ISSUED

OpenCable™ Specifications

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Notice

This OpenCable document is the result of a cooperative effort
undertaken at the direction of Cable Television Laboratories, Inc. for
the benefit of the cable industry and its customers. This document
may contain references to other documents not owned or controlled
by CableLabs®. Use and understanding of this document may
require access to such other documents. Designing, manufacturing,
distributing, using, selling, or servicing products, or providing
services, based on this document may require intellectual property
licenses for technology referenced in the document.

Neither CableLabs nor any member company is responsible to any
party for any liability of any nature whatsoever resulting from or
arising out of use or reliance upon this document, or any document
referenced herein. This document is furnished on an "AS IS" basis
and neither CableLabs nor its members provides any representation
or warranty, express or implied, regarding the accuracy,
completeness, or fitness for a particular purpose of this document,
or any document referenced herein.

© Cable Television Laboratories, Inc. 2004-2013

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

DISCLAIMER

This document is published by Cable Television Laboratories, Inc. ("CableLabs®").

CableLabs reserves the right to revise this document for any reason including, but not limited to, changes in laws,
regulations, or standards promulgated by various agencies; technological advances; or changes in equipment design,
manufacturing techniques, or operating procedures described, or referred to, herein. CableLabs makes no
representation or warranty, express or implied, with respect to the completeness, accuracy, or utility of the document
or any information or opinion contained in the report. Any use or reliance on the information or opinion is at the risk
of the user, and CableLabs shall not be liable for any damage or injury incurred by any person arising out of the
completeness, accuracy, or utility of any information or opinion contained in the document.

This document is not to be construed to suggest that any affiliated company modify or change any of its products or
procedures, nor does this document represent a commitment by CableLabs or any cable member to purchase any
product whether or not it meets the described characteristics. Nothing contained herein shall be construed to confer
any license or right to any intellectual property, whether or not the use of any information herein necessarily utilizes
such intellectual property. This document is not to be construed as an endorsement of any product or company or as
the adoption or promulgation of any guidelines, standards, or recommendations.

ii CableLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Document Status Sheet

Document Control Number: OC-SP-CCIF2.0-126-130418
Document Title: CableCARD Interface 2.0 Specification

Revision History: 101 - March 31, 2005 114 - April 4, 2008
102 - July 8, 2005 115 - June 20, 2008
103 - November 17, 2005 116 - November 14, 2008
104 - January 26, 2006 117 - February 6, 2009
105 - April 13, 2006 118 - May 8, 2009
106 - June 22, 2006 119 - September 4, 2009
107 - August 3, 2006 120 - December 11, 2009
108 - October 31, 2006 121 - May 7, 2010
109 - January 5, 2007 122 - September 10, 2010
110 - March 23, 2007 123 - May 12, 2011
111 - June 15, 2007 124 - January 12, 2012
112 - November 13, 2007 125 - May 31, 2012
113 - January 18, 2008 126 - April 18, 2013

Date: April 18, 2013
Status: Workin

Draft Issued Closed
Brogress
Distribution Restrictions:) 0 CLM CLiMember/ Public

Key to Document Status Codes:

Work in Progress An incomplete document, designed to guide discussion and generate feedback
that may include several alternative requirements for consideration.

Draft A document in specification format considered largely complete, but lacking review
by Members and vendors. Drafts are susceptible to substantial change during the
review process.

Issued A stable document, which has undergone rigorous member and vendor review and
is suitable for product design and development, cross-vendor interoperability, and
for certification testing.

Closed A static document, reviewed, tested, validated, and closed to further engineering
change requests to the specification through CableLabs.

TRADEMARKS:

CableLabs® is a registered trademark of Cable Television Laboratories, Inc. Other CableLabs marks are listed at
http://www.cablelabs.com/certqual/trademarks. All other marks are the property of their respective owners.

4/18/13 CablelLabs® ii

http://www.cablelabs.com/certqual/trademarks

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Contents

S O @ 1 = SRR 1
1.1 INTRODUCTION AND OVERVIEW .vviiiiiiiiiittitiieee e s s iitbaiees s e s s sesbbabaessesssasabbbasssesssasabbbaassesssssaabbabesasesssasbbasseesessanses 1
12 HISTORICAL PERSPECTIVE (INFORMATIVE)cititiitestesttateaeestestestestesaestesseaseessesseseesbessesseaseessenseseeseessessessenses 2
1.3 REQUIREMENTS (CONFORMANCE NOTATION) ...utiittiteittateeeesiestestestesiestesseaseeseesseseesaessessesseeseeseseeseessesssssesses 2
1.4 [N LU 1=] o Y OO 3

2 = 4= = IO 4
2.1 NORMATIVE REFERENCES ...c.ciuttiiiiitteee s itteee e ettt e e eetteeessatesssssbaesesbassessssesssasbaesesbesesssssesssssseesesassesessssesesassensesns 4
2.2 INFORMATIVE REFERENCESciictteieiittieeeettteeesteeessettesesastesessbasesssaesesasteseesabaeessbeeeesassssesssbeeessbeeeesaseessssnses 5
2.3 REFERENCE ACQUISITION ...ceiiitiiieeitteeesetteeeeeteeeseeseesessssesessssesssssasssssssesssassassesasesssssssssesasseesssassesessssesessssessesns 5
231 OpenCable BUNAIe REQUITEMENLSciviiieieie e ettt e e seesnesresneeneenes 5
2.3.2 (@1 1Tl =] (=T (=T (ol 6

3 TERMS AND DEFINITIONS ..ottt sttt ettt e e et e e e s ettt e s st e e e s s eb b e e e s sbba e s e sabesessbbeessbeaeessarns 7
4 ABBREVIATIONS AND ACRONYIMSottt ettt et e e e s e e s s bt e e e s anba e e s sabeaeesearees 11
5 MODEL OF OPERATION. ...ttt ettt ettt ettt sttt e e s s tt e s e s st e e e s s bt e e s sabbasessabaeesssbbesssbesssssbbasesssbensens 14
5.1 ADVANCED CABLE SERVICES .. .uttiiiiiiiiiiittittiteesssiitbbttesesssssisbbatssassssiasbbasasssssssasbbabsessesssasbbbbaessessssbbbbasssesssases 14
511 Interactive Program GUIAE (IPG).......coiriiiiii et 14
512 IMPUISE Pay-Per-VIEW (IPPV) .. .ottt bbbt bbb 14
5.1.3 Video-0N-DemMaNnd (VOD)cciiiiiiiiiieie ittt sttt bbbttt sb e bbbt et e e e e sbesbe b sbeenes 14
514 INEEIACTIVE SEIVICES ..veiivviie ittt ettt e e ettt e e ettt e e st e e e e ebtt e e s st e e e e s bt e e s sbabsessabeaesssbbesssbassessabenesasbenseins 15

5.2 CABLECARD DEVICE FUNCTIONAL DESCRIPTION 1.viiiiiiiiititiiieie e ieiitiies s e s s s esstbessssssssssbbsssssssssssssssssssesssnsns 15
5.2.1 Transport SEream INTEITACE.o i bbb bbb 16
5.2.2 COMMANG INEEITACE ...ttt ettt ettt et e s s eb bt e e s ettt e e e sb e s e e s sbbaessssbbesssabeneessabaeesasbeneeins 16

5.3 NETWORK CONNECTIVITY/OOB SIGNALING.cciitiiiiitiie e sttt e eetie e s stee e s s ettesssestassssabesesssbbesssssbasssssbenesssrbens 16
5.4 CARD OPERATIONAL IMODES ...uttiiiiii ittt e e s ettt et e e e s s sbba bt e s s e e s s eabb bt e s s s e s s s e bbb b e b s s e e s s s sabbbbaeeasesssbbbabeeesessases 17
54.1 SR OF Y D T ST 1Y, (oo [T TR 17
5.4.2 Y R OF Y B I g RS Y (o T [T 17
5.4.3 Y R OF Y = B I o IV 1Y, oo [T 17

5.5 ONE-WAY INETWORKS ..oeiiiiiiittttiitieeiiiiitbettsessssiisbbastsesssssasbbaseessesssabbabasesesssasabbbesssesssssbbbbaesasesssssbbataessesssases 18
5.6 TWO-WAY NETWORKS .. 1etiiiiiiiiittttitteeessiibbete e e e s s s sibbbaaeeesesssaabbasesesesssabbbabeeesesssab bbb beeesesssasbbbbeessesssasbbbbaessesssases 18
5.7 TWO-WAY NETWORKS WITH DOCSISottt e e s e s abbbbe e e e e s s anes 19
5.8 TwoO-WAY NETWORKS WITH SET-TOP EXTENDER BRIDGE (SEB).......ccouiiiiiiiiiieieiiesieseeie e 20
59 M-CARD DEVICE FUNCTIONAL DESCRIPTIONcciiitttiiiieeiiiiiittiiieesssiibbstesssesssssssssesssessssssssssssssssssssssssssess 22
5.10 INBAND INTERFACE - MPEG DATA FLOW ...ttt e a e e s sanbbeas 23
LN O 10 1 = 3 10 1= 1= Y of =S RRRP 24
00 O O O 1 = PSSR 25
LT 2 B 1 C TR 25

LT B L= N I =1 5 29
T PHYSICAL INTERFACE ...ttt ettt sttt e ettt e e st e e e s bt e s s bt e e e s sab e e e s st be s e sbaasessbbasesssbenseins 30
7.1 INTERFACE PIN ASSIGNMENTS ...utttiiiiiiiittttittieesieissttetssesssaisstbssssassssiisssssssassssisbbsssssssssissbbssssesesssssssssssesessises 30
7.2 DELETED, SECTION RESERVEDuutiiiiiiiiiiiitieiieessieittsetssessssssbbssssasssssasssssssssssssssssssssssesssasssssesssessssssssssseess 32
7.3 INTERFACE FUNCTIONAL DESCRIPTION ..uuttiiiiiiiiiititiiiiieesieistbetssasssessbbsssssssssssssssssssssssssssssssssessissssssssssessinns 32
7.3.1 S-MOdE CUSLOM INLEITACEeveiee ittt ettt ettt ettt e e s s b e e e sb b e e e s sab e e e s s b be s e sbbaesssabeeessbaneas 32
7.3.2 Card SIgNAl DESCIIPLIONS.e ittt sttt ettt bttt e e seesb e be b et e e e e ne e e e besbesbesbesneaneas 32
7.3.3 Card TYpe TAentifiCatION...........oiiie bbbt sbe b eneas 36

iv CableLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

7.34 Card Information Structure (S-Mode ONIY)........coiiiiiiiiii e 37
735 MPEG Transport INTEITACEoeiieieie et b bbb 40
74 ELECTRICAL SPECIFICATIONScuttittautiautasttasteesteesteasaeasseasessaeesseaaseasseassesssasseesbeeabeasseaseesaeesbeesaeabeanseansensnanes 43
74.1 DC CNAIACLEIISTICS ...ttt sttt bbbttt e st e b e s b e bt bt e b e bt e b e e e et e sbesbesbesbesbeane e 43
7.4.2 F O O P = Tox £=] 1] 1ot U RO SOR U U URURPR 48
7.5 MECHANICAL SPECIFICATIONSvtiutieutieuttettasteesteesteasaessaeasessasesseaaseaaseassesssesssasbeesbeasseassesaeesseesaeaseanseansessnenes 55
75.1 FFOIM FACTON ...ttt b ettt h e sh e e eb e e bt e n bt enb e ebbenbeenbeenbe e e s 55
75.2 L000] 0] 1=T o1 (o] ST TP U PR UU PP OTRTOPTI 55
7.5.3 ENVIFONMENTAL.......eiiiee ettt bbb bt bt bttt et e b e be b e nbesbeebeene e 55
754 PC Calrt GUIANCEc.eeitiieiti ettt ettt ettt b e b e bt bt bt bt e bt e e et e besbesbesbeebeene e 55
755 GroUNAING/EMI CHIPS ...ttt e bbbttt et e et e b sbesbesneeneas 55
7.5.6 CoNNECOr REITADIIILY ...ttt sb e 55
75.7 CoNNECIOr DUFADITILY ...t b e bbb eneas 55
7.5.8 PC Card ENVIFONMENTALcciiiiiiieiii ettt bbbttt bbb b b e s e 55
7.6 CPU INTERFACE ...ttt ittt ettt sttt ettt ettt e s bt e e b e e s bt e e be e b e e Re e £ Re e 4 E e e eb £ ekt e ke e Rkt eh b e eh b e eb e e ebe e ke e sbeeneeennesbeenbeennas 56
7.6.1 T 1Y Lo o[- TSSOSO 56
7.6.2 1Y oo [OSSOSO U T R TRURUR 60
7.6.3 S-Mode Initialization and OPEratioNcocoiiiiiiiieie et 63
7.6.4 M-CARD Initialization and OPErationc.cccieiiiiiiieie ettt ee e 68
1.7 LINK LAYER CONNECTIONt tttattettasttastasteasteesteasseasessaessessasesssaaseanseassesssessssssesssesssesssssssssssessesnsesnsesssesseenes 72
7.8 TRANSPORT LAYER CONNECTIONcoittittattautesteasteestessseaseeassesuseaseasseasseassessssssssssesssesssssssssssssssessesnsesssesseses 72
7.8.1 THANSPOIT LAY ...ttt ettt b etk e s b e b e s bt e bt e ke e b e e he e e be e ebeeebe et e enbeenbesne e 73
7.8.2 Transport ProtOCOI ODJECES.......coi it bbb bbb 73
7.8.3 TranSPOIt PrOtOCOL.o ittt bbb b bbbt e e e e bbb seeebeenes 74
7.8.4 Transport ProtoCOI ODJECEScoiiiiiiiiee et 77

8 COPY PROTECTION ...ttt ettt bbbt bbb e e e b e bt ab e bt st eb e e e e renbeabenbesneaneas 86
9 COMMAND CHANNEL OPERATION ...ttt ettt sttt sbe bt e e b e bbb sneaneas 87
9.1 SESSION LAYER ...ttt ettt ettt etttk e bt ekt e bttt he e e he e e bt e bt et e e Rt e eh e eh b e eb e e ebe e ke e b e e neeeneeeaeeebe e e 87
9.1.1 SPDU SEFUCTUIE ...ttt bbbt et s e sk e b e bt ek e ekt e b e e he e e be e ebe e ebe et e anbeenbeene e 87
9.12 SESSION LAYEE PrOtOCOLc.eiiiiiiiti ittt bbbttt be bbb 88
9.2 APPLICATION LAYER ...ttt sttt ettt bttt ettt h e bt e bt e a bt e h e e b e eb e e b e e b e e bt e heesbe e ebe e bt enbeenbeenee e 92
9.21 RESOUICE TABNTITIEE STFUCTUIEveieie et sae e 92
(ST T o B 16 L USSP PUROT 93
9.3.1 INterface RESOUICE LOATINGoiuiiieiiiie ettt bbbttt bbb e 99
94 RESOURCE IMANAGER........eiuttittiattett ettt sit et e bt e bttt et st e s ae e sbe e bt e abeea b e eh b e ebe e nbe e ke e ke emeeeaeeebe e ebeebeanbeanbennee e 99
94.1 PFOFIIE_TNGI() vttt bbbttt b bt bbb et et et e bbb reene e 100
94.2 LT LT =] o1 1 OSSOSO 100
9.4.3 PrOfile_CRANGEU() .. e ettt bbbt b et st sb e b b be e 101
9.5 APPLICATION INFORMATIONttiutiiuttitteattaateesteasteastasteesteesbeesseassesseesaeeabeaaseanseasbesseesbeesbeesbeesbeasnesnnessnesneennis 101
95.1 APPHCALION_INFO_FEO() .-veververeeite ettt bbbttt sb bbb 102
952 application_INFO_CNT() ...ooviiiiiii e 104
9.5.3 e WV A0 [U1=] o/ OO TR RO USRS 106
954 SEIVEE_TEPIY() vttt ettt e bbb bRt bbb b b et e st et et b nbenneeneas 107
9.6 LOW SPEED COMMUNICATIONctttettentiasteattasteasteesteestesssesssesssesseesseaaseanssassesssesssesseesseessesssessssssssssesssesnses 108
9.7 A SUPPORT ...ttt ekttt sttt ht e bttt e s bt ekt e b e e ek e e e ke ekt e 2e e e R s e 4 he e SR e £ b £ 2 a b e ea b e ek b e ek b2 e b £ e b e e ke e R b e e Re e eheeebeebeenbeenbennee e 108
9.7.1 CA_INFO_INMQUITY ..t bbbttt bbbt b b et et e seeeb e beebesbeene e 109
9.7.2 (o7 U 101 (o PSSR 109
9.7.3 (07 T 0] 101 TP T TP PP PRSPPI 110
9.74 (o U o] LA =] 01 VOSSOSO 117
9.75 (o0 RN o F= TSSOSO 119
9.8 [(013 J Of0] N 1 210 | E TSP R TSRO TRTOPROPT 122
9.8.1 OOB _TX TUNE_TEY +eveueeeieeetee et et ettt et e st e bt e ebe bt et e ehe e ebe e bt e sbees bt ehb e sb e e ebe e ke e et e heeehe e ebeeebeenbeenbennee e 122
9.8.2 (@10 = T I (0 T o1 1| RS 123

4/18/13 CablelLabs® v

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

9.8.3 OOB_RX _TUNE_TQ .ecvieteieeiiie ettt
9.8.4 OOB _RX _tUne_CNf .o
9.8.5 INDANA_TUNE_FEQ..cviiiieiie s
9.8.6 inband_tune_CNf ...
9.9 GENERIC IPPV SUPPORTeiviiiiiiiiinieesie ettt
9.10 SYSTEM TIME ...uiiiiiiiiieiiee ittt ettt be e e nne e
9.10.1 SYStEM_tIME_INQ..cceeeeeiierierieeiereeie e
0.10.2 SYSIEM_LIME...iiiieiiiciie e s
9.11 MAN-MACHINE INTERFACE (MMI) ..ot
0.11.1 OPEN_MMI_FE weverieereeeenierie et eiee et see e sae s
9.11.2 0peN_MMI_CNF..iiiiiiiie s
9.11.3 ClOSE_MMI_FEQ.cteieeiieieeierie st
9.11.4 close_ MMIi_CNf i
9.12 M-MODE DEVICE CAPABILITY DISCOVERYcciiueiieaiiiieieenieenieane
9.12.1 stream_profile APDUcccoiiiiiiiiiiineeee e
9.12.2 stream_profile_cnf APDUcccoeoiiiiiiiiiecece e
9.12.3 program_profile APDU ..o
9.12.4 program_profile_cnf APDUcocoiiiiiiiiiiicieee e
9.125 es_profile APDU........coooiiiiiiiiiie e
9.12.6 es_profile_cnf APDU.......ccooiiiiiiiiceee e
9.12.7 request_pidS APDUcocoiiiiiiiiiee e
9.12.8 request_pids_cnf APDUccooviiiiiiiiiie e
9.13 COPY PROTECTIONcctiiiiiieiiieesieesteesteeste st sieesieestessne e e sneesne e
9.14 EXTENDED CHANNEL SUPPORTccitieitiauiiniiesieesieesiesseeaeessessneesneenns
9.14.1 new_flow_req APDU ..o
9.14.2 new_flow_cnf APDU.......ccccoiiiiiiie e
9.14.3 delete_flow _req APDU.......ccooiiiiiiiiiiie e
9.14.4 delete_flow cnf APDUccccoeiiiiiiiiccece e
9.14.5 lost_flow _ind APDU........ccccoeiiiiiiie e
9.14.6 lost_flow_cNf APDUcooiiiiiiie e
9.15 GENERIC FEATURE CONTROL ...coutitiaiiaiiiniiesieesieesiesseesne e seeesne e
9.15.1 Parameter StOrage.......cccooeeierieeiieiie et
9.15.2 Parameter Operation..........c.cooeieeerenene s
9.15.3 Generic Feature Control Resource Identifier...............c........
9.15.4 FeAUIE ID ..o
9.15.5 Generic Feature Control APDUSccocviiiiiiiniiic e,
9.16 GENERIC DIAGNOSTIC SUPPORT ...cotietiairiniiesieesieesieeseeseesneesseesaeenes
9.16.1 diagnostic_req APDU........cocoiiiiiiiee e
9.16.2 diagnostic_cnf APDUccocoiiiiiiiiee e
9.16.3 Diagnostic Report Definition..........ccccoooiiiiiiniiiiicic e,
9.17 SPECIFIC APPLICATION SUPPORT ...c.ueeitiauiiniiasieesieesiesseesnesiessneenseenns
9.17.1 SAS_connect_rgst APDU.........ccooeiiiiiiniinieneeie e
9.17.2 SAS _connect_cnNf APDU ..o
9.17.3 SAS_data_rqst APDU........ccccooiiiiieiieiene e
9.17.4 SAS_data_av APDUcccoiiiiiiiieee e
9.17.5 SAS data_cnf APDUcccoiiiiiiiiiieee e
9.17.6 SAS_server_query APDU ..o
9.17.7 SAS_server_reply APDUcccocoiiiiniiiiiieee e
9.17.8 SAS ASYNC APDU......oiiiiiiiiiiiiiieeee s
9.18 CARD FIRMWARE UPGRADEccoitiaitiaiiiniiisieesiee e seesee e e sne e
0.18.1 INrOAUCTION ..ot
0.18.2 IMPIEMENtAtioNceiiiiiiiicieeee s
0.18.3 HOSt OPErationccveviiiiiieiiieieiieie e
0.18.4 HOMING RESOUICE.eeviieieiiieiecieeiie et
9.19 SUPPORT FOR COMMON DOWNLOADcovirieeriienieeieeaeesieesieeneeene

Vi

CableLabs®

4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

0.20 DSG RESOURCEuttiiiiitiiieeetie e e eittee e s etbe e e e ettt e e eaataeessabeeaeaabeeeeaatsseeesabeeaeastbeeeaasteseeaabeeeessbeeesastseeesnbanaessbenas 198
LSO T B 1Y €3 1Y [o o [T TR 198
9.20.2 iNQUIre_DSG_MOAE APDU ..ottt bbbttt be bbb enes 202
9.20.3 et DSG _MOGE APDUcuiiiiiiiiiictieice ettt ettt sttt et et e st e b e et e e beeba et e nbestesbesbeeaeebeenis 202
9.20.4 SeNd_DCD _INfO APDU.......couiiiiiiiciieice ettt ettt ettt et st e et e beebe et et e sbesbesbesbeebeens 203
0.20.5 DSG_dIrECIONY APDU ...ttt bbbttt e bbbt e b b et et bbb beebeenes 204
9.20.6 DSG_MESSAGE APDU ...ttt ettt et b bbb ettt bt ne e nr e nae e nae e 210
9.20.7 DSG_EITON APDU... ..ottt ettt ettt s be et e e ae st et e st e besbesbeebeebse s et e sbesbesbesaeareens 212

9.21 HEADEND COMMUNICATION RESOURCE........uiieiittieeeittteeeitieeeestteeeestbeeesastbeeesasseeeesssseeesassesesasseesessaseesassenas 213
9.21.1 Headend Communication ReSOUrCe 1AeNTIfIEr..........cviiviiiiieicie e 213
9.21.2 Headend CommuNIiCAtiION APDUScoviiiiiiiiiieciie ittt ettt ettt e e ebe e be e e ebe e s ebeesbe e s ebeeeareeeans 213
LS R B (01 A =TT =1 /=11 (o] USSP 213
LS (01 A == A Y/=Tod (o] - Vo GO 215

9.22 HOST ADDRESSABLE PROPERTIEScciittiieiititieeitteeesitteeeeatteeesasteeasssbeeasataesesasssssssnssssesassesesasssssesnsssaessssens 215
9.22.1 Host Addressable PropertieS APDUScccoiiiiiiiiie ettt sbe s 216

0.23 CARD IMIB ACCESS ... ittt ettt ettt e e et e e ettt e e sttt e e e et e e e e bte e e e sabeeeeabbeeeaaateeeesabeeeesbbeeeeasteeeesnbanaesasbeeas 218
0.23.1 Card MIB ACCESS APDUSccuviiiiiiictiei ittt ettt ettt ete e st e et e st e e ebe e s sbeeebe e s baeebeessbeesnbesabeeanreesans 219

