequest" />
 </wsdl:message>
 <wsdl:message name="CVTHandlesResponse">
 <wsdl:part name="CVTHandlesReturn"
 element="intf:CVTHandleInfos" />
 </wsdl:message>
 <wsdl:portType name="HEControllerDownloadServicePortType">
 <wsdl:operation name="storeXAIT">
 <wsdl:input name="XAITStoreRequest"
 message="intf:XAITStoreRequest" />
 <wsdl:output name="XAITStoreResponse"
 message="intf:XAITStoreResponse" />
 </wsdl:operation>
 <wsdl:operation name="setXAITTransmissionState">
 <wsdl:input name="XAITTransmissionRequest"
 message="intf:XAITTransmissionRequest" />
 <wsdl:output name="XAITTransmissionResponse"
 message="intf:XAITTransmissionResponse" />
 </wsdl:operation>
 <wsdl:operation name="getXAITTransmissionStatus">
 <wsdl:input name="XAITTransmissionStatusRequest"
 message="intf:XAITTransmissionStatusRequest" />
 <wsdl:output name="XAITTransmissionStatusResponse"

OCAP Headend Interface Specification OC-SP-OHI-I01-061208

12/08/06 CableLabs® 17

 message="intf:XAITTransmissionStatusResponse" />
 </wsdl:operation>
 <wsdl:operation name="deleteXAIT">
 <wsdl:input name="XAITDeleteRequest"
 message="intf:XAITDeleteRequest" />
 <wsdl:output name="XAITDeleteResponse"
 message="intf:XAITDeleteResponse" />
 </wsdl:operation>
 <wsdl:operation name="getCVTTransmissionStatus">
 <wsdl:input name="CVTTransmissionStatusRequest"
 message="intf:CVTTransmissionStatusRequest" />
 <wsdl:output name="CVTTransmissionStatusResponse"
 message="intf:CVTTransmissionStatusResponse" />
 </wsdl:operation>
 <wsdl:operation name="getXAITHandles">
 <wsdl:input name="XAITHandlesRequest"
 message="intf:XAITHandlesRequest" />
 <wsdl:output name="XAITHandlesResponse"
 message="intf:XAITHandlesResponse" />
 </wsdl:operation>
 <wsdl:operation name="getSourceIds">
 <wsdl:input name="SourceIdsRequest"
 message="intf:SourceIdsRequest" />
 <wsdl:output name="SourceIdsResponse"
 message="intf:SourceIdsResponse" />
 </wsdl:operation>
 <wsdl:operation name="setCVTTransmissionState">
 <wsdl:input name="CVTTransmissionRequest"
 message="intf:CVTTransmissionRequest" />
 <wsdl:output name="CVTTransmissionResponse"
 message="intf:CVTTransmissionResponse" />
 </wsdl:operation>
 <wsdl:operation name="deleteCVT">
 <wsdl:input name="CVTDeleteRequest"
 message="intf:CVTDeleteRequest" />
 <wsdl:output name="CVTDeleteResponse"
 message="intf:CVTDeleteResponse" />
 </wsdl:operation>
 <wsdl:operation name="storeCVT">
 <wsdl:input name="CVTStoreRequest"
 message="intf:CVTStoreRequest" />
 <wsdl:output name="CVTStoreResponse"
 message="intf:CVTStoreResponse" />
 </wsdl:operation>
 <wsdl:operation name="getCVTHandles">
 <wsdl:input name="CVTHandlesRequest"
 message="intf:CVTHandlesRequest" />
 <wsdl:output name="CVTHandlesResponse"
 message="intf:CVTHandlesResponse" />
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="HEControllerDownloadServiceSoapBinding"
 type="intf:HEControllerDownloadServicePortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="storeXAIT">
 <soap:operation />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="setXAITTransmissionState">
 <soap:operation />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getXAITTransmissionStatus">
 <soap:operation />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>

OC-SP-OHI-I01-061208 OpenCable™ Specifications

18 CableLabs® 12/08/06

 </wsdl:operation>
 <wsdl:operation name="deleteXAIT">
 <soap:operation />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getCVTTransmissionStatus">
 <soap:operation />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getXAITHandles">
 <soap:operation />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getSourceIds">
 <soap:operation />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="setCVTTransmissionState">
 <soap:operation />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="deleteCVT">
 <soap:operation />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="storeCVT">
 <soap:operation />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getCVTHandles">
 <soap:operation />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:service name="HEControllerDownloadService">
 <wsdl:documentation>Headend Controller Download Service</wsdl:documentation>
 <wsdl:port name="HEControllerDownloadServicePort"
 binding="intf:HEControllerDownloadServiceSoapBinding">
 <soap:address location="http://localhost/services/HEControllerDownloadService"/>

OCAP Headend Interface Specification OC-SP-OHI-I01-061208

12/08/06 CableLabs® 19

 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

OC-SP-OHI-I01-061208 OpenCable™ Specifications

20 CableLabs® 12/08/06

Annex B Web Service Operation Return Status Values
Table B–1 - Return Status Values

S
U

C
C

E
S

S

H
A

N
D

L
E

_
N

O
T

_
D

E
F

I
N

E
D

N
O

_
S

T
O

R
E

D
_

D
A

T
A

_
F

O
R

_
H

A
N

D
L

E

C
O

R
R

U
P

T
_

D
A

T
A

O
P

E
R

A
T

I
O

N
_

N
O

T
_

S
U

P
P

O
R

T
E

D

C
O

N
T

R
O

L
L

E
R

_
E

R
R

O
R

storeXAIT x x x x
setXAITTransmissionState x x x x
deleteXAIT x x x x
getXAITHandles x x x
getXAITTransmissionStatus x x x x x
getSourceIds x x x
storeCVT x x x x
setCVTTransmissionState x x x x
deleteCVT x x x x
getCVTHandles x x x
getCVTTransmissionStatus x x x x x

Return Status Value Description

SUCCESS: The requested operation was successful.