10 EXTENDED CHANNEL OPERATIONooiiiiiiiieict ettt ettt st st sre e sbeeveenbesbaesbaesbaesreenens 222

10.1 INTERNET PROTOCOL FLOWS.......viitiiitieitieite ittt et eteeete et e st e st e sbeesbe e sbesstesasesbeeabeebeenbesnbestaesbeesbeesbesseens 222

L10.2 SOCKET FLOWS....utiitiiittiitteite ettt ettesttesteesteesbestesseesaeeasesabeasbeaabesssesbaesbeesbeesbesssesaseabesabeenbeenbesnsestsesbaesbaesbenseens 223

10.3 FLOW EXAMPLES—QPSK MODEM CASE......c.ciiviiuiiiteeeteeiteetessiesteesteesteesbesisesssessesssesssesnsesssessssssesssesssesnens 223

10.4 FLOW EXAMPLES—EMBEDDED CABLE MODEM CASE DSG MODEcooviiviiiiitiiiteecteccre e sreesre e 224

10.5 FLOW EXAMPLES—SEB CLIENT CASE DSG MODEccovtiiiitiiitieiteeite ettt sveesreesveevesnvestaestaesbaesresne s 226

10.6 SUMMARY OF EXTENDED CHANNEL FLOW REQUIREMENTcitiitieiteeiteeiteiresteesreesseesteenressresssessesssesssessneas 229

10.7 SYSTEM/SERVICE INFORMATION REQUIREMENTS.uecotiiiteetietieitieiteeiteeitessesseessesssesssesnsesssesssessesssesssesnens 229

L0.8 LINK LAYER woiitiiiiitiite it ettt et et e steesteesbe s eaesaeesaeeebe e ebeeabesabasbbesbeesbeesbeesbesssesaseabeeabeenbeenbeenbestsesbeesbaebensrens 230
O T R |V o o [T OSSOSO UROPRORPRRO 230
L0.8.2 IMEMOOE ..ottt ettt st be e be e beeab e e bt e e b e e s be e be e beerbeaae e ahe e ehe e beeabeeabeebbeebeenbeebeearean 230

10.9 MODEM IMIODELS ... u0iittiitteteeteettesttesteesteeitesiaessessteeabeeabeanbesasasssestsesbeesbeesbesasesaseabesabesnbeentesnsestsesbeesbaebensreas 231
10.9.1 Unidirectional HOSE IMOGE]cvoiviiiiiiiieie ettt sttt ere e be e be e e b e sbeesbaesbeene s 231
10.9.2 Bidirectional With Modem in Card...........cccvviiiiiiiiieiece ettt be bbb sbeesbaesbeene s 231
10.9.3 Bidirectional With MOdem in HOSEceiiiiiiiiiiie et ebe bt sree e sreene s 232
10.9.4 Bidirectional With SEB iNHOSEccceiiiiiiiiiiiic ettt sve b b be b e sbeesbaesbeene s 232

10.10 SECTION REMOVED (DUPLICATION WITH SECTION 10.7)....cveiieeieiieeeeeeie et s 232

10.11 EAS REQUIREMENTSttiittitteiteeiteeeteeeteesteastesstesteesteesbesbesseesssesassasesabeensesssesssesssesbsesbeesbeesbesnsesssesseesreenras 232

10.12 XAIT REQUIREMENTS ... vt iutiittiiteeiteeiteestesstesteesteesbesitesssesseessseassessestesssesssestsesbessbesssesssesbesabeeaseesesssesseesns 232

10.13 OCAP OOB OBJECT CAROUSEL REQUIREMENTS ... 0ecvtitiireiireeireeressteestesseesseessesisesssesssessesssesnsesssesseesns 233

ANNEX A BASELINE HTML PROFILE SUPPORT ..ottt sttt sna e 234

AL FORMAT Lttt e e e e et e e e et b e e e e eabe e e e e be e e e e baeeeaahteeeeaabeeeeatbeeeaaareeeeaabeeeeatreeeabreeeaarreeas 234
Al1l (D1 o] -SSRSO 234
Al2 0] | TP 234
Al3 Text and BacKgroUNG COLOFcouiiiiiiieiisie ettt e bbbttt e bbb sbesneeneas 234
Al4 UNVISITEA LINK COI0T ...ttt ettt ettt st e s bt e stee e sab e e sare e sbbe e saaeesbbeesaneesrbeens 235
Al5 Tz o =] FO OSSO T PP URURORO 235
Al6 [T o[- T TSP TPV RV UUROPURTUROTN 235
Al7 LI o LTSRS 235
A.1.8 0] 1 TP P PP OPPPRROUPR 235

A.2 SUPPORTED USER INTERACTIONSceiiiutitieiitieeeiitieeeeetteeeeetteeeesteeeesasteeesssbeeeaastseeesssaessssbeeasasteeeesseneessseenas 235
A21 NAVIGATION ANG LINKS ..ottt ettt bbb bbbt e bbbt ebeenes 235
A22 HTIML KBYWOEUSttt ettt bbbt e e bbbt bt b e bt e st e e et et sbenbesbeebeenes 235

A3 CHARACTERS. ... ttit it itteee e ettt e ettt e e s ettt e e e ettee e e sabeeeestaeeeaaseeeeesabeeaesstaeeeasseeeeaabeeeeaatbeeesnssasesssbeeasasteeeesnseneessreeas 236

ANNEX B ERROR HANDLINGcoiiiitie ettt sttt ettt st be e ste e sbeste s e e sbeesbeesbeebeenbeenbesnae e 241

4/18/13 CablelLabs® vii

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

ANNEX C CRC-8 REFERENCE MODELcoiiiiiiiieiiciiie ettt sttt sne et sne e ene s 252
ANNEX D S-CARD ATTRIBUTE AND CONFIGURATION REGISTERScccoooiiviieieene e, 253
D1 GENERAL ..icuttittiatteetee sttt ettt ettt he e ebe e bt e bt ek e eke e sk e e e ke e b a4 Re e 4R e e AR e £ AR £ £ b e SR b £ eR b £ AR £ e AR £ e Ee e Ee e ARt eReeeRe e ebe e bt e b e enbeene e 253
D.2 ATTRIBUTE TUPLES ...ttt itiettittaittateestt e bt esteastasteesteesbeesbeaseeaseesheeabe e bt ambeasbeeb b e ebe e ebeeebe e s bt aReesbeeebeeabeenbeanbensee e 253
D.2.1 CISTPL_LINKTARGETotittitiiitiiieestisiet sttt sttt abe s st st sesbe b esaebe st esaabensesaabensensesenes 253
D.2.2 CISTPL_DEVICE DAottt ittt sttt bbb e s st e b ese b e b se et e e s s abe s ensane s 253
D.2.3 CISTPL_DEVICE_OC......cocitiiiieiiteiieiistesiee sttt sttt sbe st s sbe e e s abessesassessesasbessessabessensnseses 254
D N O S Il o IV = ORI 254
D.2.5 CISTPL_MANFIDcotiiiiiiite ittt e et bbb et st se bt neebe e s s e be s eneane e 255
D.2.6 CISTPL_CONFIG.....ctitiieiitirieeste sttt sttt sttt s e abe e es e e be e e se b e s eseebe s eneebe st essabe st enenne s 256
D A O @ K 1 | OO 256

D N T O R A = T N I = g ORI 257

D 0 T) L OO SOSRTRRRR 259
D.2.10 STCE_PD ..uiiiiieiit ettt ettt bttt s et bbbt s e et e bR e b e Rt b bRt R bRt b e s e b neneene e 259
D.2.11 CISTPL_END ..ooiiiiicititt ettt sttt bbb e sttt s et s st et e s b e s ne et et en e et et eneene e 259
D.3 CONFIGURATION OPTION REGISTER.....ccttettatttsteesteesteasteaaeasseaieeaseasseassesssesssessesssesssesssessssssesssesssesnsesssesseses 259
D.4 VALUES TO ENABLE CABLECARD PERSONALITY CHANGEocotiitiatiaiartiesieesieesteeseseesieesiessseensesssesseees 260
D.5 OPERATION AFTER INVOKING CABLECARD PERSONALITY CHANGEcoctiiiieiiieitieiiesee e e e sieesie e seee e 260
ANNEX E PREVIOUS RESOURCE VERSIONS AND ASSOCIATED APDUScccoooiviieieiieeiees 261
E.1 Low SPEED COMMUNICATION RESOURCE - VERSION 2...c..ciiuiiieriaiisieisiesteestesiesesiesieseste st e seeseenesteseeneseens 261
E.2 COPY PROTECTION ..tttuietiitesietesteeetesteeatesteseetestesessesteseesesseseabesbeseabesbeseabesbe st ebesbeseebe st eseebe st eseabenbeneabenbenentens 262
E.2.1 Copy Protection - Type 2 Version 1 (DepreCated)........cccvieivrieieeriereeresesesesseeseeseesseseessessessessessenns 262
E.2.2 Copy Protection TYPE 4 VEISION L.......ccoiiiiiiieieeeseese e ste e e enee e ae sttt ene e enee e see e snesnenneans 266
E.2.3 (08 o) o 1= T T) P 266
E.2.4 (@8 o) o 1= T o)) P 266
E.2.5 CP_data_req() Card’s Authentication Data MESSAQJEccvrvieeiereerererirsrsreereeeesee e seessessessensens 267
E.2.6 CP_data_cnf() Host’s Authentication Data MESSAQEccvrvieeierierieresesesreereereesie e seeseesressesnens 267
E.2.7 CP_data_req() Card’s Request for AUth KEYc.cceiiiiviiiiieie e 267
E.2.8 CP_data_cnf() Reply Message with HOSt’S AUTKEYcccviviieieiee e 267
E.2.9 CP_data_req() Card’s CPKey Generation MESSAJEc.eivvrrrieeiereerieresiesinsseeseeseeseeseeseessnssessensens 267
E.2.10 CP_data_cnf() Host’s CPKey Generation MESSAJEccvieeeereerierueriesieseesreseeseeseesseseessessesssssensenns 267
E.2.11 CP_sync_req() Card’s CPKey Ready MESSAJEcc.cierreririeeeiieieriesiesiestesresneesseseesseseessessnsnessensenns 267
E.2.12 CP_sync_cnf() Host’s CPKey Ready MESSAJEccveiverrerieieeeeieiesiesiesiestesiesnseseeseesesaessessesnessessenns 267
E.2.13 CP_data _req() Card’s CCI Challenge MESSAQGEcervrririeeeeierieiesiesiesteseseeseeseenseseessessessessensenns 267
E.2.14 CP_data _cnf() Host’s CCl RESPONSE IMESSAQEveuveeerrirrrirrareaseeieseestestessessessaeseeseensessessessessessensenns 267
E.2.15 CP_data req() CCl DelIVEry MESSAQEuecvireerieeiieriesiesiesteereeeeieseestestessessesssessesseseseessessessessensenns 267
E.2.16 CP_data_cnf() CCl ACKNOWIEdgement IMESSAQEcoverrerreieeeeeeieieesiestestesresneeseeseesseseessessessessessenns 267
E.3 SPECIFIC APPLICATION SUPPORT = TYPE L VERSION L ...cuiiiiiiiiiieieiesie sttt s 267
E.3.1 R NS o] g T=Tot A =T)) P 267
E.3.2 RS NS T o] g T=Tot o 1)) P 268
E.3.3 RS e - U= (10 1) P 268
E.3.4 ST e - L= - 1Y/ PR 268
E.3.5 YA ST e L= LY/ o111 P 268
E.3.6 KNSRt =T g [UT=1 Y7 P 268
E.3.7 RS ST TCY V=T g =10 1Y/ P 268
E.4 GENERIC IPPV SUPPORT - TYPE 2 VERSION 1 (DEPRECATED) ...c.ccuiiveriitenieniatesiesestesiesestesiesesteseeneseeseeneseens 268
E.4.1 Program_req() & Program_CNf()ccccvieiiiieiieieicse sttt 268
E.4.2 Purchase_req() & PUrChase _CNf()cooviviiiieiieieicse sttt st eneens 272
E.4.3 Cancel_req() & CanCel_CNF() uiveeeriere ettt reene e 274
E.4.4 History_req() & HisStory CNf() c.voveo ittt et ene s 275
E.5 GENERIC DIAGNOSTICS TYPE L VERSION L....cuiiiiiiiiiieieiesieiste sttt sttt sttt sttt et 277
E.5.1 LTS 010 Y =] 0] SRS 278

viii

CableLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

E.5.2 SOTIWAIE _VEE _FEPOIT.. ..ttt bbbt s e e b e b bttt be e bt e e et e sbesbesbeaneaneas 279
E.5.3 FITMWATE _VBE FEPOIT. ... et bbbttt ee bbbt et e et e bt e e et et sbesbesneaneas 279
E54 P O= Vo (o =T =] ¢ o] o ARSI 279
ES55 [S = LU =] 010 o OO P TP UPR PSP 280
E.5.6 [l D O t= UL U 11010 o ST OO TP PR URTUR PP 280
E.5.7 CUPTENE_CRANNEI_FBPOIT ...ttt bttt bbbt b et et eesb e b b beene e 280
E.5.8 T i oTo] ¢ A (<] o [o] o FU TP TP TP TUR PP 280

E.B SYSTEM CONTROL .eeciutiiiiiittiteeittee e ettt e e ettt e e e e te e e e e bbeeeeaaeeeessabeeaeastbeee s ssseeeasbeeaeastaeeeaastseeeaabeeaesstbeeeansreeeeannns 281
E.6.1 ROSE_INTO_FEOUBSL() ...ttt ettt bbbt bbbttt nb e sa et be b s 282
E.6.2 ROSE_INTO_FESPONSE() ... vttt bbbttt b ekt sb ettt s e e et et sbesbesaesbeenes 282
E.6.3 COAE_VEISION_tADIE() ..ueeeeieieieie ettt bttt bbbt b et e e b nbe bt beene e 282
E.6.4 code_Version_table FEPIY() ..o oottt bbbttt 289
E.6.5 hoSt_dOWNI0AA_CONEIOI() .. .euiitiiieiie ettt bbb bbb 289
E.6.6 host_download_command() Type 1 Version 1 (Deprecated).........ccccovererenerienieeieiene e 289

E.7 EXTENDED CHANNELcuttieeiitteeeeetee e e ette e e s ettt e e e aateeeeabeseesaabeeeaasteeeeaassaeessabeeaeasteseeaseseessabesasasseeeesnssneessnnns 291
E.7.1 new_flow_req() Type 1 Version 1 and Type 1 VErSiON 2........ccooeceieneieneneneeieeee e 291
E.7.2 NEW_FIOW _CNT() ittt bbbttt bbb 293
E.7.3 (012 (g 0L A =T T OSSPSR 297
E.7.4 delete FIOW _CNF() .o bbbttt e bbb 297
E.7.5 1OSE_FIOW _INA() -ttt bbbt ettt e b b 297
E.7.6 10SE_FIOW _CNT() -ttt bbb bbb n s 297

S T B IS G 1V, (o] o =PSSO P O PRSI 297
E.8.1 INQUITE_DSG_MOAE() ..ttt eteeiee ettt ettt b e bbbttt e bt e e et e b sbesbeeaeebeenes 298
E.8.2 LA B R C I 110 o[- OO TSSO 299
E.8.3 DSG_PACKEL BITOF() eteiteiteite ettt sttt ettt bbbt b et e b e b e ke sbe ke be e st e e et e b sbesbesaeebeenes 303
E.8.4 coNfigure_advanCeA_ DSG() ...eueeueieeieiie ettt bbbt b ettt sb bbb 304
E.8.5 DSG_IMESSAGE() - -venvereerrerterteateaseentessestestesbesbesseaseeseebesbesaesbesbeebeeseenee e e beabeebeebeebeehe e e et e b eaenbenaeebeenes 306
E.8.6 SENO_DCD _INTO() e ttetteeete ettt e bt bbbt b b e bt bt b e bt e bt e e et e b bt benneeneas 310
APPENDIX T REVISION HISTORY ..ottt sttt st tve e stae e stae e stae et e e s tae e staeenteeestaeennaeenteas 311

Tables

TABLE 1.4-1 - NUMERICAL REPRESENTATIONcciiuttieiittteeeatteeeiiteeeesitteeesasseeessnsssassatessesassssssssessessssssesassssessssssesasseeeenns 3
TABLE 5.4-1 - CARD/HOST COMBINATIONS AND OPERATING MODESccvviiitiiiiiiiitie ettt etee e eree b v e v 17
TABLE 5.9-1 - CARD-HOST RESOURCE COMMUNICATIONuttiieiiiiieeeiteeeeeitieeeeetteeeessseesessteeessastsssssnsssasssssssessssssessnsens 23
TABLE 5.9-2 - RESOURCE EXAMPLE REQUEST .iiiiiiiiiiiitiiii e iiitttie st s bbbttt s s e s s s aabbb e s s s e s s s aabbb b e e e s e s s s s bbbb e e e s e s s ssabbbanseeeas 23
TABLE 7.1-1 - CARD INTERFACE PIN ASSIGNMENTSuuttieiiititeeiiteeesitteeeeateeeesatseessasseeesassseessasssesssssesesssssssssssssessssens 30
TABLE 7.3-1 - TIMING RELATIONSHIP LIMITS ...ooiiiiitiiiii it e ettt e ettt s ettt e e et e e e e tae e e s etveeaasntaeeesabsaaessabeeesantseeesnseneesasrenas 34
TABLE 7.3-2 - TRANSMISSION SIGNALSeeeiiitiiieiittieesiteteeetteeeeetteeesatteeasateeeesasseeesasaeeaaassssessasssessassesesasseeesassesessssens 36
TABLE 7.3-3 - CIS MINIMUM SET OF TUPLESueiiiiutiteiitttee e ittt e e eitteeesstteeeaaataeeestteeesssseesaassssesssssessassssesassseessnsssssssssenns 37
TABLE 7.3-4 - VPP PIN CONFIGURATIONS, AND ASSOCIATED CARD OPERATING MODEcccoiviiiiiiieeiciieee e 40
TABLE 7.4-1 - M-MODE POWER SUPPLY DC CHARACTERISTICSceiiiiutiieiitieeeeitiee e s etteeeeeteeeestaeeesstbeeessnseeessnnsneessnnenas 45
TABLE 7.4-2 - CARD SIGNAL TYPES BY IMIODEuutiiiiiiteie e ettt e e ettt e ettt e e et e e e e ette e e s etaeeaaenbaeeesnbaseessbbeeesanteeeesnseaeessareens 45
TABLE 7.4-3 - DC SIGNAL REQUIREMENTS ...utttiiiiieiiiitittieeiessietbsttessesssassssssssssssasssssssssesssssssssssssssssssssssssssssssssssrssseesns 46
TABLE 7.4-4 - DC SIGNALING CHARACTERISTICS FOR THE “LOGICPC” SIGNALING LEVELccccvveeiiiieeeciiece e 47
TABLE 7.4-5 - DC SIGNALING CHARACTERISTICS FOR THE “LOGICCB” SIGNALING LEVELccccvviiiiiiieeiciiiee e 47
TABLE 7.4-6 - CABLECARD AND HOST PULLUPS AND PULLDOWNSooiiiiitiiieiitieeeeitieeeeeteeeesteeeesstbeeessnseeeesnseeessnseeas 48
TABLE 7.4-7 - S-MODE/M-MODE SIGNAL PARAMETERSccuviiititiitieeitteeiteeeiteeeeteesibeeesaeesstsesbesssbesssessbessnsesssesssessnns 49
TABLE 7.4-8 - M-CARD POWER-ON AND RESET TIMING REQUIREMENTS ...cciiiiiiiititiiiiiee s ssiitriee e s sssiitinss e s s sanabensee s 52
TABLE 7.4-9 - M-CARD MPEG TRANSPORT TIMINGuetiiiitiiieiiiieesiteeeeatteeesetteeesstveeasasteeeessseesssssesesssssssssssssesssssenas 53
TABLE 7.4-10 - M-MODE SERIAL INTERFACE TIMINGceiiiitiiieiiiieeeiteeeeetieeeeetteeesstveeaassteeeesnbseessssbeeesasseseesssasesassenas 54
TABLE 7.6-1 - HARDWARE INTERFACE REGISTERSccciitttieiitttie ittt e s itteeesatteeestteeesasseeasasssesssasssssssssesesasssessssssssssssens 56

4/18/13 CablelLabs® ix

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

TABLE 7.6-2 - STATUS REGISTERcicttttiiittieeeetieeeeettee e s itteeeaateeeesaaseeesaateeaaasteeeeaasseeesssaeeaaasseseesassseesssbeeesastseeessseeesassanas 57
TABLE 7.6-3 - CONTROL REGISTER.....uiiiiittiieiitite e ettt e s ittt e e atte e e settee e s sabeeaaasbeeeesbeeeeaasbaeeaastaeeesssseesasbeeesasteeeesssaeesssrenas 57
TABLE 7.6-4 - EXTENDED INTERFACE REGISTERSeeiiiittiieiititieiitteeesitteeesatteeesetseeesasaeeasastesessasssassassesesassssessnsssesssssens 59
TABLE 7.6-5 - CPU INTERFACE PACKET FORMATviiiiitiie e ettt e ettee e s ettt e e ette e e e tte e e s etveeaasstaesesabsaaesabbeeesanteeeesnneaeesasreens 61
TABLE 7.6-6 - BUFFER Looiiiiiiii ettt ettt ettt e e ettt e e e at e e e s e bt e e e e eabe e e e eabee e e e abbaeeaasbeeeesabeeeesabbeeesasteeeesnseaeessranas 69
TABLE 7.6-7 = BUFFER 2.....uuiiiiitiie ettt ettt e ettt e ettt e e s et e e e ettt e e e e aee e e s etbeeeeasteeeesabeeeesabbaeeaasbeeeesabeeeeessbeeesasteeeesnseaeesasrnnas 69
TABLE 7.6-8 - BUFFER 3......eeii ittt ettt e ettt e e ettt e e et e e e ettt e e e s tee e e e etbe e e e asteeeeaabeeeeaabbaeaaasbeeeesabeseesasbeeesasteeeesnseeeessrnnns 69
TABLE 7.6-9 - BUFFER 4ooii ittt ettt e e ettt e s ettt e e ettt e e e e bt e e e e etbe e e e estee e e sabeeeeeabbeeeeasbeeeesabeeeesabbeeesasteeeesaseaeessranas 70
TABLE 7.8-1 - LENGTH FIELD USED BY ALL PDUS AT TRANSPORT, SESSION AND APPLICATION LAYERScccoecounee.. 73
TABLE 7.8-2 - EXPECTED RECEIVED OBJECTS - TRANSPORT CONNECTION ON THE HOSToooiiiiiiiiiiee e 75
TABLE 7.8-3 - EXPECTED RECEIVED OBJECTS - TRANSPORT CONNECTION ON THE CARD......cocuvieeiiiiieeeciie e eiree e 76
TABLE 7.8-4 - COMMAND TPDU (C_TPDU) ..ttt ettt bbbt st ne e bbb ebe e eneas 78
TABLE 7.8-5 - RESPONSE TPDU (R_UTPDU) ..ottt ettt bbbt st ne e bbbt eneas 78
TABLE 7.8-0 = SB_VALUEciiitiiiite ittt sttt sttt ste et ste e et e b e et e et e e te e e abe e e ke e e ab e e o1 Ee e e aae e e s b e e aab e e e s beeaabe e e s beennbeeanbeennbeeanes 79
TABLE 7.8-7 - CODING OF BIT 7 OF SB_VALUEctttiitiis ittt sttt et stee st e et aaaa e baaanba e beaanbe e s beasnbeeanteeanneeanes 79
TABLE 7.8-8 - CREATE TRANSPORT CONNECTION (CREATE_T_C) ..uiiiiiiiiiiiiiisiesieeiie ettt s 79
TABLE 7.8-9 - CREATE TRANSPORT CONNECTION REPLY (C_T_C _REPLY) ...ttt 80
TABLE 7.8-10 - DELETE TRANSPORT CONNECTION (DELETE_T_C) 1.eiitiitiiieiiieiieieie ettt 80
TABLE 7.8-11 - DELETE TRANSPORT CONNECTION REPLY (D_T_C REPLY) .ottt 81
TABLE 7.8-12 - REQUEST TRANSPORT CONNECTION (REQUEST _T_C) .itiiiiiiiiiiieeiie ettt 81
TABLE 7.8-13 - NEW TRANSPORT CONNECTION (NEW_T_C) . tiitiiiiiiiiesie sttt sttt st 82
TABLE 7.8-14 - TRANSPORT CONNECTION ERROR (T_C_ERROR) ...cuuiiiitiiteitiniesieeiie e sie st sttt st e esee e i b e b eneas 82
TABLE 7.8-15 - ERROR CODE VALUESuttiiiiitiii e ittt e sttt e e ettt e e eetteeesstteeaaastteaesssaseesassaeaaasseeeesssseesasbesesastseeessseeesasrenas 82
TABLE 7.8-16 - SEND DATA C_TPDU ...ttt ittt sttt et a bt eanbe e be e e nbe e s teesnbeeanteeanbeeanes 83
TABLE 7.8-17 - SEND DATA R _TPDU . .cuitiiiiiiiti ittt sttt e et e et et e et e e e be e snbe e s beesnbeeanes 83
TABLE 7.8-18 - RECEIVE DATA C_TPDU.ottt ittt sttt a et be e anbe e beesnbe e anbeesnneeanes 84
TABLE 7.8-19 - RECEIVE DATA R _TPDUottt sttt ettt et eenbe e s e e snne e nes 84
TABLE 7.8-20 - TRANSPORT TAG VALUES......ccttiiiiittit e iteee e ettt e e ettt e e s stteeesaateeeeabaeeeaasbeeaaasbaeeesbeseesssbeeesastseeesseeeesssrenas 84
TABLE 9.1-1 - SPDU STRUCTURE SYNTAX ...utttiiiittitesiteeeaaitteeesitteeesstteeasateseesassssssssseeaaassssessasssssssssesessssssssssssssesssens 88
TABLE 9.1-2 - OPEN_SESSION_REQUEST() SYNTAX ...euttttttesterteateseetestestestestestessesseessesaseessessesseasesseassessessessessessessessens 89
TABLE 9.1-3 - OPEN_SESSION_RESPONSE() SYNTAXetttttsterteateeeasieseestestestestesseeseessessesessaessessessesseasesssessessessessessessens 90
TABLE 9.1-4 - CLOSE_SESSION_REQUEST() SYNTAXettitiiteittateaeaiesaestestestestesseeseeseesseseesaessesseasesneassessessessessessessessens 91
TABLE 9.1-5 - CLOSE_SESSION_RESPONSE() SYNTAX c..cutttttteiteeteaeasiestestestestestesseeseeseesseseesaessessessesseasssssessessessessessessens 91
TABLE 9.1-6 - SESSION_NUMBER() SYNTAXtutettetitesttstestesteeteaeastesaestessessestesseaseessesaseessessesseasesseassessessessessessessessens 91
TABLE 9.1-7 - SUMMARY OF SPDU TAGS ..eii ittt ittt ettt ettt e et e e et e e e e tte e e s s abe e e e sabae e e sabsaaessbbeeesanteeeesnssaeesasrenas 92
TABLE 9.2-1 - PUBLIC RESOURCE IDENTIFIEReiciiutiieiitteeeeeitieeeeitteeesstteeesateeeestseessassaeaaassssesssssessassesesssssssssnssssessssens 92
TABLE 9.2-2 - PRIVATE RESOURCE IDENTIFIERccutiiiiiittieeetieeeeitteeesstteeeseteeeestseeesasaeeasasseseessssssssssesesassssessnssssessssenas 93
TABLE 9.2-3 - RESOURCE_IDENTIFIER() SYNTAXutiutetestestesteateeseeseesaestestessestesseaseeseesasessaessessessesseasssssessessessessessessens 93
TABLE 9.3-1 - APDU STRUCTURE SYNTAXutttieiittteesiteteeatteeesitteeesstteeesatseeeassssssassseaaassssessasssesssssssessssssssssssessssens 93
TABLE 9.3-2 - RESOURCE IDENTIFIER WALUESutiiiiitttee e ettt e e eettee e s stteeeeatteeestteeesssveeaaasteeeesnsssessasbeeesassseeesssseessssenns 94
TABLE 9.3-3 - APPLICATION OBJECT TAG VALUES......coittiieiitit e ettt e e ettt e e ettt e e etae e e s saveeeaeataeeesbsaeessabeeesasteeessssaeesasrenas 95
TABLE 9.3-4 - HOST-CARD INTERFACE RESOURCE LOADINGcutiiiiiiiie ettt ettt ettt e e et evte e e s stve e e s enta e e e sane e e sareeas 99
TABLE 9.4-1 - RESOURCE MANAGER RESOURCE IDENTIFIERcciitiiiiitiieeiitieeeeeiteeeesteeeesstteeessataeessanseaesstaeeesnnseeessnnns 100
TABLE 9.4-2 - RESOURCE MANAGER APDU LIST ...ttt ittt ettt s ettt e ettt st a e s stve e e e eate e e e sataeaeebbeeesnnreeeeannes 100
TABLE 9.4-3 - PROFILE_INQ() APDU SYNTAXceutititeitestestesteeteeeeie et stestesbestesseeseessessesbesbestesseasesseensessessessessessesseans 100
TABLE 9.4-4 - PROFILE_REPLY () APDU SYNTAX ...utttiitiitieterieeteeeeiestestestesteste st sseeseesbesbesbesbessessesseensessessessesaessesseans 101
TABLE 9.4-5 - PROFILE_CHANGED() APDU SYNTAXiitiitiiteitiatieeeie st sttt sttt ee e sbe st sbesbesbesbe s e entesbesaesbesbessesnens 101
TABLE 9.5-1 - APPLICATION INFORMATION RESOURCE IDENTIFIERuvtieiiitiieeeeitieeesieeeesitieeeesateeessataeassntteeesnnneeesennns 102
TABLE 9.5-2 - APPLICATION INFORMATION APDU LIST ..uiiiiiiiiiiiiiii ettt ettt e s ntte e e ette e e s eatae e e e tae e e senrae e e ennes 102
TABLE 9.5-3 - APPLICATION_INFO_REQ() APDU SYNTAXttiuiitieieieitesteste st sieaeeee e sbe st saeste e ssesseesestesbeseesnessesneans 102
TABLE 9.5-4 - APPLICATION_INFO_CNF() APDU (TYPE 2, VERSION 1 AND VERSION 2) SYNTAX ...coueririeniinieneaieennns 104
TABLE 9.5-5 - SERVER_QUERY/() APDU SYNTAX ..uttttittstisterteateeeeie st st st sbesbe e eseeseesbesbesbesbesbesseeseensessesaesaesaessesnnns 106
TABLE 9.5-6 - SERVER_REPLY () APDU SYNTAXc.uiitiitiitiiteriiateeeeiestestestestesteaseeseeseessestesbessessesseseensessessesaessessesseans 107
TABLE 9.6-1 - A LOW SPEED COMMUNICATION RESOURCEccciiiiiiiiitiieeiitieeeeeiteeeesteeeesstveeesssseeessanseasssseesesnssessssnnes 108
TABLE 9.6-2 - LOW-SPEED COMMUNICATION RESOURCE ID REPORTING MATRIXccoeiiiiiieeiiiieeeciieeecitie e e e 108

X CableLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

TABLE 9.7-1 - CA SUPPORT RESOURGCEc.uctittiittiattattasteastesttesteesteessea st assessessaeesseaaseanseassesssasteasbeesbeebesssesseesseessesnes 109
TABLE 9.7-2 - CA SUPPORT APDUS ..ottt ittt ettt ettt sttt sttt sbe e bttt e s bt s b e st e e s be e et e e beesbeeseesneenneenas 109
TABLE 9.7-3 - CA_INFO_INQUIRY () APDU SYNTAX ...tiittittateitiatieeetestesteste st steaseeseeseesbestesbessessessesseensessesseseessessesseans 109
TABLE 9.7-4 - CA_INFO() APDU SYNTAX ...uitttiutetieiteitestesteste it eteaeetesaestesbesbesteaseaseesseabesbesbesbeabesseaseensesbesbesbesaessesneans 110
TABLE 9.7-5 - S-MODE CA_PMT() APDU SYNTAX (RESOURCE TYPE 1 VERSION 2) ...c.eviuiiiirieiiieiieieeie e 111
TABLE 9.7-6 - M-MODE CA_PMT() APDU SYNTAX (RESOURCE TYPE 2 VERSION 1) ..ottt 113
TABLE 9.7-7 - S-MODE CA_PMT_REPLY() APDU SYNTAX (RESOURCE TYPE 1 VERSION 2) ...cueeuiiiiiiiienieniesie e 117
TABLE 9.7-8 - M-MODE CA_PMT_REPLY() APDU SYNTAX (RESOURCE TYPE 2 VERSION 1)coiiiiiiiiiiiiercciee 118
TABLE 9.7-9 - S-MODE cA_UPDATE() APDU SYNTAX (RESOURCE TYPE 1 VERSION 2) ...cviiuiiiieiiiiiie e 120
TABLE 9.7-10 - M-MoDE cA_UPDATE() APDU SYNTAX (RESOURCE TYPE 2 VERSION 1) ...ccuiiiiiiiiiiiiiic e 121
TABLE 9.8-1 - HOST CONTROL SUPPORT RESOURCEcutiitiitiiitiesiieitee sttt sttt sttt ettt et e sbeesbeeste e sseesneesne e e 122
TABLE 9.8-2 - HOST CONTROL SUPPORT APDUS ...ttt sttt et sae e sae e 122
TABLE 9.8-3- O0B_TX_TUNE_REQ() APDU SYNTAX...etttttiutatiaieie it stestestestesseeeeseestesbesbesbessesseseensessesaeseesaessesseans 123
TABLE 9.8-4 - RF TX FREQUENCY VALUEuuttiiiiiiiiiiittiiiiie e e e s ittt e e s s s s sibbbb s e s s e s s s aaabbbas s s e s s s abbbbasesesssssabbbaaeseessssaabbeees 123
TABLE 9.8-5 - RF TX POWER LEVEL.....ccttiiiiiiiitiiiti ettt sttt ettt sttt sbe bttt ettt e b e beenbe e beesnesseesaeesne e e 123
TABLE 9.8-6 - RF TX RATE WALUE ...ttt ittt ittt ettt sttt ettt he s bt bttt e st e sbb e st e e s bt et e e beesbeebeesaeenneeeas 123
TABLE 9.8-7 - OOB_TX_TUNE_CNF() APDU SYNTAX ...uttttitiatiaiaieitestestesteatesieeeeseestestesbessessessesseessessessessessessessenns 124
TABLE 9.8-8 - OOB_RX_TUNE_REQ() APDU SYNTAXtiittiuiatieieieieestestestesteseeeeseestestesaessessessesseensessesseseessessesseans 124
TABLE 9.8-9 - RF RX FREQUENCY VALUEuuttiiiiiiiiiiititii e e ettt e e e e s s tibb bt e e s s e s s s aabbt e e e s e s s s e bbb b e s s s e s s s s sabbbebeeeessssaabbeees 124
TABLE 9.8-10 - OOB TRANSMIT RATE FORMATc.utitiitieittetiestee sttt sttt e e sie ettt et esbbesbeesbeenbeesbeasnesseesaeeseeeneas 125
TABLE 9.8-11 - OOB_RX_TUNE_CNF() APDU SYNTAX....cittiuietieieiestestestestesteseeeeseesiestestessessessesseessessessessessessessens 125
TABLE 9.8-12 - INBAND_TUNE_REQ() APDU SYNTAX ...ttttttteitietieteie st ste ettt ee e sbe st sbesbe e ssesseentestesbesbesnessesnens 126
TABLE 9.8-13 - TUNE FREQUENCY VALUEuuttiiiiiiiiiiitiiii e e e e ittt e e s s s s sibb bt e e s s e s s s asbbbbaa s s e s s s asbbb b e s e s e s s s s sabbbeaeeeessssaabbeees 126
TABLE 9.8-14 - S-MODE - INBAND_TUNE_CNF() APDU SYNTAX (RESOURCE TYPE 1 VERSION 3) ...c.veiviriirienieniennne 127
TABLE 9.8-15 - M-MODE - INBAND_TUNE_CNF() APDU SYNTAX (RESOURCE TYPE 1 VERSION 3)couevirierirniennnn 127
TABLE 9.10-1 - SYSTEM TIME SUPPORT RESOURCEcuutiutiitiiitieiieesiee it atesiee st steesbeebessbessbesbeesbeesbeesbessnessnssaeesseennas 128
TABLE 9.10-2 - SYSTEM TIME SUPPORT APDUScotiiiiiiiiie ettt ettt saeenae e 128
TABLE 9.10-3 - TRANSMISSION OF SYSTEM_TIME_INQ ©.eeitttiutteeteeiiaesueessiesssessstesssesssssssssesssssssssesssssssssesssssssssensssnes 128
TABLE 9.10-4 - SYSTEM_TIME APDU ...ttt a et e et et e et e e et e e be e s sbe e e baeeteas 129
TABLE 9.11-1 - MMI SUPPORT RESOURCEceittiitiatiatiaiteatiesteestee bt e see st sieesbeesbeanbeasbeasbesssesbeesbeesbeesbessneaseesaeeseeennas 129
TABLE 9.11-2 - MM SUPPORT APDUS ...ttt ettt be bttt b et e b e et e e be b e e e saeenae e e 130
TABLE 9.11-3 - OPEN_MMI_REQ() «-tevttttesueatesieeseeisetestesuessesueaseaseasseseessessessesseaseessessesesbesaessesseasessesnsessessessessessessenns 130
TABLE 9.11-4 - OPEN_IMMI_CNF 11.utteiutttisteesteeateesstesasteesssaesteaasses s teaassaessteaasses s teaasbee s beeanbee e beeenbaeebeeanbeessbeannsaeenteas 131
TABLE 9.11-5 - CLOSE_ MMI_REQ ...ttiiutttitteitteiieestessteesstessteaasseessteasssasstsaassesasteaassessstseansesssteesnsessssesansenssssssnsensnsens 131
TABLE 9.11-6 - CLOSE_ MMI_CNF ...utiiutiiiteeittesieesstessteessseessteeassesssteeassasasteaassesasteaassessbeeanbessbeeanbaeasbeeanseessbeaansnnenses 132
TABLE 9.12-1 - CABLECARD DEVICE RESOURCES RESOURGCEccittittiuiiiieesieesieasteetesssesseasieesteeseesssessessessieessesnnas 132
TABLE 9.12-2 - CABLECARD RESOURCES SUPPORT APDUScoitiiiiiiitiiiiie ittt 132
TABLE 9.12-3 - STREAM_PROFILE APDU SYNTAX ..utiitiiitiiiitiesiteesstesstee s steeates s teaabessstaaasbaesstaasbaessteeasseesstsesnsessnsnas 133
TABLE 9.12-4 - STREAM_PROFILE_CNF APDU ..ottt sttt st e et et aanbae et 133
TABLE 9.12-5 - PROGRAM_PROFILE APDU ...ttt ittt st a et et et et eabe e ta e e bae e teas 134
TABLE 9.12-6 - PROGRAM_PROFILE_CNF APDU ..ottt sttt st e et e nee et 134
TABLE 9.12-7 - ES_PROFILE APDU SYNTAX .11iitttitttitieiittesiteeateesstessssessstesssessstessssessstssasesssssssssessssssassesssssssssessssees 134
TABLE 9.12-8 - ES_PROFILE_CNF APDU SYNTAX ..tttitieiititiitte ettt sstessstee s stesabe s eeabee s staaanbeesstaasbassstaeaseesstaesnsensssnas 135
TABLE 9.12-9 - REQUEST _PIDS APDUottt ettt sttt et e et et e e ba e et e e be e e taeebeeeteas 135
TABLE 9.12-10 - REQUEST _PIDS_CNF APDU ..ottt ettt sttt sttt et et eabe et e e nbae et 136
TABLE 9.13-1 - CABLECARD COPY PROTECTION RESOURCEcuiiitiiiiiiiiiiie sttt ettt sttt sbe e sne e 136
TABLE 9.14-1 - EXTENDED CHANNEL SUPPORT RESOURGCEcuuiitieitiaiiaitiaieesieesieesteatesssesssasieesteesbessaessnessnessessseannas 138
TABLE 9.14-2 - EXTENDED CHANNEL SUPPORT APDUSoiiiiiiiiiieiieie ettt 138
TABLE 9.14-3 - NEW_FLOW_REQ APDU SYNTAX ...utiitiiiitii ittt ittt sstessstee s stesstes s aasbeesstaaanbesssbaesbasasteeassesssssasnsessssnns 140
TABLE 9.14-4 - NEW_FLOW_CNF APDU SYNTAX ...ttt ititittt it siteessieessiee s siessbes s aasbesssbaaabasssbaasbaesntaeassesssssesnsessnsnas 142
TABLE 9.14-5 - FLAG FIELD DEFINITIONSuttuttttteattattasteassasseesseesteesseaasesssesssssseesssaaseassesssesssessssssssssesssesssssssssssssessnes 143
TABLE 9.14-6 - DELETE_FLOW_REQ APDU SYNTAX.....tiiittiiiieiititsitiesstee s siessies s esates s staaabasssteasbaesstaeasseessssesnsessssnas 144
TABLE 9.14-7 - DELETE_FLOW_CNF APDU SYNTAXtttiitttiiitiiteesieesiteessiesstes s essbeesstaaasbessstaasbaessssesssesssssesnsessssns 144
TABLE 9.14-8 - LOST_FLOW_IND APDU SYNTAX....tttitieiitit ittt sttt sseesstee s steasbes s teasbessstaessbasssteassassstsesssesssssssssessnsns 145
TABLE 9.14-9 - LOST_FLOW_CNF APDU SYNTAX ...0tiitteititiittesitesstessitee s stessies s tasssbeessbaaabassstsssbasastsaasesssssssnsessnsns 145

4/18/13 CablelLabs® Xi

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

TABLE 9.15-1 - GENERIC FEATURE CONTROL RESOURCEccitiiiieitiaieaiesieesieesieesteebessbesssesieesbeesbeessessnesseesseesseennas 148
TABLE 9.15-2 - FEATURE IDSotiiitieittiie ittt ettt ettt sttt etttk he e e bt e bt e m bt e st e b b e eb e e bt e ke e beesb e s aeesaeenneenas 149
TABLE 9.15-3 - GENERIC FEATURE CONTROL APDUSccutiiiiiitieiie ittt 149
TABLE 9.15-4 - FEATURE_LIST_REQ APDU SYNTAXciiitiiiitieiititiitiesiteesstesaies s stesatee s staaasbessstaessbeessteesssessssessnsessssns 150
TABLE 9.15-5 - FEATURE_LIST APDU SYNTAX .1ttttttitieitttiieessteessteesteessteasses s tesabesssbaeassassstsassassssssassesssssssssensnses 150
TABLE 9.15-6 - FEATURE_LIST_CNF APDU SYNTAXtttiittiitieiieesieesitee s siessies s esabes s staasbesssteesbaessbeesseesstaasnsessnsnas 151
TABLE 9.15-7 - FEATURE_LIST_CHANGED APDU SYNTAXtttiitiiiitieiitiessieeesieesseesies s stasassesssteesssessstsesssesssssssssessssns 151
TABLE 9.15-8 - FEATURE_PARAMETERS_REQ APDU SYNTAX ..uttiiiiiiitit st siteesseessiee s siasastes s staessbaesstaeasseesstnesnsesssenas 151
TABLE 9.15-9 - FEATURE_PARAMETERS APDU SYNTAX (TYPE 1 VERSIONS 1-3) ...coiiiiiiiiiiiieniceiie e 152
TABLE 9.15-10 - FEATURE_PARAMETERS APDU SYNTAX (TYPE 1 VERSION 4) ...cuiiiiiiiieiisie e 153
TABLE 9.15-11 - FEATURE PARAMETERS CONFIRM OBJECT SYNTAXttiuttiietiteesteesteatesstessiesiessieestesssessessesssesssesnnes 154
TABLE 9.15-12 - RF_OUTPUT _CHANNEL ...0ettttttiuttessteessteesteesteessseesteesssessteasssesastesassesssssssssesssssssnsesssssssssesssssssnsessnsens 154
TABLE 9.15-13 = P_C_PIN tititttitttitte sttt ssieessteesteessteesstaessbae s teeasbee s teeasbee e s beeaabe e e s £eeaabe e e sbeeanbe e e beeanbe e e beeenbeeebeaanbeeetes 155
TABLE 9.15-14 - P_C_SETTINGS...euttettttisteessteeasieesueeastesssesastssassessstesassessstssassessstesassesssssasessssesansessssssassensssssnnsessnsees 155
TABLE 9.15-15 - PURCHASE _PIN ... utteittiiteeitteaieestesasteessessstessssesataesssesastssassessstesassessssssansessssssnsessssssansessssssnnsessssees 156
TABLE 9.15-16 = TIME_ZONEuttiittteiutieisteesteestessstessstaessseestaeassesssteasssaeasteaassesasteaanseessbeeanbeeebeeanbaeabeeanbeessbeanbenentes 156
TABLE 9.15-17 - DAYLIGHT_SAVINGS (TYPE L VERSION 1) ...ttt ittt ettt bbb 157
TABLE 9.15-18 - DAYLIGHT_SAVINGS (TYPE 1 VERSION 2 AND ABOVE)ceiutitiiuiauieieeniestestestessessesseesessessessessessesneans 157
=T =R B AT K o o 11 /I8 = ST OPR RO 158
TABLE 9.15-20 - LANGUAGEcetttetteteateatteatteateeateesbeasteasbesteesbeesbeesbeaeeaaeeahe e ehe e ebe 2 bt am b e ea b e ebbenb e e nbeenbeesbeesbeaseesbeenaeanis 158
TABLE 9.15-21 - RATING _REGION0ciuttiiutteitteitnesteesieestessstessssessstessssessssssassessstssassessssssansesssssssnsesssssassesssssssnsessnsees 159
TABLE 9.15-22 - RESET _PIN..utiiuttiittesutieisteessteestessssessstsssssessstesassessstesassesastsssssessstssansessssssansesssssssnsesssssassessssssansessnsees 159
TABLE 9.15-23 - CABLE_URLS .. 0tiittiiutititteesteesieesstesstaesssassteesssesasteaasseeasteaassesasteaanseesbeeanbeeesbeeanbaessbeeanbeesbeanbeeetes 160
TABLE 9.15-24 - EA_LOCATION_CODE ...uutiittiittesueeateestesatesasesstsssssessstssassessssssassessssssassesssssssnsessssssssessssssssessnsees 160
TABLE 9.15-25 = WCT ID ettt sttt bt bbb Rt e b e bt e bt e b e b e e b e et e n b e nbesbesbesbeebeene e 161
TABLE 9.15-26 - TURN-ON VIRTUAL CHANNELcttittatiatttstiasteesieesiee et sssesiessseesseanseassesssesssassessseessesssessssssssssesssesnss 161
TABLE 9.15-27 - TERMINAL_ASSOCIATION ...utiiutieitttisiteeteesiesasesstesssessssesasesssssssessssssassesssssssssessssssassessssssansessnsnes 162
TABLE 9.15-28 - COMMON DOWNLOAD GROUP D ASSIGNMENTcuutiiiiiiiieesieestiesteeteasresseesieessesstesssessessssssessseennes 162
TABLE 9.15-29 - ZIP_CODE ...iiiuttiitie ittt iiee st et este et eaba e beeasbe et e e abe e e be e eabe e o2 be e aab e e e ke e an b e e e beeenbe e et e e e nbeeebeeebeeetes 163
TABLE 9.16-1 - GENERIC DIAGNOSTIC SUPPORT RESOURCEcoitiiitiiiiiiiaiee sttt ste ettt sibe st st sbeeste e ssne e sne e 163
TABLE 9.16-2 - GENERIC DIAGNOSTIC SUPPORT APDUSccuiiiiiiiiieitieiie ittt sttt 163
TABLE 9.16-3 - DIAGNOSTIC IDSttitiiiiiiieiiee it stt ettt etttk bt ettt et s e e s be e sbe e bt e st e e e b e eb b e sb e e nbeeebeebeesbeeneesaeesneenas 164
TABLE 9.16-4 - S-MODE - DIAGNOSTIC_REQ APDU SYNTAX (VERSION 2)cviiiieiieieinieiiesiesiesie et 164
TABLE 9.16-5 - M-MODE - DIAGNOSTIC_REQ APDU SYNTAX (VERSION 1) ..ottt 165
TABLE 9.16-6 - S-MODE - DIAGNOSTIC_CNF APDU SYNTAX (TYPE 1, VERSION 2)ocuiiiiiiiiieniiaiieieie e 166
TABLE 9.16-7 - M-MODE - DIAGNOSTIC_CNF APDU SYNTAX (TYPE 2, VERSION 1) ...c.ooiuiiiiiiiieieieie e 167
TABLE 9.16-8 - TABLE STATUS FIELD VALUES.......ciutitiitiaiteatiesteestee sttt st siee it sbeanbeasbessbesssasbeesbeenbeanbessnesseesaeesaeennas 168
TABLE 9.16-9 - MEMORY _REPORT ...eiiutttittteisttessteesstesasteesssessstesassesastesassesastssassessstssassesssssansesssssssssessssssansesssssssnsessssees 168
TABLE 9.16-10 - S-MODE SOFTWARE_VER _REPORTttiitttiiteiteeiteestesssteassesssiessssesssssssssesssssssssesssssssssesssssssssessnsnes 169
TABLE 9.16-11 - M-MODE SOFTWARE_VER_REPORTeeittiitttiteeittesstesastesssesssiesssesssssssssesssssssssesssssssssesssssssssessnsnes 170
TABLE 9.16-12 - S-MODE FIRMWARE_VER _REPORTtttiutttisttesiteiitestesssiesssesssiesssessstssassesssssssssesssssssssesssssssssessnsees 171
TABLE 9.16-13 - M-MODE FIRMWARE_VER_REPORTccitttitttiteeittesstesastesssesssiesssessssssassesssssssssesssssssssesssssssssessnsnes 171
TABLE 9.16-14 - MAC _ADDRESS REPORT .. .utiiutttitttisttesteesiesasesstesasesstsssssessssesassessssssassessssssassessssssassesssssssnessssees 172
TABLE 9.16-15 - FAT _STATUS REPORT ...utiitttiuttesteeasitestessstessssesastessssesastssassessstesassessssssassesssssssssessssssassessssssssessssees 172
TABLE 9.16-16 - FDC _STATUS REPORTeiitttitteitteisteesteeastesasesatessssesstssassessstesasessssssassesssssssssessssssassesssssssnessnsees 173
TABLE 9.16-17 - FDC CENTER FREQUENCY VALUE......utttiiiiiiiiiiiitiii e e iiibtii s e s e s s s sibtbae s s e s s s sabbbas s s e s s s s sabbbasesesssssassbeens 173
TABLE 9.16-18 - CURRENT_CHANNEL _REPORT ...eeiutttiutteeteessieestesstesasessssesasessssesassessssssansesssssssssesssssssssesssssssnsessnsnes 174
TABLE 9.16-19 - S-MODE 1394 PORT _REPORT ...eeiuttiitteitteisieestesatesassesstssassessstesassesssssssssesssssssssesssssssnsesssssssssessnsees 175
TABLE 9.16-20 - M-MODE 1394 PORT_REPORT ..eiuttiitteitteiteesteesstessssessstessssessstessssessssssansesssssssssessssssassesssssssssessssees 175
TABLE 9.16-21 - DVI STATUS REPORT SYNTAXcttittatiaitestiesteesteesteasteasesiessseesseasseassesssesssassesssesssesssessssssssssesssesnns 176
TABLE 9.16-22 - FRAME RATE ASSOCIATED WITH THE VIDEO FORMAT ON THE DVI LINK......ccoiiiiiiiiiiienic e 177
TABLE 9.16-23 - ASPECT RATIO ASSOCIATED WITH THE VIDEO FORMAT ON THE DVI LINK.....ccoooiiiiiiiieiiceceee 177
TABLE 9.16-24 - ECMSTATUS REPORT SYNTAX ..cuttetiautiaiteatiesteesieesteasteasessessssesseaaseassesssesssassssssesssesssessssssssssssssesnnes 178
TABLE 9.16-25 - DOWNSTREAM CENTER FREQUENCY VALUEuuttiiiiiiiiiiiiiiiie e ssibtrie e s e s s s s iabbbas s s e s s s s sabbaas s e e s s saanbens 178
TABLE 9.16-26 - UPSTREAM TRANSMIT CENTER FREQUENCY VALUEccvvtiiiiiiiiiiiitiiie et sitbain s saavees 179