HANDLE_NOT_DEFINED: The requested operation was not successful. The value of the handle provided in the
operation was not defined on the headend controller.

NO_STORED_DATA_FOR_HANDLE: The requested operation was not successful. No stored data in the headend
controller was available to act upon.

CORRUPT DATA: The requested operation was not successful. Some portion of the supplied XAIT or CVT binary
data failed the headend controller's validation process.

OPERATION_NOT_SUPPORTED: The requested operation was not successful. The requested operation is
optional and not supported by the headend controller.

CONTROLLER ERROR: The requested operation was not successful. A software or hardware error occurred on
the headend controller, which prevented successful completion of the operation.

OCAP Headend Interface Specification OC-SP-OHI-I01-061208

12/08/06 CableLabs® 21

Annex C Message Protocol Flow (Normative)

The figure below is a normative example of the message exchange between the Stream Generator and the headend
controller.

Figure C–1 - Message Protocol Flow

OC-SP-OHI-I01-061208 OpenCable™ Specifications

22 CableLabs® 12/08/06

Appendix I Cable System Configuration (Informative)

Stream
Generator

Headend
Controller

Remultiplexer

Frequency
Upconverter

ASI or GbE (Apps 1 through 10)

IB/RF1

Remultiplexer

Frequency
Upconverter

IB/RF2

Terminals #’s
1 – 100,000

XAIT1
App1
App2
App4

Terminals #’s
100,001 – 200,000

XAIT2 XAIT3
App3 App3
App4 App4
App7 App7
App8 App9

OOB1 (XAIT1)

OOB2 (XAIT2, XAIT3)

Operator configures stream generator
applications. Operator configures stream
generator with headend controller assigned
XAIT handle(s).

Figure I–1 - Cable System configured with multiple XAITs originating from a single Stream Generator

OCAP Headend Interface Specification OC-SP-OHI-I01-061208

12/08/06 CableLabs® 23

Stream
Generator

Headend
Controller

Remultiplexer

Frequency
Upconverter

ASI or GbE (Apps 1 through 10)

IB/RF1

Remultiplexer

Frequency
Upconverter

IB/RF2

Terminals #’s
1 – 100,000

XAIT1
App1
App2
App4

Terminals #’s
100,001 – 200,000

XAIT2 XAIT3
App3 App3
App4 App4
App7 App7
App8 App9

OOB1 (XAIT1)

OOB2 (XAIT2, XAIT3)

Operator configures stream generator
applications. Operator configures stream
generator with controller assigned XAIT
handle(s).

Stream
Generator

Figure I–2 - Cable system configured with multiple XAITs originating from multiple Stream Generators

OC-SP-OHI-I01-061208 OpenCable™ Specifications

24 CableLabs® 12/08/06

Stream
Generator

Headend
Controller

Remultiplexer

Frequency
Upconverter

ASI or GbE (Apps 1 through 10)

IB/RF1

Remultiplexer

Frequency
Upconverter

IB/RF2

Terminals #’s
1 – 100,000

XAIT1
App1
App2
App4

Terminals #’s
100,001 – 200,000

XAIT2 XAIT3
App3 App3
App4 App4
App7 App7
App8 App9

OOB1 (XAIT1)

OOB2 (XAIT2, XAIT3)

Operator configures stream generator
applications. Operator configures stream
generator with controller assigned XAIT
handle(s).

Stream
Generator

Figure I–3 - Cable system configured with multiple XAITs originating from a single OpenCable Stream

Generator*

* This configuration suggests that XAIT data from one Stream Generator is merged with XAIT data from other Stream
Generators (by a Stream Generator) into the XAITs transmitted to the headend controller. Merging of XAIT data may be done by
a Stream Generator or some other device. The intent is to show that the headend controller is simply the conduit by which XAITs
are placed onto the cable system and is not responsible for merging XAIT data from multiple Stream Generators into either a
single or multiple XAITs.

OCAP Headend Interface Specification OC-SP-OHI-I01-061208

12/08/06 CableLabs® 25

Appendix II Acknowledgments

CableLabs wishes to thank Steve Iaquinto of CCAD, Adrian Fowkes of Strategy and Technology, LTD, and Adam
Mauger of Softel-USA for their contributions to this specification.

	1 SCOPE AND PURPOSE
	1.1 Scope
	1.2 Purpose

	2 REFERENCES
	2.1 Normative References
	2.2 Informative References
	2.3 Reference Acquisition

	3 TERMS AND DEFINITIONS
	4 ABBREVIATIONS, ACRONYMS AND CONVENTIONS
	4.1 Abbreviations and Acronyms
	4.2 Conventions

	5 OVERVIEW
	6 INTERFACE DESCRIPTION
	6.1 Security
	6.2 Versioning
	6.3 XAIT Support
	6.3.1 XAIT Command and Control

	6.4 CVT Support
	6.4.1 CVT Command and Control

	Annex A Web Services Description Language (WSDL) - (Normative)
	Annex B Web Service Operation Return Status Values
	Annex C Message Protocol Flow (Normative)
	Appendix I Cable System Configuration (Informative)
	Appendix II Acknowledgments