Xii CableLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

TABLE 9.16-27 - HDMI STATUS REPORT SYNTAX ...uiiiiitiieeiitieeeeeiteeeesteeeeaitteeeaeateeesssteeaesateeaesasssssssssssasssssesesnsssssssnnes 179
TABLE 9.16-28 - FRAME RATE ASSOCIATED WITH THE VIDEO FORMAT ON THE HDMI LINKcocoviiiiiiieiiiieccs 180
TABLE 9.16-29 - ASPECT RATIO ASSOCIATED WITH THE VIDEO FORMAT ON THE HDMI LINKcoooiiiiiiiieeciiecees 180
TABLE 9.16-30 - RDC_STATUS _REPORT ..vttiutttiuteessteeasieessessstesasesssssasessssssassessstssassessssssansesssssssnsessssssassessssssssessnsees 181
TABLE 9.16-31 - RDC CENTER FREQUENCY VALUEuuttiiiiiiiiiiititiiie e e ssibttse s e e s s sibtb e e e s e s s s siabbbaas s e s s s s saabbasesesssssaabbenns 182
TABLE 9.16-32 - NET_ADDRESS REPORT ...0eiutttiutttistttisteestesastesasessstesssessssssassessstssassessssssassesssssssssesssssssssessssssssessnsees 182
TABLE 9.16-33 - HOME_NETWORK _REPORT ...ttutteittttisttessteessiessssesastessssesssssssssssstssassesssssansessssessssesssssassesssssssssessnsens 183
TABLE 9.16-34 - HOST_INFORMATION _REPORT ...etiutttiuttessteessieesssesastessssesstesassessstesassesssssansesssssssnsessssssassesssssssssessnsees 184
TABLE 9.17-1 - SPECIFIC APPLICATION SUPPORT RESOURCEcccittiiiiitiieeiitieeeeettteeesteeeesitteeeesttaeessatseassstaeeeannsaeessnnns 186
TABLE 9.17-2 - SPECIFIC APPLICATION SUPPORT APDUS ..ottt ettt sttt e s tae e e e earae e 186
TABLE 9.17-3 - SAS_CONNECT_RQST APDU SYNTAX ..iittiiiieiitieiiiesiteessieaasiessstessbeesstasassesssteesssessssseassesssssssssessnses 186
TABLE 9.17-4 - SAS_CONNECT_CNF APDU SYNTAX ..ttiittiiiieiiteeiiteesitee s sieasstesastesassessstesassessstsasssesssssssssesssssssssessssns 187
TABLE 9.17-5-SAS_DATA RQST APDU SYNTAX ..iiitieiititiiee ettt sitessitesssiessies s essbessstaaasbesssteessasssssesssesssssssssesssses 188
TABLE 9.17-6 - SAS_DATA AV APDU SYNTAX 11iitiiiiieiiie e sitee s steesstee s teasae s eaabes s staaabesssbaesbaeasbaeaseesssseansassnseas 188
TABLE 9.17-7 - SAS_DATA CNF APDU SYNTAX ...ttt itieititiiiteaiteesseesstesssteastes s tesasbessstaaabasastaasbassstseassesssssesnsesssses 189
TABLE 9.17-8 - SAS_SERVER_QUERY APDU SYNTAX ..iittiiiitiititiitiesitee st ssies s eeatee s stasssbas s staassbaessteeasseesstnaanseesnsnas 189
TABLE 9.17-9 - SAS_SERVER_REPLY APDU SYNTAX ..tiiittiititiititiiiiesiteessiesasies s teeasbessstaesssessstsasssasssssssssesssssssssessssns 190
TABLE 9.17-10 - SAS_ASYNC MESSAGE APDU SYNTAX ...iitttititiiiesiteessieessiesssessseessiassssessstessssasssssesssesssssssssessssns 190
TABLE 9.18-1 - HOMING RESOURCEcciuttieeitieteeittte e e ettt e e etteeesettee e s sabeeaeabaeeeaastaeessabesaesbbeeeaassseessssaeessstbeeeaasreeesansns 195
TABLE 9.18-2 - HOMING APDUSottt e e e e et e e e e e at e e e s abe e e e st be e e aaabee e e sabaeaeebbeeeannreeeeaanes 195
TABLE 9.18-3 - OPEN HOMING OBJIECT SYNTAX ...uutitiiitttee ittt e eetteeeestteaeaitteeeaastseesssbeeaesatbeeesasssesssasssasssseesesassessssnses 195
TABLE 9.18-4 - OPEN HOMING REPLY OBUIECT SYNTAX ..uiiiiiittiieiiiieeeiteeeesitteeeeetteeessiteeaesstteeessssssessssssesssssesesasssssssnnes 196
TABLE 9.18-5 - HOMING ACTIVE OBJIECT SYNTAX ...titiiittieeiitieeeeiteeeesteeeeaitteeesastseesssssssessttesesassssssssssasssssesesasssssssnnes 196
TABLE 9.18-6 - HOMING CANCELLED OBJECT SYNTAX . .utiiiiittiieiiitteeiteeeeaitteeesastseesssesaesssteeesasssessssssssssssesesssssssssnnns 196
TABLE 9.18-7 - HOMING COMPLETE OBJECT SYNTAX ... utttiiiittieeiittteeiteeeeaitteeesasteeessteeaesstteeesassssesssssasssssesesassssssnnes 196
TABLE 9.18-8 - FIRMWARE UPGRADE OBIECT SYNTAX . .ueiiiiitiiieiiiiteeiteteesitteeesasteeeasteeaesstteeesassssssssssasssssesesassssessnnes 197
TABLE 9.18-9 - FIRMWARE UPGRADE REPLY OBJECT SYNTAX ...utiiiiiitiieeiitieeeeettteessteeeesitteeessstsesssnnseasssseesesnssessssnnns 198
TABLE 9.18-10 - FIRMWARE UPGRADE COMPLETE OBJECT SYNTAX .. uuttiiiititieeiiieeeiteeeesitteeesssteeessatseasssseeeesasseesssnnns 198
TABLE 9.20-1 - DSG RESOURCEuttiiiiittiiee ittt e eettee e e steeeeastteeeaasteseesabeeaeabaeeeaassseeesabeeaesbeeeeaasssseesasaeaesbbeeeansreeeesnses 199
TABLE 9.20-2 - DSG APDUSoei ittt ettt ettt ettt e et e st e e e be e s beeeabe e e beeabe e s abeeabeeeabeesbeeesbeeebeeesbeeenbeeeteas 199
TABLE 9.20-3 - INQUIRE_DSG_MODE APDU SYNTAX ..iitttiteeiiteeiitiessteessiessstesssessssessstsssssesssssssssesssssssssesssssssssessssees 202
TABLE 9.20-4 - SET_DSG_MODE APDU SYNTAX ..utiittiittiiiteiiteesitaessieessteassesasiesssessstessssesssssssssesssssssssesssssssssessssees 202
TABLE 9.20-5 - SEND_DCD_INFO APDU SYNTAX ...0iitiiitttiiteiieesiesssteeasiessssesssiesssessssssassesssssssssesssssssssesssssssssessssees 204
TABLE 9.20-6 - DSG_DIRECTORY APDU SYNTAX .11t itttitttiitesiteeiieessteessiessstesssiesssessstassssesssssssssesssssssssesssssssssessnsnes 208
TABLE 9.20-7 - ADSG_FILTER SYNTAX...1tiitttitteitttiitesteeaiesasessstesssesastesasssssstesassessssssassesssssssssessssssassessssssanessnsees 210
TABLE 9.20-8 - DSG_MESSAGE APDU SYNTAX 1.iiutitiiieititiiteeasteesstessstesssteassessstesasessstssassessstessssesssssssssesssssssssessssees 211
TABLE 9.20-9 - DSG_ERROR APDWU SYNTAX ...utttitttitieittesiteeasteesstesstessstssasesasteaassessstsaasesssssssssesssssssssesssssssssessnsees 212
TABLE 9.21-1 - HEADEND COMMUNICATION RESOURCE (TYPE 1 VERSION 1) ..c.uciiiiiiieiieiiesieric e 213
TABLE 9.21-2 - HOMING OBUIECTS ... uutiiiiitteiee ittt e eitteeeestteaeatteeeaatteeessabesaeatesaeaassseeasabesaesbeeeeaassseeesssssaesseeeeansseeessnses 213
TABLE 9.21-3 - HOST_RESET_VECTOR (TYPE 1, VERSION 1)itiiuiiieiiesie ettt sttt et 214
TABLE 9.21-4 - HOST_RESET_VECTOR_ACK (TYPE 1, VERSION 1)eiiiiiiiiiiiiiiieiieie ettt 215
TABLE 9.22-1 - HOST ADDRESSABLE PROPERTIES RESOURCEuttiiiitiieeiitieeeeetteeeesieeeesitteeesssseesssnbaeasssseeeesnnseesssnnes 216
TABLE 9.22-2 - HOST ADDRESSABLE PROPERTIES APDUSoiiiiiiii ettt ettt 216
TABLE 9.22-3 - HOST_PROPERTIES_REQ APDU SYNTAXiiiiiiiiitieiitieiitiessieesieessesssteesstasasbassstaesbesssteeateesstsasnsessnsnas 217
TABLE 9.22-4 - HOST_PROPERTIES_REPLY APDU SYNTAXttiiititiitieiiteessiesesiee s stesastee s staeastas s staessteesstseasseesssnesnsensssnas 217
TABLE 9.23-1 - CARD MIB ACCESS RESOURCEuviiiiiiiieeiitieeeeeitee e e steeeesitveeesesteeesssteeaesstbeeesasseesesaseeassstbeeesnsssesssnnns 219
TABLE 9.23-2 - CARD MIB ACCESS APDUS ..ottt ettt ettt e e e st e e e e eat e e e s s aba e e e e bbe e e eeareeeeennes 219
TABLE 9.23-3 - SNMP_REQ APDU SYNTAX ..ttt iutteitttiiee sttt stesatee s tesstesssteaassessteaassessstaaansessstsassesssseeassesssssssnsessnsees 220
TABLE 9.23-4 - SNMP_REPLY APDU SYNTAX ..utttiitiiiiieittesieessiessstesssiesssteaases s teasssessstaaassassstsssnsasssssssssssssssssssessnses 220
TABLE 9.23-5 - GET_ROOTOID_REQ() APDU SYNTAXcitiittiuiatiaieieitesteste it stesieeseeseeseestestesbessesseseessessesaeseessessesseans 220
TABLE 9.23-6 - GET_ROOTOID_REPLY() APDU SYNTAX ...iittitieiieieie it ste et stese e e ste st e sbe e ssesseesestesbeseesaessesnnans 221
TABLE 10.6-1 - FLOW REQUIREMENTS ..iiiiiiiiittttiitieeiseiittbetts e s e s s sabbstesssesssaabbstasssesssassbbbasssesssaabbbasssasssssbbbesssesssssasrrenns 229
TABLE 10.8-1 - S-MODE EXTENDED CHANNEL LINK LAYER PACKET ...vviiiiitiiieiiiie e e cieee et e e e ettee e svae e e s staeeesenree e ennes 230
TABLE 10.8-2 - M-MODE EXTENDED CHANNEL LINK LAYER PACKET ...cciiiitiiie it cieee sttt e ettt e stve e e esnree e 231
TABLE A-1 - HTIML KEYWORD LIST ..ttt iiitttieeiitiie e ettt e e ettt e e ettt e e e ettt e e sateeeeatte e e aeataeeesabaeaessbbeeeaassseeesabeeassssbeseansseeesannns 235

4/18/13 CablelLabs® Xiii

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

TABLE A-2 - CHARACTERSetttittetteeitea it ateaieeattesseaaseasseassesseasbeeabeeabeebeeaeeeRe e ehe e ebe £ bt e mbeea b e ab b e ab e e ebeenbeebeembeeseesaeenneenis 236
TABLE B-1 - ERROR HANDLING......ctttttittiiitittt it e att ettt esbesteesteesteesbeesaesseesseesaeesbe e bt anbeea b e ebeesbeesbeenbeebeesbeaseesbeesbeenis 241
TABLE D.2-1 - CISTPL_LINKTARGET ..ottt ettt sttt bttt 253
TABLE D.2-2 - CISTPL_DEVICE_DA ..ottt bttt bbb 254
TABLE D.2-3 - CISTPL_DEVICE_DCooiiiiteiititeieee ettt ettt et ettt 254
TABLE D.2-4 - CISTPL_VERS L ..ottt et bbb ettt et nn 255
TABLE D.2-5 - CISTPL_MANFIDc.oititiiiiiteiet ettt etk b bbbt r et n e nnns 256
TABLE D.2-6 - CISTPL_CONFIG ..ottt ekttt et 256
TABLE D.2-7 - CCST-CIF ...ttt ettt bbbt b e bbbt bbb n et nn e 257
TABLE D.2-8 - CISTPL_CFTABLE_ENTRY .ottt et 257
TABLE D.2-9 - STCE_EV ..ottt bbb bbbt bbb n e b 259
TABLE D.2-10 - STCE_PD ...ttt etttk b et bbb bbbt b bbbt et r s e b 259
TABLE D.2-11 - CISTPL_END ...tttk h etk bbbtk b et b et b e n et nb s 259
TABLE D.3-1 - CONFIGURATION OPTION REGISTERcctiaitiitiasiiesieesieesteseesieesieesueesbeassessbesssesteesbeesbesssesssesseesasessesnnas 260
TABLE E-1 - DEPRECATED RESOURCE IDENTIFIER VALUES.......ccutiitieitiaitiiesieesieesieeste et sibesibesieesbeesbeesbesseesseesieesneennas 261
TABLE E.1-1 - LOW SPEED COMMUNICATION RESOURCE (VERSION 2)cviitiitiiiieiieieenie et sie st seeie e v sae e 261
TABLE E.1-2 - DEVICE TYPE VALUES......uttittiittittenttestt ettt e stee bt e steesteastesseesaeesheeabe s bt anbeesbeasbesbeesbeenbeebeeseeaseesaeenaeennis 262
TABLE E.1-3 - CABLE RETURN RESOURCE TYPEuiiitiiiiaiiiitiesiie sttt ettt sttt sttt ettt et e beenbeesbeeseesseesneenae e e 262
TABLE E.2-1 - COPY PROTECTION RESOURCE (TYPE 2 VERSION 1) ...cuuiiiiiiiiiiiiiiieie ettt 262
TABLE E.2-2 - CARD’S AUTHENTICATION DATA MESSAGE SYNTAX (TYPE 2 VERSION 1) ...cciuiiiiiiiiieie e 263
TABLE E.2-3 - CP_SYSTEM_ID VALUESeiitttitieitieiieesteesiesstesstesssbaessteaassesasteaassesssbseansesssteesnsessseeasesssssssnsensnsens 264
TABLE E.2-4 - HOST’S AUTHENTICATION DATA MESSAGE SYNTAX (TYPE 2 VERSION 1) ...eoiviiiiiiiiiie e, 264
TABLE E.2-5 - HOST’S REPLY WITH AUTHKEY MESSAGE SYNTAX (TYPE 2 VERSION 1)...ccuiiiiiiiiiiiicie e 265
TABLE E.2-6 - CD_DATA_REQ() CCI SATP TRANSMISSION (TYPE 2 VERSION 1)...ccviiiiiiieiiienieeiieeeie e 266
TABLE E.2-7 - COPY PROTECTION RESOURCE (TYPE 4 VERSION 1) ...coviitiiiiiiiiiiiieie ettt 266
TABLE E.3-1 - SPECIFIC APPLICATION SUPPORT RESOURCEuciitiiitiiitiiiiiee ittt ste ettt sttt e sbeesbe e sieesneennas 267
TABLE E.4-1 -GENERIC IPPV RESOURCEcutiitiiitiatiaie ettt sttt ettt sttt sbe bttt sbe e sbe e beenbeebeesnesseesaeesneenas 268
TABLE E.4-2 - GENERIC IPPV SUPPORTcuttitttitteittett ettt et te ettt e e sie e she e sbe bttt es b e stbesbeesbeenbeebeesnesseesaeesbeanas 268
TABLE E.4-3 - PROGRAM REQUEST OBJECT SYNTAX ..uuutttiiieiiiiiiiitiieeeessiiibstisssesssssbstssssesssassstbesssssssssssssssssssssssssssenes 269
TABLE E.4-4 - PROGRAM CONFIRM OBJIECT SYNTAXuttiuttrtiasteesteesteaseeaeessessseesseaaseassesssessssssesssesssesssessssssssssesssesnnes 270
TABLE E.4-5 - PURCHASE PRICE FOR PROGRAM CONFIRMccitiitiettaittaetaieesieesteasseasesssesssasssesieessesssessssssssssesssesnnes 271
TABLE E.4-6 - PURCHASE REQUEST OBJIECT SYNTAX ..uutttiiieiiiiiiiitiiieeessiiisbstisssesssssstsssssessssssssbssssssssssssssssssssssssssssenes 272
TABLE E.4-7 - PURCHASE CONFIRM OBUIECT SYNTAX ..uttauttittasteesteesteasteaseasessseesseasseassesssesssessesssesssesssesssessssssesssesanes 273
TABLE E.4-8 - STATUS REGISTER FOR PURCHASE CONFIRMctiiitiettaitiiiaieesieesteasseetesssesssessessseessesssesssessesssessseennes 274
TABLE E.4-9 - CANCEL REQUEST OBUIECT SYNTAX ..iiiittttiiieiiiiiititiie e e e s s sibbttie s s e s s sasabtbasssesssasabbbasssesssssabbasssessssssssenns 274
TABLE E.4-10 - CANCEL CONFIRM OBJECT SYNTAX ...tiiuttaitistiesteesteesteaiteaseaieesseesseasseassesssessssssesssesssesssesssssssessesssesnnes 275
TABLE E.4-11 - HISTORY REQUEST OBIECT SYNTAX ..uuuttiiiiiiiiiiiiitiiee e e s s sitbttisssesssssbtbasssesssasabtbasssesssssssbssssssssssssssenes 275
TABLE E.4-12 - HISTORY CONFIRM OBJECT SYNTAX ..cuttiuttitiesteesteesteasteaseesieesseesseasseassesssessssssesssesssesssessssssssssesssesnnes 276
TABLE E.5-1 - GENERIC DIAGNOSTICS SUPPORT RESOURCEcccitieitiaieaiisieesieesieesteetessbesssesieesbeeseessnesnessnesseesneennas 277
TABLE E.5-2 - DIAGNOSTIC IDSeettiteiieiit ettt ettt ettt h ettt ettt he e bt e e bt e bt et e e s e ebb e sb e e s beeebe e beesbeeneesaeenaeenas 277
TABLE E.5-3 - DIAGNOSTIC_CNF APDU SYNTAX (TYPE 1, VERSION 1) ...iiiiiiiiiiiiie it 278
TABLE E.5-4 - MEMORY_REPORT (TYPE 1 VERSION 1) ...titiitiiiiiiieieie ettt sttt bbbttt bbb 278
TABLE E.5-5 - MAC_ADDRESS_REPORT (TYPE L VERSION 1).....ciiiiiiiiiiiiieniesieseeie et sttt sttt 279
TABLE E.5-6 - FDC_STATUS_REPORT (TYPE 1 VERSION 1)...cuiiuiiiiiieiiesiesie sttt sttt et s 280
TABLE E.5-7 - FDC CENTER FREQUENCY VALUEcoicutttiiiii i ettt e e e sttt e e s s s ettt e e s s e s s s s abbbaa s s e s s s s sabbbaae s e e e s s sanbbeees 280
TABLE E.5-8 - 1394 _PORT_REPORT (TYPE 1 VERSION 1) . .iuiitiitiiiiie ettt bbbt 281
TABLE E.6-1 - SYSTEM CONTROL RESOURCEccittitiaitiaitietiesteesiee ittt sie it sttt et es e ssbesbeesbeenbeesbeennesseesaeeseeennas 281
TABLE E.6-2 - HOST_INFO_REQUEST (TYPE 1 VERSION 1) ...ttt ittt sttt s 282
TABLE E.6-3 - CODE VERSION TABLE (TYPE 1 VERSION 2) ...ucuiitieiiiieiieste sttt sttt sbe st e et sbe st snesnesne e 282
TABLE E.6-4 - CODE VERSION TABLE (TYPE 1 VERSION 3) ...ucuiitiiiiiie ettt sttt ettt sttt sbe st b sne e 286
TABLE E.6-5 - HOST_DOWNLOAD_COMMAND (TYPE 1 VERSION 1)....cuiiiiiiiiiiniiiiieiie ettt et 289
TABLE E.7-1 - EXTENDED CHANNEL RESOURCEuceitiautiaitiatiesteesieestee it ssesieesieesbeasbeasbesssesssesseesbeesbesssesssesssssssessesnnas 291
TABLE E.7-2 - NEW_FLOW_REQ APDU (TYPE 1 VERSION 1 AND TYPE 1 VERSION 2)....ccuiiuiriiriiaiiiieie e 291
TABLE E.7-3 - NEW_FLOW_REQ APDU (TYPE 1 VERSION 3 AND TYPE 1 VERSION 4)cuiiiiiiiniiaiieieie e 292
TABLE E.7-4 - NEW_FLOW_CNF APDU (TYPE L VERSION 1)....cuiiiiieiiiiitsie sttt sttt sbe s 293

Xiv CableLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

TABLE E.7-5 - NEW_FLOW_CNF APDU (TYPE 1 VERSIONS 2, 3 & 4) ..ottt 294
TABLE E.7-6 - FLAG FIELD DEFINITIONS.ccuttttittetietire it ssisse st sies et saesre st bt se s bbbt e e sn e snesn e b sne e 295
TABLE E.7-7 - NEW_FLOW_CNF APDU SYNTAX (TYPE 1 VERSION 5.ttt 295
TABLE E.7-8 - FLAG FIELD DEFINITIONS.ccutittittetietite it sse sttt sies et sre st bbb se bbb bbb e sneanesnesnesne e 296
TABLE E.7-9 - LOST_FLOW_IND APDU (TYPE 1 VERSIONS 1,2, 3, 4 AND 5) ..c.ueiiiiiiiiieiie et 297
TABLE E.8-1 - INQUIRE_DSG_MODE APDU SYNTAX (TYPE 1 VERSIONS 2, 3, AND 4)...c.ueiiiiiriiaiieieie e 299
TABLE E.8-2 - SET_DSG_MODE APDU SYNTAX (TYPE 1 VERSIONS 2, 3, AND 4)cuviiiiiiniinienieeiieeeie e 299
TABLE E.8-3-DSG_PACKET_ERROR (TYPE L VERSION 2) ..cuiiuiiiiiieitisieste st stesieeeeseesie st bbb eenee st sbeseesaessesnens 303
TABLE E.8-4 - DSG_ERROR APDU SYNTAX (TYPE 1 VERSION 3 AND TYPE 1 VERSION 4).....ccuiiiiiiiiinienie e 303
TABLE E.8-5 - CONFIGURE ADVANCED DSG OBJECT SYNTAX (TYPE 1 VERSION 3 AND TYPE 1 VERSION 4) 305
TABLE E.8-6 - DSG MESSAGE OBJECT SYNTAX (TYPE 1 VERSION 3) ...cuviitiiiiiiiiiieie ettt s 307
TABLE E.8-7 - DSG MESSAGE OBJECT SYNTAX (TYPE L VERSION 4) ...ttt 308
TABLE E.8-8 - SEND_DCD_INFO OBJECT SYNTAX (TYPE 1 VERSION 3 AND TYPE 1 VERSION 4)....couviiiiiiierinnienene 310
Figures
FIGURE 5.2-1 - CARD INTERFACES.......eitttiteiteeisesresreeessessesessesneses st ssese s s se s et nn e s sne e nr e enne e senre e esennenn e nnns 15
FIGURE 5.2-2 - TRANSPORT STREAM INTERFACE LAYERScoitiiiiiiriieiniiise e 16
FIGURE 5.2-3 - COMMAND INTERFACE LAYERS.......cotiiiiiiiiisiiise s 16
FIGURE 5.5-1 - SYSTEM WITH ONE-WAY NETWORK.......certiueiuirriieirirmiesenrisessesneessesneessesnesessesnessesesnessssesnessesesnessesesnens 18
FIGURE 5.6-1 - SYSTEM WITH TWO-WAY NETWORKcciviuiitiiriiiiiinmiesiesriisse s sne e e sne e ssesesnesnesesnens 19
FIGURE 5.7-1 - SYSTEM WITH DOCSIS TWO-WAY NETWORKcctiviiiiirriiaiinmiisiesreiesesneseee e snens 20
FIGURE 5.8-1 - SYSTEM WITH SEB TWO-WAY NETWORKccitiuviiirmiinierriisesreesesneesse s snesnesesnens 21
FIGURE 5.9-1 - HOST AND M-CARD DEVICE BLOCK DIAGRAM EXAMPLEcciiiimiiiiireieenreie e 22
FIGURE 5.11-1 - CABLECARD OUT-OF-BAND INTERFACEccviuvitiiriiaienriise e 24
FIGURE 5.11-2 - M-MODE: CHI DIAGRAMoviiiiiiiiiiitiirie st nn e 25
FIGURE 5.11-3 - DSG PACKET FORMAT ACROSS CARD INTERFACEcoviiiuiriieienne e 27
FIGURE 5.11-4 - S-MODE: CHI DIAGRAM ..ottt nn e 28
FIGURE 7.3-1 - TIMING RELATIONSHIPS FOR TRANSPORT STREAM INTERFACE SIGNALSc.ocoviiriiainreenrenre s 34
FIGURE 7.3-2 - CARD TYPE DETECTION SIGNALSccuviuiriieitimieestesneessesresessesneessesne s sne e snese e sne s e s sesesnesnesesnens 39
FIGURE 7.3-3 - CIMIP DIAGRAM ...ttt ettt nn et n e nn e n e nn e nnns 41
FIGURE 7.3-4 - M-MODE MPEG TRANSPORT STREAM PRE-HEADER.........ccocctiriiiiiriieicnree e 42
FIGURE 7.3-5 - CRC POLYNOMIAL ..ottt sn st n et n e nn e n e nnenn e nnn 42
FIGURE 7.4-1 - CABLECARD DEVICE OUTPUT TIMING DIAGRAMccciiriiiiiiiriisinni e 50
FIGURE 7.4-2 - CABLECARD DEVICE INPUT TIMING DIAGRAMcviuiiiiiriiiiiriiscsne e 50
FIGURE 7.4-3 - M-CARD POWER-ON AND RESET TIMING DIAGRAMoeoviiiriieiiriieinreeesrere e 51
FIGURE 7.4-4 - M-MODE SERIAL INTERFACE TIMING DIAGRAMcooviiitiiiiniiisiire e 54
FIGURE 7.6-1 - MODEM IN-THE-CARD SYSTEM OVERVIEWceviiiriiiiiriisnesrieeeesne e sne e snens 58
FIGURE 7.6-2 - MODEM IN-THE-HOST SYSTEM VIEWoviuiiiiiiiiiiiriesenreese e 58
FIGURE 7.6-3 - MAP OF HARDWARE INTERFACE REGISTERS.....ccuvittiriiiienriinesreese e 59
FIGURE 7.6-4 - CABLECARD DEVICE INTERRUPT LOGICAL OPERATIONcutiriuiiiinriiaienreieienrene e snens 60
FIGURE 7.6-5 - CARD RS OPERATIONc.viuiiiiiriiiitirieessesresessesne s sn e nne st n e r e nn e n e nnenn e nnns 64
FIGURE 7.6-6 - CABLECARD PERSONALITY CHANGE SEQUENCEccotitiuiiieriieiesnersse s 67
FIGURE 7.6-7 - M-MODE SERIAL INTERFACE PROTOCOL DIAGRAM ..ottt 71
FIGURE 7.7-1 - LAYOUT OF LINK PROTOCOL DATA UNIT.....oiiiiiiiiiriisinres e 72
FIGURE 7.8-1 - STATE TRANSITION DIAGRAM - HOST SIDE OF THE TRANSPORT PROTOCOLcvvvevearenreenrenre s 75
FIGURE 7.8-2 - STATE TRANSITION DIAGRAM - CARD SIDE OF THE TRANSPORT PROTOCOL......cvcvirireierrereienrenrenennens 76
FIGURE 7.8-3 - OBJECT TRANSFER SEQUENCE - TRANSPORT PROTOCOL......ccviviiiiirriniaiinreieesreie e 77
FIGURE 7.8-4 - C_TPDU STRUCTUREceutitiitiiiitiriiesienneesie s sr e sne s n e nn e nne e nnns 77
FIGURE 7.8-5 - R_TPDU STRUCTUREceutitiitiiiitiriiesie s sne et ne e nn e nnn 78
FIGURE 7.8-6 - CREATE_T_C STRUCTURE.......cceitititiieirenrisestesneiesiesnee s sneses s sne st sne e sre e sne e sne e nne e nnins 79
FIGURE 7.8-7 - C_T_C_REPLY STRUCTUREccvittiriieitermisesresnieessesneesse s s s sne e sne e snessesesnesesesnessasesnns 80
FIGURE 7.8-8 - DELETE_T_C STRUCTUREecviutitiriiiirisrisesse s sneses e sne st sne e sne e nne e sne e snenne e nnns 80

4/18/13 CablelLabs® XV

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

FIGURE 7.8-9 - D_T_C _REPLY STRUCTUREctitttiititititasttessieeastesssteaassesastsssseesssssassssstssassssssssssssesssssssnsesssssssnsessssnes 81
FIGURE 7.8-10 - REQUEST T _C STRUCTURE......ccttttitttitttistttssiteestesssteeassessstesaseessteessessssseassesssssasssesssssssnsenssssssssensssnes 81
FIGURE 7.8-11 - REQUEST T _C STRUCTURE.......ctttiitttiittistttssiteestesssieaassessstesaseesstessssesstseassesssssasssesssssssnsesssssssssensssnes 82
FIGURE 7.8-12 - T_C_ERROR STRUCTUREcutttitttiitititteastesssieeasiesasieessssssstssssessstsssssssssssesssssssssssssesssssssnsessssssassensssnes 82
FIGURE 7.8-13 - SEND DATA COMMAND/ RESPONSE PAIRccviiiitiiiitieeeiee ettt st eeete e stveeetee s steeesbeesstaesbeessbaeanneeesreas 83
FIGURE 7.8-14 - RECEIVE DATA COMMAND/ RESPONSE PAIRccciiiitiiiitie it ceiee ettt ettt ettt et staeeebee s sbaeenaneenanas 83
FIGURE 9.1-1 - SPDU STRUCTUREcutttieiitit i e ittee e sttt e e eettee e e stteeeaaateeeeaatseeessabeeaaasteeeeabsaeesabbeeeaasteeeessseeesasbeeeaasteeeesnnes 87
FIGURE 9.1-2 - OBJECT TRANSFER SEQUENCE - TRANSPORT PROTOCOLccccutiiiiieeiiiiitieiie e e e e s sibbeseee e s s s siabassessesssans 89
FIGURE 9.3-1 - APDU STRUCTURE.......uuttiiiititieitiee e ettt e e eettee e e stbeeeaatteeesatseeessabeeaaasteeeeaabseeesabbeeaaasbseeesbeseesasbeeeaasseeeesnses 93
FIGURE 9.3-2 - PRIMITIVE TAG CODING....cccitutiiitite e ittt e eetteeeesteeeeatteeeaetseeessabeeaaasteeesaaseseesssbeeaaastessssassseesasseeesassesessnnes 95
FIGURE 9.7-1 - PROGRAM INDEX TABLE L....oiiiiiiiiiiiitiie ettt e ettt e e ettt e e e atee e e s bt e e e e eate e e e sabaeaesntaeeesaeaeessaneeaeansaeeens 115
FIGURE 9.7-2 - PROGRAM INDEX TABLE 2....oiiiiiiuiie e ittt e e ettt e ettt e e s ettt e e e ette e e e sataeaestteesaasteeasssbasaesnteeeesassseessabeeaeasseeeens 115
FIGURE 9.7-3 - PROGRAM INDEX TABLE 3. iitiii ettt e ettt ettt e e sttt e e e ettt e e e satae e e s tbe e e aeatee e e sabaeaeantaeeesaasseeesnbeeaeansaeeens 116
FIGURE 9.15-1 - GENERIC FEATURE LIST EXCHANGEccctitiiitiie e ittt e eetee e e etee e e s stte e e eettee e e snbeeaestaeeeseaesesssnneeeeansaeeeans 146
FIGURE 9.15-2 - CARD FEATURE LIST CHANGEceiiittiieiiiiteeiittee e s ittt e e e ettee e e staeaesstbeeeaasteeaessbeeaeataeeesassseesssbeeaeaseseens 146
FIGURE 9.15-3 - HOST FEATURE LIST CHANGEcciiittiieiiiit e etiee e ettt e e e ettt e e e etaeaesstbeeeaatteeessabeeaesteeeesaseseessnteeaeaseeeeans 147
FIGURE 9.15-4 - HOST TO CABLECARD DEVICE FEATURE PARAMETERSuvtieiitiiieeetieeecieeeeentieeeeeaseeessnneeeesnsneeeens 147
FIGURE 9.15-5 - HOST PARAMETER UPDATEcuttiiiiitiieiiiieeeettee e s ittt e e estteeesstaeaesstbeeeaastsessssbasaeastaeeesassssesssseeasasseseeans 147
FIGURE 9.15-6 - HEADEND TO HOST FEATURE PARAMETERScceiitiiieiiiieeeitteeesitteeeeetteeessateeaestaeeesssnsesssnseessaseneeans 148
FIGURE 9.17-1 - SPECIFIC APPLICATION SUPPORT CONNECTION SEQUENCEuuuiiiiiiiiiiiieiiieeeesiiiirieee s e s ssiisnesesesssans 185
FIGURE 9.17-2 - SPECIFIC APPLICATION SUPPORT ALTERNATE CONNECTION SEQUENCEcoiitiriiieieeiiiiiiiiee e e 185
FIGURE 9.18-1 - FIRMWARE UPGRADE FLOWGCHARTccciiititieitteeeiitteeeeeteeeeetteaesstteeeaasseeesssbesassteseesassssssssneeasasseseeans 194
FIGURE 9.20-1 - SAMPLE ADVANCED MODE MESSAGE FLOWoiiiitiiiiiiiie e ctiee ettt ee e etee e e ntve e s eara e e sane e e e ataeeeens 201
FIGURE 9.20-2 - UCID FLOW EXAMPLE FROM HOST PERSPECTIVEccciitiiiiitieeeiitieeeeetteeeesteeeesteeeeseaseeessnneesssseeeeens 205
FIGURE 9.20-3 - VCT _ID FLOW FROM HOST PERSPECTIVE......uciiittiiiieiieeiieesteesiaessseesiessssessssassnsessssnssssessnssssssessnes 206
FIGURE 9.22-1 - HOST ADDRESSABLE PROPERTIES APDU EXCHANGEcciitiiieiitiieeeetie e e eteeeeeetie e esaree e sveeaesnaae e 216
FIGURE 9.23-1 - CARD MIB ACCESS APDU EXCHANGEcccttii ettt e ettt ettt e ettt e e vee e e s tae e e e eaae e e s sabeeaeataeeeens 219
FIGURE 10.3-1 - FLOW EXAMPLES - QPSK IMODEM CASE.......utiiiuiiiiieiiieiieesiessiessiesstassvesssaesnsesssassnsessnsnssnsessnes 224
FIGURE 10.4-1 - FLOW EXAMPLES - ECM CASE ADVANCED INDIRECT MODE-.........c.ccciiiiiiiiiiiee et e e eeieee e svee e iae e 225
FIGURE 10.4-2 - FLOW EXAMPLES - ECM CASE ADVANCED DIRECT MODEcoiiiiieiiiiic ettt e 226
FIGURE 10.5-1 - FLOW EXAMPLES - SEB CASE ADVANCED INDIRECT IMODE........ccucieiiitiiieiiiee et e e et siee e vae e 227
FIGURE 10.5-2 - FLOW EXAMPLES - SEB CASE ADVANCED DIRECT MODE........c.coiiiiieiiiiicecieee ettt e iae e 228
FIGURE B-1 - ERROR DISPLAYuttiiiiittiieiiitie e e ettt e e e ettt e e e ettt e e satteeeaitteeeaasteeeesabaeaesbbeeeaasseeeeasbaeaeanteeeesassseeessteeeeasseeeens 250
FIGURE B-2 - ERROR CODE 161-64 DISPLAYuuuiiiiitiiieeeitie e e eittee e eetie e e e ettt e e e etaeaesetteeeaastaeassabaeaestaeeeaassseessnbeeaeaseeeens 251
FIGURE C-1 - 8 BIT CRC GENERATOR/CHECKER MODELuvviivieiteeiteeeteesitessressiteesssesssessssesssesssessssessssessnsesssessnns 252
FIGURE E.8-1 - DSG MODE IMESSAGE FLOW........uuiiiiitiiieiiiit e etiee ettt e e ettt e et e e st e e e e ette e e e sateeaeantbeeeseaseeessabeeeeanseeeeans 298
FIGURE E.8-2 - SAMPLE ADVANCED MODE IMESSAGE FLOW.ccciiiiieiiititieiiieeesitieeeeettee e e siveeeesntae e e seaeeeessnbeeaesnsaeeeens 302

XVi CableLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

1 SCOPE

This specification defines the normative characteristics for the interface between a security module owned and
distributed by cable operators and commercially available consumer receivers and set-top terminals, “Host Devices”,
that are used to access multi-channel television programming delivered on North American cable systems. Some
examples of the Host devices could be a set-top box, a television, a VCR, etc. In some cases the local cable operator
may optionally choose to supply this Host device in addition to the security module. In order to receive scrambled
cable services, the Host would require this security module, called a CableCARD™ device, to be inserted and
authorized to receive services. This CableCARD device, previously identified as a Point of Deployment (POD)
module, provides the conditional access operation and the network connectivity for the Host.

This CableCARD device-Host Interface (CHI) specification defines the interface between the Host device (Host) and
the CableCARD device (Card).

There are currently two modes of operation in which the Host and the Card can operate. The Single-Stream
CableCARD device (S-CARD) is the first generation security module that can only operate in the Single-Stream
Mode (S-Mode), and the Multi-Stream CableCARD device (M-CARD), a second-generation variant, is capable of
operation in Multi-Stream Mode (M-Mode), or in Single-Stream Mode (S-Mode), based on the Host and its
available functionality.

This document defines the interface for both the S-CARD and the M-CARD and the different operating modes. The
M-CARD, when operating in S-Mode, is backward compatible with the Single-Stream CableCARD Host Interface as
previously defined via [SCTE28], the Host-POD Interface Standard, and [SCTE41], the POD Copy Protection
System. When the M-CARD is running in M-Mode, functionality to support multiple program decryption from
multiple transport streams is added. One application for the M-CARD could be a Host device with multiple tuners
and QAM demodulators.

While analog television channels may be tuned, only digital television channels will be passed through the Card for
descrambling of authorized conditional access channels, and passed back to the Host. The Card will not only provide
the conditional access decryption of the digital television channel, but MAY also provide the network interface
between the Host and the cable system.

This document is a compilation of the specifications, standards, and related text from the OpenCable Specification
CableCARD Interface documents, single stream and multi-stream, OC-SP-CC-IF and OC-SP-MC-IF, as well as the
[SCTE28] documents. For the text that was extracted from the [SCTE28] document, in all cases, the terms “POD”
and “POD module” were replaced with the terms “Card” and “CableCARD device”.

1.1 Introduction and Overview

This specification defines the characteristics and normative specifications for the interface between the Card device
and the Host device. This specification describes the interface for both the Single Stream Card and the Multi-Stream
Card.

e Single Stream Card (S-CARD) for use with or between Cards and Hosts capable only of processing a single
program on the interface is said to be operating in Single Stream Mode (S-Mode).

e Multi-Stream Card (M-CARD) for use between a Card and Host both capable of processing multiple
simultaneous programs on the interface is said to be operating in Multi-Stream Mode (M-Mode). The M-CARD,
when instructed to do so by the Host, can operate in S-Mode. The M-CARD can only operate in either M-Mode
or S-Mode, not both.

This specification supports a variety of conditional access scrambling systems. Entitlement management messages
(EMMs) and Entitlement Control Messages (ECMs) across the interface for such scrambling systems are carried in
the cable out-of-band channel as defined by [SCTE55-2], [SCTE55-1], and the DOCSIS® Set-top Gateway
Specification [DSG].

4/18/13 CablelLabs® 1

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

The interface will support Emergency Alert messages transmitted over the out-of-band channel to the Card which
will deliver the message to the Host using the format defined in [J042].

This specification defines, sometimes by reference, the physical interface, signal timing, link interface, and
application interface for the Card-Host interface (CHI).

1.2 Historical Perspective (Informative)

Portions of this specification have origins in EIA-679, the National Renewable Security Standard, which was initially
adopted in September 1998. Part B of that standard uses the same physical size, shape and connector of the computer
industry PCMCIA card defined elsewhere, and defines the interface protocols and stack. Part B of that standard was
adopted by SCTE DVS.

Further extensions and modifications of EIA-679 led to the adoption of EIA-679-B in 2000. The EIA-679 standard
was developed substantially by the EIA/NCTA Joint Engineering Committee (JEC) National Renewable Security
Standard (NRSS) Subcommittee, and was a joint work of NCTA and CEMA Technology & Standards.

The M-Mode specification has its origin in [SCTE28], where the original version of the Card provided only enough
bandwidth for a S-Mode. As DVRs, picture-in-picture, and other M-Mode features were developed, it was realized

that the original S-Mode had inadequate bandwidth for some of these features, and could not grow to support multi-
tuner gateway scenarios.

A M-Mode provides the higher transport data throughput rates that would be required to support future features, such
as multiple-tuner Hosts, Hosts with DVRs, Hosts with picture-in-picture capability, and future extensions of existing
conditional access functions to include Digital Rights Management.

This specification document is based on and conforms to much of the technical content as found in [SCTE28].

1.3 Requirements (Conformance Notation)

Throughout this document, the words that are used to define the significance of particular requirements are
capitalized. These words are:

“SHALL” This word means that the item is an absolute requirement of this specification.
“SHALL NOT” This phrase means that the item is an absolute prohibition of this specification.
“SHOULD” This word means that there may exist valid reasons in particular circumstances to

ignore this item, but the full implications should be understood and the case
carefully weighed before choosing a different course.

“SHOULD NOT” This phrase means that there may exist valid reasons in particular circumstances
when the listed behavior is acceptable or even useful, but the full implications
should be understood and the case carefully weighed before implementing any
behavior described with this label.

“MAY” This word means that this item is truly optional. One vendor may choose to include
the item because a particular marketplace requires it or because it enhances the
product, for example; another vendor may omit the same item.

2 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

1.4 Numerical

In most cases all numbers without a prefix are base 10 (decimal). The following prefixes are to be used to designate

different bases.

Table 1.4-1 - Numerical Representation

Prefix/Suffix Base Name
2 Binary
10 Decimal
0x 16 Hexadecimal
4/18/13 CableLabs®

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

2 REFERENCES

The following specifications and standards contain provisions that, through reference in this text, constitute
normative provisions of this specification. At the time of publication, the editions indicated are current.

In order to claim compliance with this specification, it is necessary to conform to the following standards and other
works as indicated, in addition to the other requirements of this specification. Notwithstanding, intellectual property
rights may be required to use or implement such normative references.

All references are subject to revision, and parties to agreement based on this specification are encouraged to
investigate the possibility of applying the most recent editions of the documents listed below.

References are either specific (identified by date of publication, edition number, version number, etc.) or non-
specific:

e For a specific reference, subsequent revisions do not apply.
e For a non-specific, non-Bundle reference, the latest version applies.

e For non-specific CableLabs references that are part of the [OC-BUNDLE], the versions mandated in a particular
Bundle apply.

2.1 Normative References

[CCCP] CableCARD Copy Protection 2.0 Specification, OC-SP-CCCP2.0, Cable Television
Laboratories, Inc. Referenced in [OC-BUNDLE].

[CDL] Common Download 2.0, OC-SP-CDL2.0, Cable Television Laboratories, Inc. Referenced in
[OC-BUNDLE].

[DOCSIS2.0] Data-Over-Cable Service Interface Specifications, DOCSIS 2.0, Radio Frequency Interface
Specification, CM-SP-RFIv2.0-C02-090422, April 22, 2009, Cable Television Laboratories,
Inc.

[DSG] DOCSIS Set-top Gateway (DSG) Interface Specification, CM-SP-DSG-123-130404, April 4,
2013, Cable Television Laboratories, Inc.

[HOST] OpenCable Host Device 2.1 Core Functional Requirements, OC-SP-HOST2.1, Cable
Television Laboratories, Inc. Referenced in [OC-BUNDLE].

[1ISO10646-1] ISO/IEC 10646-1: 1993 Information technology - Universal Multiple-Octet Coded Character
Set (UCS) - Part 1: Architecture and Basic Multilingual Plane.

[1SO13818-1] ISO/IEC 13818-1 Generic Coding of Moving Pictures and Associated Audio: Systems.

[1SO13818-6] ISO/IEC 13818-6 Op Cit, Extensions for DSM-CC.

[1SO13818-9] ISO/IEC 13818-9 Extension for real time interface for systems decoders.

[1SO639-1] ISO 639-1: 2002 Codes for the representation of names of Languages - Part 1: Alpha-2 code.

[1SO639-2] ISO 639-2: 1998 Codes for the representation of names of Languages - Part 2: Alpha-3 code.

[1SO8825] ISO 8825: 1987 Open Systems Interconnection- Specification of basic encoding rules for
Abstract Syntax Notation One (ASN.1)

[1SO8859-1] ISO 8859-1: 1998 Information technology, 8-bit single-byte coded graphic character sets, Part
1: Latin alphabet No. 1.

[J042] American National Standard, J-STD-042-A-2007, Emergency Alert Message for Cable (SCTE

18 and EIA/CEA 814).

4 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

[OC-BUNDLE]

OpenCable Bundle Requirements, OC-SP-BUNDLE. See Section 2.3.1 to acquire this
specification.

[OC-SEC] OpenCable System Security Specification, OC-SP-SEC, Cable Television Laboratories, Inc.
Referenced in [OC-BUNDLE].

[OCAP] OpenCable Application Platform (OCAP), OC-SP-OCAP, Cable Television Laboratories, Inc.
Referenced in [OC-BUNDLE].

[PCMCIAZ?] PCMCIA PC Card Standard Volume 2 Release 8.0, April 2001 Electrical Specification.

[PCMCIA3] PCMCIA PC Card Standard Volume 3 Release 8.0, April 2001 Physical Specification.

[PCMCIAA4] PCMCIA PC Card Standard Volume 4 Release 8.0, April 2001 Metaformat Specification.

[RFC1901] IETF RFC 1901, J. Case, K. McCloghrie, M. Rose, S. Waldbusser, "Introduction to
Community-based SNMPv2", January 1996.

[RFC1902] IETF RFC 1902, J. Case, K. McCloghrie, M. Rose, S. Waldbusser, "Structure of Management
Information for Version 2 of the Simple Network Management Protocol (SNMPv2)", January
1996.

[RFC2131] IETF RFC 2131, R. Droms, "Dynamic Host Configuration Protocol”, March 1997.

[RFC2132] IETF RFC 2132, DHCP Options and BOOTP Vendor Extensions, March 1997.

[RFC2396] IETF RFC 2396, T. Berners-Lee, R. Fielding, and L. Masinter, "Uniform Resource Identifier
(URI): Generic Syntax", August 1998.

[RFC3415] IETF RFC 3415, B. Wijnen, R. Presuhn, K. McCloghrie, "View-based Access Control Model
(VACM) for the Simple Network Management Protocol (SNMP"), December 2002.

[SCTE23-2] ANSI/SCTE 23-2 2012, DOCSIS 1.1 Part 2 Baseline Privacy Interface Plus.

[SCTE28] ANSI/SCTE 28 2007, Host POD Interface Standard.

[SCTEA41] ANSI/SCTE 41 2004, POD Copy Protection System.

[SCTES5-1] ANSI/SCTE 55-1 2002, Digital Broadband Delivery System: Out Of Band Transport Part 1:
Mode A.

[SCTES5-2] ANSI/SCTE 55-2 2002, Digital Broadband Delivery System: Out Of Band Transport Part 2:
Mode B.

[SCTE65] ANSI/SCTE 65 2002, Service Information Delivered Out Of Band.

[SCTESO] ANSI/SCTE 80 2002, In-Band Data Broadcast Standard including Out-of-Band

Announcements.

2.2 Informative References
[CHILA] CableLabs CableCARD-Host Interface License Agreement.

[NRSSB] CEA-679-C Part B, National Renewable Security Standard (July 2005). A joint work of NCTA
and CEMA Technology and Standards.

2.3 Reference Acquisition

2.3.1 OpenCable Bundle Requirements

The OpenCable Bundle Requirements specification [OC-BUNDLE] indicates the set of CableLabs specifications
required for the implementation of the OpenCable Bundle. The version number of [OC-BUNDLE] corresponds to
the release number of the OpenCable Bundle that it describes. One or more versions of [OC-BUNDLE] reference

4/18/13 CablelLabs® 5

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

this specification. Current and past versions of [OC-BUNDLE] may be obtained from CableLabs at
http://www.cablelabs.com/opencable/specifications.

2.3.2 Other References

CableLabs Specifications and License Agreements

Cable Television Laboratories, Inc. 858 Coal Creek Circle, Louisville, CO 80027;
Telephone: +1-303-661-9100; Internet: http://www.cablelabs.com/

ISO/IEC Specifications

ISO Central Secretariat: International Organization for Standardization (1SO), 1, rue de Varembé, Case postale
56, CH-1211 Geneva 20, Switzerland; Internet: http://www.iso.ch/

SCTE Specifications

SCTE - Society of Cable Telecommunications Engineers Inc., 140 Philips Road, Exton, PA 19341;
Telephone: +1-610-363-6888 / +1-800-542-5040; Fax: +1-610-363-5898; Internet: http://www.scte.org/

ANSI/EIA Standards

American National Standards Institute, Customer Service, 11 West 42" Street, New York, NY 10036;
Telephone +1-212-642-4900; Facsimile +1-212-302-1286; E-mail: sales@ansi.org; URL: http://www.ansi.org

EIA Standards: United States of America

Global Engineering Documents, World Headquarters, 15 Inverness Way East, Englewood, CO USA 80112-
5776; Telephone: +1-800-854-7179; Facsimile: +1-303-397-2740; E-mail: global@ihs.com; URL:
<http://global.ihs.com>

Internet Specifications

The Internet Engineering Task Force, IETF Secretariat, c/o Corporation for National Research Initiatives, 1895
Preston White Drive, Suite 100, Reston, VA 20101-5434; Telephone: +1-703-620-8990; Facsimile: +1-703-
620-9071; E-mail: ietf-secretariat@ietf.org; URL.: http://mwww.ietf.org/rfc

CablelLabs® 4/18/13

http://www.cablelabs.com/opencable/specifications
http://www.cablelabs.com/
http://www.iso.ch/
http://www.scte.org/
http://www.ansi.org/
http://global.ihs.com/
http://www.ietf.org/rfc

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

3 TERMS AND DEFINITIONS

This specification uses the following terms:

American Standard Code for
Information Interchange

Application Protocol Data Unit
Application Program Interface

CableCARD™ device

Card
Card Information Structure

Command Channel

Conditional Access and
encryption

Conditional Access System
CPU Interface

Data Channel
DOCSIS Set-top Gateway

Downstream
DSG Advanced Mode

DSG SEB Client

DSG SEB Server

DSG Tunnel

Dynamic Host Configuration
Protocol

eCM

Encryption Mode Indicator

Entitlement Management
Message

Extended Application
Information Table

Internationally recognized method for the binary representation of text.

A common structure to send application data between the Card and Host.

The software interface to system services or software libraries. An API can
consist of classes, function calls, subroutine calls, descriptive tags, etc.

A PCMCIA card distributed by cable providers and inserted into a Host
device to enable premium services in compliance with the OpenCable
specifications, also called “Card” and “Point of Deployment” (POD) module.

CableCARD device.

Low-level configuration information contained in the Card’s Attribute
Memory.

Also identified as Data Channel.

A system that provides selective access to programming to individual
customers.

Secures delivery of cable services to the Card.

The logical interface between the Card and the Host comprised of the Data
and Extended communications channels.

Also identified as Command Channel.

A method of using DOCSIS protocols to support a one-way out-of-band
communication path.

Transmission from headend to Host.

Also known as Advanced DSG (ADSG). Operation with the DCD message.
Address assignment is dynamic. The DSG Tunnel Address is determined by
the DSG Agent and learned by the DSG Client through the DSG Address
Table in the DCD message.

DSG capable device that cannot establish a DOCSIS upstream connection,
which therefore uses a DSG SEB Server to obtain DOCSIS interactive
capabilities.

DSG capable device that provides DOCSIS interactive capabilities to DSG
SEB Clients residing on a shared home network interface, where the services
include exposing of the DSG SEB Server’s eCM such that the DSG SEB
Client is able to acquire IP connectivity by way of the DSG SEB Server.

A single instance of a DSG Rule within a DCD message.
An Internet standard for assigning IP addresses dynamically to IP hosts.

A DOCSIS Cable Modem that has been embedded into a Set-top/Host device
and includes DSG functionality.

Defines the copy protection mode for digital outputs.
A conditional access control message to a Card.

Used for launching and managing the lifecycle of unbound applications for
OCAP.

4/18/13

CablelLabs® 7

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Extended Text Table

Forward Application
Transport

Forward Data Channel
Gapped Clock

Headend

High-Z
Host

HTTP
Hypertext Markup Language

Inband
Internet Protocol
IP datagram

IP packet

IP Unicast

IP Multicast

Local Transport Stream 1D
LSB

M-CARD

M-Host

M-Mode

Model ID

MPEG

MPEG-2 Video

An MPEG 2 table contained in the Program and System Information Protocol
(“PSIP”), which provides detailed descriptions of virtual channels and events.

A data channel carried from the headend to the set-top or Host device in a
modulated channel at a rate of 27 or 36 Mbps. MPEG-2 transport is used to
multiplex video, audio, and data into the FAT channel.

An out-of-band (“OOB”) data channel from the headend to the Host.

A periodic signal in which some transitions are omitted creating gaps in a
clock pattern.

The control center of a cable television system, where incoming signals are
amplified, converted, processed and combined into a common cable along
with any original cable casting, for transmission to subscribers. The System
usually includes antennas, preamplifiers, frequency converters, demodulators,
modulators, processors and other related equipment.

Greater than 100K Ohm resistance to power or to ground.

The consumer device used to access and navigate cable content. Typically a
digital TV or set-top DTV receiver, further defined in [HOST].

The transport layer for HTML documents over the Internet Protocol (“IP”).

A presentation language for the display of multiple media contents, typically
used on the Internet.

Within the main Forward Applications Transport channel.

The internet protocol provides for transmitting blocks of data called
datagrams from sources to destinations, where sources and destinations are
hosts identified by fixed length addresses.

An Internet Protocol datagram, which is either sent in a single MAC frame or
may be fragmented and transmitted across multiple MAC frames.

The portion of an Internet Protocol datagram inserted into or extracted from a
MAC frame. If an IP datagram has been fragmented, then each of the
fragments is an IP packet. If an IP datagram has not been fragmented, then the
entire datagram is in a single IP packet.

Point-to-Point Internet Protocol datagram service.

Point to multi-point Internet Protocol datagram service.

Assigned by the Host operating in M-Mode.

Least Significant Bit or Byte of a specified binary value.

Multi-Stream Card, capable of operating in either S-Mode or M-Mode.

A Host device that implements the Multi-Stream Card/Host interface. This
device may contain multiple FAT tuners but is not required to.

A Card or Host utilizing the Multi-Stream Card/Host interface is said to be
operating in M-Mode.

The model as it is marketed and appears on the label of the Certified Device,
and as reported in the Digital Certificate Usage Report (see OpenCable Host
2.0 Digital Certificate authorization Agreement).

Moving Picture Experts Group. Colloquial name for ISO-IEC SC29/WG11,
which develops standards for compressed full-motion video, still image,
audio, and other associated information.

ISO-IEC 13818-2, international standard for the compression of video.

CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

MPEG-2 Transport

MSB

National Television Systems

Committee
OpenCable Bundle

OC Signaling

Out-of-Band

PC Card

Point of Deployment

Protocol Data Unit

Quadrature Amplitude
Modulation

Quadrature Phase Shift
Keying
Remote Procedure Call

Resource

Return Data Channel

S-CARD

Set-top Extender Bridge

S-Host
S-Mode

Subtuple
Tuple

Uniform Resource Locator
Upstream

ISO-IEC 13818-1, international standard for the transport of compressed
digital media.

Most Significant Byte or Bit, of a specified binary value.

An entity that developed the analog television system used in North America
and elsewnhere.

The OpenCable Bundle defines a set of specifications required to build a
specific version of an OpenCable device. See [OC-BUNDLE].

A DSG Broadcast Tunnel containing CVTs and XAITs as defined in [DSG].

The combination of the Forward and Reverse Data Channels. The OOB
channel provides a data communication channel between the cable system and
the Host.

A device that complies with the PC Card Standard, as referenced in this
document.

Synonymous with “POD”, “point of deployment module”, CableCARD
device and Card. A detachable device distributed by cable providers and
inserted into a Host connector to enable reception of encrypted services.

A packet of data passed across a network or interface.

A digital modulation method in which the value of a symbol consisting of
multiple bits is represented by amplitude and phase states of a carrier. Typical
types of QAM include 16-QAM (four bits per symbol), 32-QAM (five bits),
64-QAM (six bits), and 256-QAM (eight bits).

A digital modulation method in which the state of a two-bit symbol is
represented by one of four possible phase states.

The ability for client software to invoke a function or procedure call on a
remote server machine.

A unit of functionality provided by the host for use by a Card. A resource
defines a set of objects exchanged between Card and host by which the Card
uses the resource.

A data communication channel running upstream from home to the headend,
i.e., an out-of-band (“OOB”) data channel from the host to the headend.

Single-Stream Card compliant to ANSI/SCTE 28, capable of only operating
in S-Mode.

A client/server architecture that allows DSG Set-tops, incapable of
establishing a DOCSIS upstream connection thru the eCM, to forward IP
traffic over an alternate connection utilizing a Home Network Interface.

Single-Stream Host device.

A Single Stream Card (S-CARD), capable only of processing a single
program on the interface, is said to be operating in Single Stream Mode (S-
Mode).

Subset of a Tuple.

Data stored within a PC Card that can be used to determine the capabilities of
the card.

A standard method of specifying the location of an object or file.
Transmission from host to headend.

4/18/13

CablelLabs® 9

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

User Datagram Protocol

Virtual Channel Table

A protocol on top of IP that is used for end-to-end transmission of user
messages. Unlike TCP, UDP is an unreliable protocol, which means that it
does not contain any retransmission mechanisms.

An MPEG-2 table which contains a list of all the channels that are or will be
on plus their attributes.

10

CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

4 ABBREVIATIONS AND ACRONYMS

This specification uses the following abbreviations and acronyms:

ADSG Advanced DSG mode
AES Advanced Encryption Standard
ANSI American National Standards Institute
APDU Application Protocol Data Unit
API Application Program Interface
ASCII American Standard Code for Information Interchange
ASD Authorized Service Domain
ATIS Alliance for Telecommunication Industry Solutions
ATSC Advanced Television System Committee
bslbf Bit String (serial) - Left Most Bit First
CA Conditional Access
CAS Conditional Access System
CEA Consumer Electronic Association
CHI Card - Host Interface
CIS Card Information Structure
CMOS Complementary Metal Oxide Silicon
CMP CableCARD MPEG Packet
CMTS Cable Modem Termination System
CPU Central Processing Unit.
CRC Cyclic Redundancy Check
CVvDT Code Version Download Table
CVT Code Version Table
DCD Downstream Channel Descriptor
DHCP Dynamic Host Configuration Protocol
DIl Download Info Indicator
DOCSIS Data-Over-Cable Service Interface Specifications
DRAM Dynamic Random Access Memory
DSG DOCSIS Set-top Gateway
DSM-CC Digital Storage Medium - Command and Control
DVR Digital Video Recorder
DVS Digital Video Subcommittee
EAS Emergency Alert System
ECM Entitlement Control Message
eCM Embedded Cable Modem
EIA Electronics Industries Alliance
EMI Encryption Mode Indicator
EMM Entitlement Management Message
4/18/13 CableLabs® 11

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

ETT
FAT
FCC
FDC
HTML
1/0

IB

ID

IR

IP
IP_U
IP_M
IPG
IPPV
IQB
kHz
LPDU
LTSID
mA
MAC
MHz
MMI
MoCA
ms
MSO
MTU
NAT
ns
NTSC
NVM
OCAP
0]0]=]
Oul
OCHD?2
0Cs2
PCMCIA
PCR
PDU
pF
PHY

Extended Text Table

Forward Application Transport
Federal Communications Commission
Forward Data Channel
Hypertext Markup Language
Input or output

Inband
Identifier/Identity/ldentification
Initialize Interface Request
Internet Protocol

IP Unicast

IP Multicast

Interactive Program Guide
Impulse Pay-Per-View
Interface Query Byte

kilohertz

Link Protocol Data Unit

Local Transport Stream ID
milliAmps

Media Access Control
Megahertz

Man-Machine Interface
Multimedia over Coax Alliance
millisecond

Multiple System Operator
Maximum Transmission Unit
Network Address Translation
nanosecond

National Television Systems Committee

Non-Volatile Memory

OpenCable Application Platform
Out-of-Band

Organizationally Unique Identifier

OpenCable Host Device 2 (includes OCS2 and OCS2 Profiles)

OpenCable Set-top 2

Personal Computer Memory Card International Association

Program Clock Reference
Protocol Data Unit
PicoFarad

Physical Layer

12

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

PID
PIN
PNG
POD
PPV
PSI
QAM
QPSK
RDC
RF
RFC
RPC
ROM
RX
SAS
SCTE
SEB
SEBC
SEBS
Sl
SRAM
tcimsbf
TPDU
TSID
TX
UDP
uimsbf
URL

VCR
VCT
VOD
WKMA
XAIT

Packet Identifier

Personal Identification Number

Portable Network Graphics

Point of Deployment

Pay-Per-View

Program Specific Information
Quadrature Amplitude Modulation
Quadrature Phase Shift Keying

Return Data Channel

Radio Frequency

Request For Comments

Remote Procedure Call

Read Only Memory

Receive

Specific Application Support

Society of Cable Telecommunications Engineers
Set-top Extender Bridge

DOCSIS Set-top Gateway SEB Client
DOCSIS Set-top Gateway SEB Server
System Information

Static Random Access Memory

Two’s complement integer, (msb) sign bit first
Transport Protocol Data Unit

Transport Stream Identifier

Transmit

User Datagram Protocol

Unsigned Integer Most Significant Bit First
Uniform Resource Locator

Volt

Video Cassette Recorder

Virtual Channel Table
Video-on-Demand

Well Known MAC Address

Extended Application Information Table

4/18/13

CablelLabs®

13

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

5 MODEL OF OPERATION

The Card provides the conditional access operation and the network connectivity for the Host. MPEG transport
streams are received by the Host and passed to the Card for decryption. The streams are returned to the Host device
to be displayed.

In addition to MPEG streams, the CHI also carries out-of-band communications, as well as command and control
signals. Cable system deployments utilize the OOB FDC and RDC paths for reception of the EMMs, Sl data, EAS,
and network connectivity.

5.1 Advanced Cable Services

The Card interface specification is designed to support advanced digital cable services by a digital television receiver
when a Card is inserted.

In this case, “Advanced Digital Cable Services” would include support of the following functions:
e Interactive Program Guide

o Impulse Pay-Per-View (IPPV) using OCAP

e Video On Demand (VOD)

e Interactive Services

5.1.1 Interactive Program Guide (IPG)

The Host may support an Interactive Program Guide (IPG) to enable the user to navigate to available services. The
services supported by the IPG may include basic channel, premium channels, and Impulse Pay-Per-View (IPPV)
events. Program guide data may be delivered to the application by means of the in-band (QAM) channel, DSG or
FDC:

¢ In-band transmission of program and system information typically describes only the digital multiplex in which
it is sent. This means that a single-tuner Host will periodically scan through all channels to receive data for each
channel and store this information in memory.

e Optionally, at the discretion of the cable operator, the FDC or DSG may be used to deliver guide data. The
format of this information over the FDC or DSG will be defined by the cable operator and may be used to
support specific IPG implementations. The Host receives data from the Card either over the Extended Channel
as described in Section 10 of this document or directly from the eCM via the DSG interface. This guide data
typically describe the entire range of services offered by the cable system.

5.1.2 Impulse Pay-Per-View (IPPV)

The Host may support Generic IPPV resource. The CableCARD Interface support of the Generic IPPV resource has
been deprecated. The preferred approach for supporting IPPV is to use the appropriate OCAP application. If the
Host elects to use Generic IPPV resource, it should comply with Section 8.10 of [SCTE28].

5.1.3 Video-on-Demand (VOD)

Video-on-Demand (VOD) may be modeled as an IPPV event where the program stream is dedicated to an individual
subscriber. The VOD application executes in the Host and supports all of the User Interface (Ul) functions.

The additional streaming media control functions (i.e., Pause, Play, Fast-Forward, Rewind) may be supported using
DSM-CC User-to-User messages. The Extended Channel, described in Section 10 of this document, may be used as
the communication path for VOD signaling, and may also be used for VOD event purchases. After a VOD control
session is established via the session creation interface, UDP messages may be exchanged transparently between the

14 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Host and the cable system. RFC 1831, 1832, and 1833 may be used as the underlying RPC mechanism for the
exchange of DSM-CC UU.

5.1.4 Interactive services

Interactive Services may be supported by applications executing on the Host, such as, an email or game application.
To advertise interactive services, a mechanism is required to deliver information about applications to the Host and the
protocols described in [SCTE80] may be used for this purpose. Typically, information about interactive services are not
associated with a streaming media service, so information about them is delivered via the FDC or DSG. The service
information is passed to the Host via the Extended Channel resource when the Card serves as the OOB modem or across a
DSG tunnel.

The Extended Channel may also be used as the communication path for interactive service signaling when the Card
is serving as the OOB modem. After an interactive service session is established via the session creation interface,
UDP messages may be exchanged transparently between the Host and the cable system. RFC 1831, 1832, and 1833
may be used as the underlying RPC mechanism for the exchange of application level messages.

5.2 CableCARD Device Functional Description
The CHI contains three sub-interfaces:
e An Inband interface for MPEG-2 Transport Stream input and output

e An Out-of-band Interface for receiving OOB data under two different delivery methods (but not
simultaneously):

e [SCTES5-1] Digital Broadband Delivery System: Out Of Band Transport Part 1: Mode A

e [SCTE55-2] Digital Broadband Delivery System: Out Of Band Transport Part 2: Mode B
e A CPU Interface supporting:

e Command Channel (also called Data Channel)

e Extended Channel

The various interfaces are summarized in the following figure:

Inband (MPEG-2 Transport) Out-of-Band c d/
Interface ata
Interface Data Extended
Channel Channel

CPU Interface

CableCARD Interface

Figure 5.2-1 - Card Interfaces

Copy protection is required for protection of high-valued content, content marker with a non-zero EMI, across the
CHI. Section 8, [CCCP], as well as [SCTEA41], identify this functionality and the expected behavior.

4/18/13 CablelLabs® 15

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

5.2.1 Transport Stream Interface

The in-band transport stream interface carries MPEG-2 transport packets in both directions. If the Card gives access
to any services in the transport stream and those services have been selected by the Host, then the packets carrying
those services will be returned descrambled, and the other packets are not modified. On the transport stream interface
a constant delay through the module and any associated physical layer conditioning logic is preserved under most
conditions (see Section 7.3.5.1). The transport stream interface layers are shown below. The Transport Layer and all
upper layers are defined in the MPEG-2 specification, ISO 13818.

Upper Layers
Transport Layers
PC Card Link Layer
PC Card Physical Layer

Figure 5.2-2 - Transport Stream Interface Layers

5.2.2 Command Interface

The Command Interface carries all the communication between the application(s) running in the Card and the Host.
The communication protocols on this interface are defined in several layers in order to provide the necessary
functionality. This functionality includes the ability to support complex combinations of transactions between the
Card and host, and an extensible set of functional primitives (objects) which allow the host to provide resources to
the Card. This layering is shown below.

Application
Resources:
User Interface Low-Speed System Optional
Communications extensions

Session Layer
Generic Transport Sublayer
PC Card Transport Sublayer

PC Card Link Layer
PC Card Physical Layer

Figure 5.2-3 - Command Interface Layers

The PC Card implementation described has its own physical and link layers, and also its own transport lower
sublayer. A future different physical implementation may differ in these layers and any difference will be restricted
to these layers. The implementation-specific features of the transport lower sublayer are limited to coding and
specific details of the message exchange protocol, and the common upper sublayer defines identification, initiation
and termination of transport layer connections. The Session, Resource and Application layers are common to all
physical implementations.

5.3 Network Connectivity/OOB Signaling

One of three types of OOB signaling is utilized for CableCARD operational modes: legacy OOB ([SCTE55-2] or
[SCTE55-1]) or [DSG].

In the legacy OOB modes, the signaling functions are split between the Host and the Card such that only the RF
processing and QPSK demodulation and modulation are done in the Host. The remainder of the processing,
including all of the Data-link and MAC protocols, is implemented in the Card.

Hosts that only support the legacy OOB signaling methods can be either one-way or two-way Hosts. One-way Hosts
lack the upstream transmitter of the legacy signaling method. DSG Hosts are all two-way Hosts.

In the DSG mode of operation, all of the Data-link and MAC level protocols are implemented in the embedded cable
modem in the Host. In this case, the Card is not responsible for implementing these protocols, since they are
provided via the embedded cable modem (eCM). The forward data channel messaging is transported as follows:

16 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

The forward data channel messaging is transported via one or more DSG Tunnels to the Host. The Host filters
the IP packets on the DSG Tunnels identified by the Ethernet MAC addresses, specified by the Card. The Host,
when instructed to do so, removes the Ethernet and IP headers bytes of these packets as instructed by the Card
(the Card specifies the number of bytes to be removed from the headers).

5.4 Card Operational Modes

The S-CARD operates only in Single-Stream mode (S-Mode). An M-Host can support a Card operating in S-Mode
or it may reject the S-CARD operating in S-Mode and require that an M-CARD be inserted and that the Card operate
in M-Mode only.

The M-CARD physical interface will operate in two modes depending on the capabilities of the Host:
e S-Mode
e M-Mode

The different Card/Host combinations are summarized in Table 5.4-1.

Table 5.4-1 - Card/Host Combinations and Operating Modes

Single-Stream Host Multi-Stream Host
S-CARD S-Mode Host may reject S-CARD*
M-CARD S-Mode M-Mode

* M-Host may optionally support the S-Mode interface, which will affect the ability to support multi-stream
functionality for that Host, i.e., only a single transport stream may be supported across the interface.

541 S-CARD in S-Mode

S-CARD interface defined in this specification and the corresponding compatible Hosts capable of processing a
single transport stream, are built in compliance with the Single-Stream mode (S-Mode) functionality as defined in
this document. The S-CARD, when inserted into an M-Host, may or may not be capable of transport stream
processing, for both one-way and two-way operation. Said differently, the S-CARD when inserted into a M-Host
may not perform in the same manner as if it were inserted into a Host only capable of processing a single transport
stream.

54.2 M-CARD in S-Mode

The M-CARD defined in this specification functions in a single-tuner Host built in compliance with the S-Mode
operation as defined in this document. An M-CARD operating in such a Host will be said to be operating in S-Mode.

54.3 M-CARD in M-Mode

The M-CARD defined in this specification functions in an M-Host built in compliance with M-Mode operation as
defined in this document, capable of processing multiple transport streams.

The M-CARD physical interface is compatible with the S-CARD physical interface. For M-Mode, the MPEG data
flow has been modified to support multiple streams and new APDUs have been added. The command and control
interface is a serial interface in M-Mode mode, versus the parallel interface in the S-Mode.

The M-CARD, when inserted into the M-Host, when configured/commanded to do so, could operate in the M-Mode,
but only have one stream enabled.

4/18/13 CablelLabs® 17

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

5.5 One-way Networks
The configuration shown in Figure 5.5-1 applies where there is a no return channel.

The QPSK transmitter in the Host is not active (and is, therefore, omitted from the diagram). The receiver circuit
operates in the same manner as described in Section 9.8.

The DSG communication path using the extended channel is intended to provide transport of Out-of-Band messaging
over a DOCSIS channel that is traditionally carried on dedicated channels, specifically those defined in [SCTES55-1]
and [SCTES55-2], and is to be capable of supporting a one-way (downstream) transport without requiring return path
functionality from the DSG client.

Host
— TUNER — DEMOD — DEMUX -
CPU
OOB RX A
\ A A4
ooB INB CPU
CableCARD

Figure 5.5-1 - System with One-way Network

After Card initialization, the Host informs the Card about the available Low Speed Communication resources as
defined by Section 9.6. Then, when the Card requires setting up a connection with the cable headend, datagrams are
sent to the modem via the CPU interface.

5.6 Two-way Networks

Figure 5.6-1 gives a block diagram view of the system when the cable network includes an OOB return Data Channel
based on [SCTE55-1] or [SCTES5-2].

18 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Host
] TUNER — DEMOD > DEMUX —»
CPU
— QPSK TX -
A
— OOB RX
\ 4 \ 4 \ 4
0O0OB INB CPU
CableCARD

Figure 5.6-1 - System with Two-way Network

The QPSK receiver circuit in the Host tunes and demodulates the QPSK Forward Data Channel (FDC). The receiver
circuit adapts to the 1.544/3.088 Mbps or 2.048 Mbps FDC bit rate, and delivers the bit-stream and clock to the
Card. (This data is used primarily to send conditional access entitlement management messages from the cable
system to the Card. These messages are beyond the scope of this standard.)

Tuning of the QPSK receiver circuit is under control of the Card, as explained in Section 9.8. The tuning range is
between 70 and 130 MHz.

In the return path, the Card generates QPSK symbols and clock and transfers them to the QPSK transmitter circuit in
the Host. The transmitter circuit adapts to the 1.544/3.088 Mbps or 0.256 Mbps RDC bit rate. The QPSK transmitter
circuit modulates the QPSK symbols onto a narrow band carrier.

Tuning and level control of the QPSK transmitter are under control of the Card as explained in Section 9.8. The
QPSK transmitter tuning range is between 5 MHz and 42 MHz.

5.7 Two-way Networks with DOCSIS
The configuration shown in Figure 5.7-1 applies where DSG capability via a DOCSIS modem exists in the Host.

4/18/13 CablelLabs® 19

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Host
> TUNER-1 DEMOD — DEMUX —
64/256 QAM
’ Demodulator
[TUNER-2 DOCSIS
eCM CPU
DOCSIS A
OOB RDC or Modulator
Cable DOCSIS RDC
- X
OO0OB QPSK
Modulator
> OOB RX
OOB QPSK
Demodulator
L] v]
e]e]=) INB CPU

CableCARD

Figure 5.7-1 - System with DOCSIS Two-way Network

In this configuration a single upstream transmit path is shared between the Card and the DOCSIS modem. In order to
prevent conflict between the DOCSIS upstream and the OOB RDC, the system will operate in one of two modes.

OOB mode - The downstream Conditional Access Messages and network management messages will be

delivered to the Card via the QPSK receive interface on the Card using, e.g., [SCTE55-1], [SCTE55-2], or other
agreed OOB specification. The upstream Conditional Access Messages and network management messages will
be transmitted from the Card via the QPSK transmit interface on the Card using, e.g., [SCTE55-1], [SCTE55-2].

DSG mode - The downstream Conditional Access Messages and network management messages will be
delivered to the Card by the Extended Channel using the DSG Service type in the DOCSIS downstream in
accordance with the DOCSIS Set-top Gateway Specification [DSG]. The upstream Conditional Access
Messages and network management messages will be transmitted from the Card via IP over the DOCSIS
upstream channel using the Extended Channel. The DOCSIS bi-directional channel can be used by any
applications running in the Host, simultaneously with the Card's communication with the headend via the
Extended Channel using DOCSIS. The use of the Extended Channel by the Card for IP flows does not change
DSG usage of the DSG Service type on the Extended Channel.

The mode used is based on whether the DOCSIS Set-top Gateway is supported by the network. The Card informs the
Host which of these modes is to be used as detailed later in this specification.

5.8 Two-way Networks with Set-top Extender Bridge (SEB)

The configuration shown in Figure 5.8-1 applies where DSG capability via extender bridge with another DSG
capable device resides on the home network, as per the SEB architecture defined in [DSG].

20

CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Host
» TUNER-1 DEMOD — DEMUX —»
64/256 QAM
Demodulator
» TUNER-2 DOCsSIS cPU Home Network
eCM o Interface
nll:l)?jclsls] Only DSG data is A
OOB RDC or odulator Logical representation delivered to Card via
f eCM ing i eCM. All other IP data
Cat Ie DOCSIS RDC gn:-wa;‘rjnegjgng ne is via the home
X network interface
‘\J 00B QPSK
Modulator
- 0OO0B RX y
0OO0B QPSK
Demodulator
L]] \
ooB INB CPU

CableCARD

Figure 5.8-1 - System with SEB Two-way Network

In this configuration, a single upstream transmit path, where the actual upstream DOCSIS transmitter resides on SEB
Server as per [DSG], is shared between the Card and the DOCSIS modem of the SEB Server. As in the previous
configurations, the system will operate in one of two modes, where the DSG mode is such that the Host is utilizing
SEB and operating as an SEB Client. Note that when operating as an SEB Client, the Card is completely unaware, as
the APDUs and transactions performed by the Card are the exact same as if the Host were operating in a pure DSG
mode.

e OOB mode - The downstream Conditional Access Messages and network management messages will be
delivered to the Card via the QPSK receive interface on the Card using, e.g., [SCTE55-1], [SCTE55-2], or
other agreed OOB specification. The upstream Conditional Access Messages and network management
messages will be transmitted from the Card via the QPSK transmit interface on the Card using, e.g.,
[SCTES5-1], [SCTES5-2].

e DSG mode - The downstream Conditional Access Messages and network management messages will be
delivered to the Card by the Extended Channel using the DSG Service type in the DOCSIS downstream in
accordance with the DOCSIS Set-top Gateway Specification [DSG]. All other downstream IP messaging is
delivered to the Host and subsequently passed to the Card via the home network interface, where the IP
messages are being proxied by the SEB Server. The upstream Conditional Access Messages and network
management messages will be transmitted from the Card via IP over the home network to the SEB Server,
which in turn utilizes its DOCSIS upstream channel. The Card in this case utilizes the Extended Channel as
it would when the Host is operating in a pure DSG mode. The DSG channel and the bi-directional channel
provided by the home network interface can be used by any applications running in the Host,
simultaneously with the Card's communication with the headend via the Extended Channel. The use of the
Extended Channel by the Card for IP flows does not change DSG usage of the DSG Service type on the
Extended Channel.

The mode used is based on whether the DOCSIS Set-top Gateway is supported by the network and whether or not
the Host supports SEB and there is a SEB Server residing within the home. The Card informs the Host which of
these modes is to be used, as detailed later in this specification.

4/18/13 CablelLabs® 21

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

5.9 M-CARD Device Functional Description

The functional elements of a Host and M-CARD are shown in the following figure. Shown in the diagram is an
example of a possible M-Mode implementation that includes multiple FAT tuners and an eCM.

Host

— Tuner-1

>
Tuner-2 J—»

) L MPEG L
Multiplexor > DEMUX Decoder(s)

DOCSIS Channel

Tuner
DOCSIS CPU

— OOB/ DOCSIS TX

Cable

A

— 0O0B RX

Y

0OO0B INB CPU

CableCARD

Figure 5.9-1 - Host and M-CARD Device Block Diagram Example

The multiplexer sends one complete MPEG transport packet at a time across the MPEG interface to the M-CARD.
The Host identifies each of the transport stream packets in the multiplex by appending a pre-header to the MPEG-2
transport header. This pre-header contains an 8-bit transport stream 1D value, indicating to which transport stream
the appended packet belongs.

In order to support multiple streams, the bandwidth of the physical interface between the Card and the Host device is
increased from 27/38Mbps to support up to 200Mbps of aggregate MPEG transport packet data both into and out of
the Card simultaneously. This is sufficient for five simultaneous transport streams from up to five 256-QAM
tuners/demodulators, or up to six streams from six 64-QAM tuners/demodulators.

For the Card, the maximum number of unique MPEG transport streams input into the Card from the Host can be
greater than three. The maximum number of programs that the Card’s CA system can request that the Card
simultaneously decrypt can be greater than or equal to four. In addition, the maximum number of elementary streams
that the Card can manage can be greater than or equal to sixteen (16). The Card may request a maximum of 8 PIDs
be transmitted to it. Section 9.12, M-Mode Device Capability Discovery, identifies this functionality.

In addition to increasing the number of transport streams that can be transmitted across the interface, this
specification also adds capability to the Card-Host command interface to enable the decryption of multiple programs
within each transport stream. Therefore, it is possible for the Host to request that multiple programs from each
transport stream be decrypted. Through the CA_PMT structure, which is passed from the Host to the Card, the Host
indicates which programs and which individual elementary streams within each transport stream are to be decrypted
by the Card. Conversely, upon initialization, the Card indicates to the Host the number of simultaneous programs and
simultaneous elementary streams (PIDs) it can decrypt. The Host can, therefore, keep track of how many of each of
these resources it has used to determine how many additional programs and elementary streams it can request to be
decoded. These commands are diagramed in the following table.

22 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Table 5.9-1 - Card-Host Resource Communication

Host Card
«— “— Maximum number of transport streams supported
«— Maximum number of simultaneous programs
supported
«— Maximum number of simultaneous elementary
streams (P1Ds) supported
CA_PMT structure(s) (one per program) -

An example of the resources that need to be tracked are shown in Table 5.9-2, where the Host has requested six
programs consisting of two movies, one multi-angle movie, and three music programs, for a total of six programs,
eleven elementary streams, and three transport streams. If the Card had indicated that it could support 4 transport
streams, 16 programs, and 32 elementary streams, the Host knows that there are sufficient resources for additional
decryption requests. If the Card only supported simultaneous decryption of a maximum of six programs, the Host
would know not to send any additional program decrypt requests. If the Card indicated that it could only support
three simultaneous streams, the Host could optionally re-multiplex two separate transport streams into one and pass it
to the Card instead, as long as the decryption request remained under the maximum limits indicated by the Card.

Table 5.9-2 - Resource Example Request
From the Host to Decrypt 11 Elementary Streams From 6 Programs Across 3 Transport Streams

Transport Layer Program Layer | Elementary Layer

Transport Stream 1 Program 1 Video ES
Audio ES
Program 2 Video ES
Audio ES

Transport Stream 2 Program 3 Video ES 1

Video ES 2

Audio ES 1

Audio ES 2
Transport Stream 3 Program 4 Audio ES
Program 5 Audio ES
Program 6 Audio ES

5.10 Inband Interface - MPEG Data Flow

In S-Mode, the Card/Host Interface supports the transport stream interface data rates of 26.97035 Mb/s and
38.81070 Mb/s averaged over the period between the sync bytes of successive transport packets with allowable jitter
of +/- one MCLKI clock period.

The Card’s MPEG data flow uses two separate 8-bit buses, one for input, and one for output for the MPEG data. All
of the Host MPEG data is transmitted through the Card. The Card only descrambles the selected program indicated
by the Host. If the program is marked as high value content, non-zero EMI, that program is scrambled across the
CHIL.

4/18/13 CablelLabs® 23

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

In M-Mode only, packets from multiple transport streams are temporally multiplexed and sent across the parallel
MPEG transport interface. The bandwidth of the physical interface between the Card and the Host device is
increased from 27/38 Mbps to support up to 200 Mbps of aggregate MPEG transport packet data both into and out
of the Card simultaneously. In addition, a header is added before each packet for identification. The clock rate of the
interface is increased in order to support the increased number of packets.

5.11 OOB Interface

The S-CARD device was modified from the [NRSSB]-defined Card to include signaling for the [SCTE55-1] and
[SCTES5-2] OOB methods operation. A later modification added the DSG functionality where the OOB data can be
transmitted over the extended channel interface to the Card.

The Card operating in S-Mode or M-Mode includes signaling for the [SCTE55-1] and [SCTE55-2] OOB methods
operation, and DSG functionality, where the OOB data can be transmitted either over the extended channel interface
or the DSG Resource. Reference Section 9.14 of this document.

Only one method will be active at a time.

The Host provides the QPSK physical layer to support OOB (FDC and RDC) communications according to
[SCTES5-1] and [SCTES5-2]. The data link and media access control protocols for [SCTES55-1] and [SCTES55-2]
are implemented in the Card. See Figure 5.11-1 below.

The interface data rates are:
e Forward Receiver: 1.544/3.088 Mbps and 2.048 Mbps

e Reverse Transmitter: 772/1544 ksymbol/s and 128 ksymbol/s
(i.e., 1.544/3.088 Mbps and 256 kbps)

The transmit and receive interfaces for the Card OOB Interface are shown in Figure 5.11-1 below. The receiver
interface comprises a serial bit stream and a clock, while the transmitter interface comprises | and Q data, a symbol
clock, and a transmit-enable signal. The clock signal should be transferred from the Host to the Card, as shown in
Figure 5.11-1.

QPSK Master QPSK
l—| —)
Demodulator Clock Transmitter
Host
CableCARD
Device
DRX CRX ITX QTX ETX CTX

Figure 5.11-1 - CableCARD Out-of-Band Interface

The following diagram shows the connections for the MPEG transport and Out-Of-Band (OOB) data flows for the
Card operating in M-Mode:

24 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Host PCMCIA M-CARD
Connector

DRX

» QPSK Link/Data MAC
Demodulator CRX Layer Filter OOB Payload

Y

CTX

-
- ETX
opsK LinkiData |4 | 0B payload
< Modulator - QTX L '
ITX
MDI[7:0] »
Transpo_rt Stream MICLK >
’ Multiplexor -
MISTRT -
o MPEG
Processing
_ MDO[7:0]
Transport Stream MOCLK
<4 De-Multiplexor [
g MOSTRT

SCLK

SCTL CableCARD
SDI device Control/ | m-DSG OOB Payload
SDO Data Channel

DSG compatible g gl Host Control/Data
cable modem Channel

Yyvy

Figure 5.11-2 - M-Mode: CHI Diagram

5.11.1 QPSK

The common modulation method for [SCTE5S5-1] and [SCTE55-2] is QPSK. This allows the Host to incorporate a
common receiver and transmitter for support of the legacy QPSK signaling. The receive signals (data and clock) are
passed to the Card, which performs all the necessary MAC and higher layers of operation.

5.11.2 DSG

The Host performs all the DOCSIS operations and through the use of DSG, allows for the transmission of the DSG
data to the Card.

The Host DOCSIS cable modem provides the physical data link and media access control protocols. Unlike the
SCTE 55 mode, the data link and media access control protocols for ANSI/SCTE 55-1 and ANSI/SCTE 55-2 are not
used. The downstream communications are implemented in accordance with the DOCSIS Set-top Gateway
Specification [DSG]. The upstream Conditional Access Messages and network management messages will be
transmitted from the Card via IP over the DOCSIS upstream channel using the Extended Channel resource. When
the Host is operating as an SEB Client, the upstream Conditional Access Messages and network management
messages will be transmitted from the Card via IP over the home network interface using the Extended Channel
resource.

The interface data rate is:

e Downstream direction: 2.048 Mbps

4/18/13 CablelLabs® 25

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

The first two bytes of the frame are the total number of bytes following in the frame, i.e., they do not include this
two-byte length field. There is no CRC check required on the frame, as the interface between the Host and Card is
reliable. It is the responsibility of the Card vendor to implement error detection in the encapsulated DSG data. The
Card should disregard any invalid packets received from the Host.

It is the responsibility of the Host to provide buffer space for a minimum of two DSG PDUs, one for transmission to
the Card and one for receiving from the DOCSIS channel. Informational Note: The DSG rate limits the aggregate
data rate to 2.048 Mbps to avoid buffer overflow.

Figure 5.11-3 below shows how the DSG packets are transported across the Card interface with and without removal
of header bytes. Prior to transmission across the Card interface, the Ethernet CRC of the DSG packet received from
the eCM is removed, then optionally header bytes may be removed in order from the Ethernet header through the 1P
header and the UDP header, resulting in the removal of X header bytes, where X is designated by the CableCARD as
per the remove_header_bytes of the set DSG_mode() APDU (note that X may be zero, thus no header bytes are
removed). A two-byte field (UIMSBF) containing the DSG byte count of the resulting data payload is prepended to
the remaining frame and transmitted across the CHI.

26 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Example 1: Card requests that no bytes be removed from DSG Packet

DSG Packet Ethernet Header IP Header uoP Ethernet
from eCM (14 bytes) (20 bytes) (;'i?‘::s’) UDP Payload CRC
DSG Packet Across
Card Interface DSCGOU?e Ethernet Header IP Header HLeraDdF;r UDP Payload
(Remove_Header_Bytes = 0)
Example 2: Card requests that Ethernet and IP Header (34 bytes) be removed from DSG Packet
DSG Packet Ethernet Header IP Header upp Ethernet
from eCM (14 bytes) (20 bytes) (;‘i";‘:ees’) UDP Payload CRC
Bytes removed
Card Interface DSG Byte | UDP
UDP Payload
(Remove_Header_Bytes = 34) Count | - Header
Example 3: Card requests that Ethernet, IP and UDP Header (42 bytes) be removed from DSG Packet
DSG Packet Ethernet Header IP Header HL;E:H UDP Payload Ethernet
from eCM (14 bytes) (20 bytes) (Bbytes) Y CRC
le »l
[~ Bytes removed |
DSG Packet Across bseh
Card Interface e UDP Payload

(Remove_Header_Bytes = 42)

Count

NOTE 1: The IP header may not always be 20 bytes in length, the inclusion of “options” & “padding” will increase the length of the header. It is

the responsibility of the Card to determine the number of bytes to remove. The Host must always remove the requested number of header

bytes regardless of the size of any individual header.

NOTE 2: DSG packets are not limited to UDP datagrams. UDP datagrams are utilized in these example as informative illustrations only.

Figure 5.11-3 - DSG Packet Format Across Card Interface

4/18/13 CablelLabs®

27

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

The following diagram shows the connections for the MPEG transport and Out-Of-Band (OOB) data flows for the

Card operating in S-Mode:

Figure 5.11-4 - S-Mode: CHI Diagram

PCMCIA
Host Connector CARD
DRX A >
FDC QPSK Link/Data 0ooB
Demod CRX > Layer Interface
CTX
|
| RDC QPSK |€—— Link/Data
Modulator — X Layer
ITX
g
Inband
MPEG
Interface
:0;
MDI[7:0] >
FAT QAM MICLK >
Demod
MOSTR
-
MPEG
Processing
MDO[7:0]
Transport
Stream leg—MOCLK
DEMUX MOSTRT
g -
-
Host > CableCARD CPU
Control /
Control/Data Interface
Data
Channel -
Channel

28

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

6 DELETED

Note: This section intentionally left blank to retain document’s section numbering.

4/18/13 CablelLabs® 29

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

7 PHYSICAL INTERFACE

The Card will use the PCMCIA Cardbus Type Il physical form factor. The electrical interface differs between S-
Mode and M-Mode. The Host senses the presence of the Card and operates as defined in Table 7.1-1. If an M-Host
detects that the Card operating mode is S-Mode, it can reject the Card.

The M-Card will start up either directly in M-Mode or follow the PC Card start-up procedure for personality change
to S-Mode, depending on the state of VPP1# and VVPP2#.

The S-Card, or the M-Card operating in S-Mode, will always follow the PC Card start-up procedure for personality
change.

7.1

After a PCMCIA reset, the Card operates in memory card mode, with the pin assignments defined in CEA-679C part
B, as listed in the left hand column of Table 7.1-1. When the module is configured as the Common Interface variant
during the initialization process, the following reassignments are made: The pins carrying signals A15-A25, D8-D15,
BVD1, BVD2, and VVS2# are used to provide high-speed input and output buses for the MPEG-2 multiplex data.
101S16# is never asserted and CE2# is ignored. All other pins retain their assignment as an 1/0 & Memory Card
interface.

Interface Pin Assignments

The following are the different pin assignments the Card interface utilizes for the different modes.

Table 7.1-1 - Card Interface Pin Assignments

CEA-679C part B PC Card Mode S-Mode M-Mode
P;,en Signal and Card Signal and | Card Input | Signal and | Card Input | Signal and Card
Pin Name Input or Pin Name | or Output | PinName | or Output | Pin Name Input or
Output Output
1 GND DC gnd GND DC gnd GND DC gnd GND DC gnd
2 D3 1/0 D3 1/0 D3 1/0
3 D4 1/0 D4 1/0 D4 1/0
4 D5 1/0 D5 1/0 D5 1/0
5 D6 1/0 D6 1/0 D6 1/0
6 D7 1/0 D7 1/0 D7 1/0
7 CEl# I CEl# I CEl# [
8 Al10 I Al10 I
9 OE# I OE# I OE# [
10 All I All I
11 A9 I A9 I DRX [DRX I
12 A8 I A8 I CRX [CRX I
13 Al3 I Al3 I MOCLK 0
14 Al4 I Al4 I MCLKO 0
15 WE# I WE# I WE# [
16 IREQ# 0 READY 0 IREQ# 0
17 VCC VCC DCin VCC DCin VCC DCin
18 VPP1 VPP1 DCin VPP1 DCin VPP1 I
19 MIVAL I Al6 I MIVAL [
20 MCLKI I Al5 I MCLKI [
21 Al2 I Al2 I MICLK I
22 A7 I A7 I QTX 0 QTX 0
23 A6 I A6 I ETX 0 ETX 0
30 CableLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

CEA-679C part B PC Card Mode S-Mode M-Mode
Pin
Signal and Card Signal and | Card Input | Signal and | Card Input | Signal and Card
Pin Name Input or Pin Name | or Output | PinName | or Qutput | Pin Name Input or
Output Output
24 A5 I A5 I ITX 0 ITX 0
25 A4 I Ad I CTX [CTX I
26 A3 I A3 I
27 A2 I A2 I SCTL I
28 Al I Al I Al SCLK I
29 A0 I A0 I A0 SDI I
30 DO 1/0 DO 1/0 DO 1/0
31 D1 1/0 D1 1/0 D1 1/0
32 D2 1/0 D2 1/0 D2 1/0
33 101S16# WP 0 I01S16# 0 MDET 0
34 GND GND DC GND DC GND DC
35 GND GND DC GND DC GND DC
36 CD1# CD1# 0 CD1# 0 CD1# 0
37 MDO3 0 D11 1/0 MDO3 0 MDO3 0
38 MDO4 0 D12 1/0 MDO4 0 MDO4 0
39 MDO5 0 D13 1/0 MDO5 0 MDO5 0
40 MDO6 0 D14 1/0 MDO6 0 MDO6 0
41 MDO7 0 D15 1/0 MDO7 0 MDO7 0
42 CE2# I CE2# I CE2# [
43 VS1# 0 VS1# 0 VS1# 0 VS1# 0
44 IORD# I RFU IORD# [
45 IOWR# I RFU IOWR# [
46 MISTRT I Al7 I MISTRT [MISTRT I
47 MDIO I Al8 I MDIO [MDIO I
48 MDI1 I Al9 I MDI1 [MDI1 I
49 MDI2 I A20 I MDI2 [MDI2 I
50 MDI3 I A21 I MDI3 [MDI3 I
51 \VVCC \VVCC DCin \VVCC DCin \VVCC DCin
52 \VPP2 \VPP2 DCin \VVPP2 DCin \VPP2 DCin
53 MDI4 I A22 I MDI4 [MDI4 I
54 MDI5 I A23 I MDI5 [MDI5 I
55 MDI6 I A24 I MDI6 [MDI6 I
56 MDI7 I A25 I MDI7 [MDI7 I
57 MCKLO I VS2# 0 VS2# 0 VS2# 1/0
58 RESET 0 RESET I RESET [RESET
59 WAIT# 0 WAIT# 0 WAIT# 0
60 | INPACK# 0 RFU INPACK# 0 SDO 0
61 REG# I REG# I REG# [
62 MOVAL 0 BVD2 0 MOVAL 0
63 | MOSTRT 0 BVD1 0 MOSTRT 0 MOSTRT 0
64 MDOO0 0 D8 1/0 MDOO 0 MDOO0 0
65 MDO1 0 D9 1/0 MDO1 0 MDO1 0
66 MDO2 0 D10 1/0 MDO2 0 MDO2 0
67 CD2# 0 CD2# 0 CD2# 0 CD2# 0
68 GND GND DC GND DC GND ground

“I” indicates signal is input to Card; “O” indicates signal is output from Card.
Blank = Unused pin

4/18/13

CableLabs®

31

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

It is recommended that at least 12 bits of address be decoded on the Card (4096 bytes) during memory accesses. A
lower number of bits, as specified in the CIS, will be decoded during 1/0 accesses as defined in Features of 16-bit
PC Card Asynchronous Interface of [PCMCIAZ2].

7.2 Deleted, section reserved

7.3 Interface Functional Description

7.3.1 S-Mode Custom Interface

The S-Mode interface is registered to the PC Card Standard as the “POD Module Custom Interface” with the
interface 1D number (STCI_IFN) allocated to equal hexadecimal 341 (0x341).

The Card SHALL present the 16-bit PC Card memory-only interface following the application of VCC or the
RESET signal. When the Card is operating in this configuration, its D7-DO0 pins are retained as a byte-oriented 1/O
port, and the capability to read the Attribute Memory is retained.

Only two address lines are required for four bytes of register space. In S-Mode, pin CE2# is assigned to select the
Extended Channel function required for the Card CPU interface to enable the access to the Extended Channel
resource. Pin 101S16# is never asserted.

Differences between CEA-679-C part B, PC Card Mode, and the Card when running in S-Mode are identified in
Table 7.1-1. The S-Mode column affects A4 to A9 signals, which are now assigned to the OOB RF 1/Os, the CE2#
signal, which is used to access the Extended Channel, and pins 11, 12, 14, 22, 23, 24, 25, 42, and 57. The MCLKO
is provided on pin 14 instead of pin 57 as defined in [NRSSB]. Pin 57 remains the PC Card VS2# signal.

S-Mode SHALL operate in a Host built to compliance with the S-Mode interface signal and /O assignments as
described in Table 7.1-1.

7.3.2 Card Signal Descriptions

7.3.2.1 Power

VCC If the Card is interfacing to a Host that supports the S-Mode, VCC pins are power pins that
initially supply 3.3V per Section 7.4.1.1. If the Card is interfacing to a Host using M-Mode,
the VCC pins are at a High-Z until Card-type identification and discovery is performed. After
identification of the Card that will be operating in M-Mode is detected, these pins are powered

up to 3.3V.
GND As defined in [PCMCIAZ2].
VPP1 If the Card is interfacing to a Host that supports the S-Mode, VPP1 pin is a power pin that

initially supplies 3.3V and can be switched to 5V per Section 7.4.1.1. If the Card is interfacing
to a Host using M-Mode, the VPP1 pin is at a High-Z until Card-type identification and
discovery is performed. The VPP1 pin is then set to logic low to indicate that the Card will be
interfacing to the Host in M-Mode.

VPP2 If the Card is interfacing to a Host that supports the S-Mode, VPP2 pin is a power pin that
initially supplies 3.3V and can be switched to 5V per Section 7.4.1.1. If the Card is interfacing
to a Host using M-Mode, this pin is at a High-Z until Card-type identification and discovery is
performed. The VPP2 pin is then configured to a 5V supply pin.

32 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

7.3.2.2 Sense

CD2::1# As defined in [PCMCIAZ2].

VS2::1# As defined in [PCMCIAZ2]. For M-Mode only, 3.3V will be supported (VS1# = GND, VS2# =
High-Z). VS2# is also used during Card-type detection and tied directly to MDET.

MDET/IOIS16# The Card detect signal used by the Host to identify if the Card will be operating in S-Mode or
M-Mode. For M-Mode, MDET is tied to VS2#. For S-Mode, 101S16# is not tied to VS2#.

7.3.2.3 PCMCIA Signals

This specification follows [PCMCIAZ2] Signal Description, Timing Functions, and Electrical Interface descriptions
with the following additions:

For the Card in S-Mode, MPEG-2 transport stream interface input and output buses are MDI[7:0] and MDO[7:0].
Signals MCLKI, MCLKO, MISTRT, MIVAL, MOSTRT, MOVAL are used to control the data associated with
MPEG-2 transport streams. MCLKI runs at the rate at which bytes are offered to the Card on MDI[7:0]. MCLKO
runs at the rate at which bytes are offered by the Card on MDO[7:0]. For Cards which pass the transport stream
through, then MCLKO will in most cases be a buffered version of MCLKI with a small delay.

Figure 7.3-1 shows the relative timing relationship of the data signals associated with the MPEG-2 transport stream
interface and MCLKI, MCLKO, and provides limits to these timing relationships.

Note: The specification for output timing limits can normally be met by generating the output from the falling edge
of MCLKO.

When operating in S-Mode, the Host SHALL provide a continuous MCLKI signal that has a minimum clock period
of 110 ns for the MPEG-2 transport stream interface.

In S-Mode, the timing relationship between MCLKO SHALL be derived from MCLKI, and correspondingly the data
on MDO[7:0] is the MPEG-2 transport stream interface, delayed and possibly descrambled on MDI[7:0], governed
by the rules as described in Section 7.3.5.1.

In S-Mode, MDI[7:0] data and MISTRT SHALL be clocked into the Card on the rising edge of MCLKI.
In S-Mode, MDO[7:0] and MOSTRT SHALL be clocked into the Host on the rising edge of MCLKO.

It is not intended that burst clocking should be employed. Bursty data is handled by the appropriate use of MIVAL
and MOVAL.

The MISTRT control signal has the same timing as the MDI[7:0] bus and is valid during the first byte of each
transport packet. Figure 7.3-1 defines the timing relationship for the transport stream interface.

4/18/13 CablelLabs® 33

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

¢——————tclkp———————— P>
Htclkh—»\
MCLKI
——tclkl————p
¢th+1
tsuU—p
MDI,
MISTRT,
MIVAL
—————tclkp—— P>
<¢——tclkh——p|
MCLKO
lt—tclk———p|
L—tosu—» o
MDO,
MOSTRT,
MOVAL

Figure 7.3-1 - Timing Relationships for Transport Stream Interface Signals

Table 7.3-1 - Timing Relationship Limits

ltem Symbol Min Max
Clock Period Tclkp 110 ns
Clock High time Tclkh 40 ns
Clock Low time Tclkl 40 ns
Input Data Setup Tsu 15ns
Input Data Hold Th 10 ns
Output Data Setup | Tosu 20 ns
Output Data Hold | Toh 15 Ns

When operating in S-Mode, the Card SHALL comply with the minimum relative timing limits on the data signals
associated with the MPEG-2 transport stream interface as defined in Table 7.3-1.

The MIVAL signal is only valid in S-Mode and indicates valid data bytes on MDI[7:0]. All bytes of a transport
packet may be consecutive in time, in which case MIVAL will be at logic 1 for the whole of the duration of the

34 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

transport packet. Certain clocking strategies adopted in Hosts may require there to be gaps of one or more byte times
between some consecutive bytes within and/or between transport packets. In this case MIVAL will go to logic 0 for
one or more byte times to indicate data bytes which should be ignored.

MOSTRT is valid during the first byte of an output transport packet. The MOVAL signal, which is also only valid in
S-Mode, indicates the validity of bytes on MDO[7:0] in a similar manner as MIVAL. MOVAL may not necessarily
be a time-delayed version of MIVAL; see Section 7.3.5.1.

Note: The Host can utilize an interrupt request at the physical layer. Section 7.6.1.1 of this document defines how the
PCMCIA IREQ# is available for use by the Host.

The Card in S-Mode responds to an 1/0 operation by asserting INPACK#; see section 4.4.22 of [PCMCIA2].

7.3.2.4 Card Device Signals

DRX QPSK receive data input to the Card from the Host.

CRX QPSK receive gapped clock input to the Card from the Host in which some of the clock cycles
are missing, creating an artificial gap in the clock pattern.

ITX QPSK transmit I-signal output from the Card to the Host and are represented directly to the
phase states as defined in [SCTE55-2].

QTX QPSK transmit Q-signal output from the Card to the Host and are represented directly to the
phase states as defined in [SCTE55-2].

ETX QPSK transmit enable output from the Card to the Host. It is defined to be active high.

CTX QPSK transmit gapped symbol clock input to the Card from the Host.

MCLKI MPEG transport stream clock from Host to the Card operating in S-Mode.

MICLK MPEG transport stream clock from the Host to the Card operating in M-Mode.

Note: When the M-CARD is operating in S-Mode, MICLK (A12 pin 21) will have the
characteristics of CCLK signal type. Additional details in Section 7.4.1.3.2.

MISTRT MPEG transport stream input packet start indicator from the Host to the Card operating in S-
Mode.

The Card operating in M-Mode, used to indicate the start of a CableCARD MPEG Packet,
CMP. It is asserted at the same time as the first byte of the CMP header.

MDI[7:0] An 8-bit wide MPEG transport stream input data bus from the Host to the Card.
MCLKO MPEG transport stream clock from the Card to the Host operating in S-Mode.
MOCLK MPEG transport stream clock from the Card to the Host operating in M-Mode. MOCLK

signal is derived from MICLK and should operate at 27 MHz.

MOSTRT MPEG transport stream output packet start indicator from the Card operating in S-Mode to the
Host. The Card, operating in M-Mode, is used to indicate the start of a CMP. It is asserted at
the same time as the first byte of the CMP header. MOSTRT and MDO[7:0] signals are
clocked into the Host on the rising edge of MOCLK.

MDOI7:0] An 8-bit MPEG transport stream output data bus from the Card to the Host.

MIVAL A control signal that the Card utilizes to indicate valid data bytes on MDI[7:0] when operating
in S-Mode.

MOVAL A control signal that the Card utilizes to indicate the validity of bytes on MDO[7:0] when

operating in S-Mode. MOVAL may not necessarily be a time-delayed version of MIVAL.

4/18/13 CablelLabs® 35

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

SCLK CPU interface serial clock from the Host to the Card operating in M-Mode. The clock is a
continuously running clock (not gapped) and has a nominal frequency of 6.75 MHz.

SCTL CPU interface serial interface control signal from the Host into the Card operating in M-Mode.
It signals the start of a byte of data and the beginning of a packet being transferred across the
interface.

SDI CPU interface serial data from the Host into the Card operating in M-Mode.

SDO CPU interface serial data from the Card operating in M-Mode out to the Host.

RESET Reset input to the Card. RESET is active high or asserted when a logic high.

Table 7.3-2 - Transmission Signals

Signal Rates Type
DRX 1.544/3.088 and 2.048 Mbps |
CRX 1.544/3.088 or 2.048 MHz |
ITX 772/1544 and 128 Ksymbol/s o]
QTX 772/1544 and 128 Ksymbol/s 0
ETX TX Enable O
CTX 772/1544 and 128 KHz |

The Host SHALL support QPSK transmit I-signal (1TX) rates of 772/1544 and 128 Ksymbol/s (Tx | channel).
The Host SHALL support QPSK transmit Q-signal (QTX) rates of 772/1544 and 128 Ksymbol/s (Tx Q channel).
The Host SHALL NOT transmit the values of ITX and QTX when ETX is inactive.

7.3.2.5 M-Mode Device Signals

When an M-Card is inserted into an M-Host, it can start up directly in M-Mode when the operating mode state is
VPP1# Low while VPP2# is High.

The Card operating in M-Mode SHALL comply with the M-Mode signal pin assignments as described in Table 7.1-
1.

When operating in M-Mode, the Host SHALL provide a continuous MICLK signal for the MPEG-2 transport stream
interface that operates at 27Mhz.

When operating in M-Mode, the timing relationship between MOCLK SHALL be derived by the Card’s MICLK.
e MDI[7:0] data and MISTRT SHALL be clocked into the Card on the rising edge of MICLK.
e MDOJ7:0] and MOSTRT SHALL be clocked into the Host on the rising edge of MOCLK.

7.3.3 Card Type Identification

The CableCard interface will be detected before the socket notifies Card Services of an insertion event. To initially
power up a PC Card and determine its characteristics, VCC and VPP/VCORE must be at a voltage indicated by the
Voltage Sense pins as defined in [PCMCIA2].

The Host SHALL utilize the Card type detection mechanism to determine the Card interface and initial voltage
requirements as defined in section 3 of [PCMCIAZ2].

The Host SHALL use the CDJ[2::1]# signals to detect when the Card is inserted.

36 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Note: Hosts need not support the detection mechanisms for CardBus PC Cards, but may optionally do so as defined
by [PCMCIAZ2].

7.3.3.1 S-Mode

In PCMCIA memory mode, the Host accesses the Card’s Attribute Memory to read the Card Information Structure
(CIS) on the even addresses (first byte at address Ox 000, second byte at address 0x 002, etc.). When the Card is
operating in S-Mode, its CIS SHALL include a custom interface subtuple (CCST_CIF) that provides the interface 1D
number (STCI_IFN) defined by PCMCIA (0x341). In PCMCIA memory mode, the CableCARD interface isa PC
Card Custom Interface that reads the Card Information Structure (CIS) on the even addresses (first byte at address 0x
000, second byte at address 0x 002, etc.)

The Card CIS also includes the field name of the product of subtuple TPLLV1_INFO defined as
“OPENCABLE_POD_MODULE?”" in the tuple CISTPL_VER_1. This information in the CIS is required to ensure
backup operation in case of trouble when the CI stack is lost (e.g., power shut down, Card extraction).

Note: When the Card is operating in S-Mode, PIN 33, 1ISIO16# should not be tied to VVS2# through the Pull-up
resistor to 3.3V.

7.3.3.1.1 Memory Function

The Host SHALL support Attribute Memory function described in Section 4.6 of [PCMCIAZ2]. Attribute Memory
function support by Hosts is mandatory. Note that Attribute Memory is byte-wide - Attribute Memory data only
appears on data lines D7-D0. Also consecutive bytes are at consecutive even addresses (0, 2, 4, etc.). Note also that
Attribute Memory must still be able to be read or written to even when the Card is configured to operate with the
Common Interface. Common Memory function support in the Host is optional. Cards SHALL NOT use Common
Memory.

7.3.4 Card Information Structure (S-Mode Only)

In S-Mode, the Card Information Structure (CIS) SHALL be readable whenever the Card is powered, the Card has
been reset by the Host in accordance with characteristics of Function Configuration registers of [PCMCIAZ2], the
Card is asserting the READY signal, and the Card Personality Change has not occurred.

The CIS contains the information needed by the Host to verify that the Card has been installed.

In S-Mode, the Card SHALL implement the Card Configuration table in its Card Information Structure (CIS) as
defined in [PCMCIAZ2].

In S-Mode, the Card SHALL provide the set of tuples in the CIS as defined in Table 7.3-3.

Table 7.3-3 - CIS Minimum Set of Tuples

CISTPL_LINKTARGET
CISTPL_DEVICE_0A
CISTPL_DEVICE_0C
CISTPL_VERS_1
CISTPL_MANFID
CISTPL_CONFIG
CISTPL_CFTABLE_ENTRY
CISTPL_NO_LINK
CISTPL_END

4/18/13 CablelLabs® 37

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

The list of the Card's S-Mode Attribute and Configuration Registers can be found in Annex D of this document.
After S-Mode Card Personality Change, the CIS SHALL no longer be available.

Note: In M-Mode operation, the CIS structure is not read by the Host, and does not need to be presented by the
Card.

7.3.4.1 Operation After Card Personality Change

The Card in S-Mode starts up as a PC Card in memory only mode, then goes through a personality change according
to the PC Card standard.

After the correct value is written into the configuration register, the Card SHALL wait a minimum of 10 usec before
switching from the PCMCIA to Card interface.

7.3.4.2 M-Mode Detection

In M-Mode, the Host SHALL determine the physical interface before applying power to the VCC and VPP pins on
the Card/Host Interface.

The M-Card SHALL be designed such that VVS1# = ground and VVS2# is connected directly to MDET.
Hosts capable of operating in M-Mode SHALL follow these steps:
1. Set the state of VPP1= Logic Low (grounded or pulled-down) and VVPP2= open circuit.

2. Pull-up CD1#, CD2#, VS1#, VS2# and MDET to 3.3VDC using a pull-up resistor as described in Figure
7.3-2 and the Card and Host Pull-ups and Pull-downs Table 7.4-6 in Section 7.4.1.3.

3. Detect the presence of the Card using CD1# and CD2# as described in Card type detect Host signaling
operation.

4. High Z on VCC pins until after the Card device type is determined.

5. Determine if VS2# is tied to MDET. If VS2# is tied to MDET, the Host proceeds with its power up in M-
Mode.

6. Apply power to the VCC pins (3.3V) and VPP2 (5.0V) once the Host determines that the Card is in M-
Mode. The VVPP2 pin is provided to support the Card that contains an optional smart card.

Figure 7.3-2 shows the Card type detection and identification signals for Hosts capable of operating in M-Mode.

38 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

M-Host Card
3.3V
B Z CD1#
- - v
3.3V
B ! vsi# |
- ‘ v
3.3V
J Z vs2# |
3.3V
B ! MDET
3.3V
M_—HOSt » g CD2# |, o] Card Silicon
Silicon
3.3V
g VCC
Switched T
> 3.3V vee
Supply
VPP1 .
5.0V
2 VPP2
| Switched VPP2 T
| 5V Supply -

Figure 7.3-2 - Card Type Detection Signals

Hosts capable of operating in M-Mode can be tested by toggling VS2# and watching to see that MDET tracks VS2#.
If the M-Host does not support S-Mode on the Card/Host Interface, the Host may choose to not power the PC Card
and should display an error message indicating the Card inserted is not supported as defined in Annex B of this
document.

Hosts capable of operating in M-Mode are not required to support PC Card memory-only interface; they MAY
immediately operate in the M-Mode.

As power is applied, all interface pins on the M-Card SHALL be defined in a manner that will not contend with the
Host until the Card knows in the operating mode. The operating mode is determined by the Card detecting the logic
levels of the VPP1 and VPP2 pins when RESET is de-asserted.

If the VPP1 pin is at a logic low while the VPP2 pin is at a logic high (5V), the Card SHALL initialize to M-Mode.
If the VPP1 and VVPP2 pins are at a logic high, then the Card SHALL initialize to S-Mode.

When VPP1/VVPP2 configuration is set to one of the two reserved settings in Table 7.3-4, the M-Card SHALL keep
SDO (pin 60) and READY (pin 16) low. If SDO and READY have not gone active after 5 seconds, the Host may
use this as an indication that the M-Card is not configured correctly to respond.

Note: When the M-Card is operating in S-Mode, only the READY line has significance, and SDO has no meaning.

4/18/13 CablelLabs® 39

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

The following table summarizes VPP1/\VVPP2 pin configurations, and the associated Card configuration operating
mode.

Table 7.3-4 - VPP Pin Configurations, and Associated Card Operating Mode

VPP1 VPP2 Card Configuration
Low High M-Mode
Low Low Reserved
High Low Reserved
High High S-Mode

7.3.5 MPEG Transport Interface

The transport layer used is the same as the MPEG-2 System transport layer. Data traveling over the transport stream
interface is organized in MPEG-2 Transport Packets. The MPEG-2 multiplexed packets are sent over this transport
stream interface and are received back fully or partly descrambled. If the packet is not scrambled, the Card returns it
as is. If it is scrambled and the packet belongs to the selected service and the Card can give access to that service,
then the Card returns the corresponding descrambled packet with the transport_scrambling_control flag set to '00". If
scrambling is performed at Packetized Elementary Stream (PES) level, then the module reacts in the same way and
under the same conditions as above, and returns the corresponding descrambled PES with the
PES_scrambling_control flag set to '00".

The transport packet and the PES packet are completely defined in the MPEG-2 System specification [1SO13818-1].

Apart from the Packetized Elementary Stream, any layering or structure of the MPEG-2 data above the Transport
Stream layer is not relevant to this specification. This specification does assume that the Card will find and extract
certain data required for its operation, such as ECM and EMM messages, directly from the Transport Stream.

There is no Link Layer on the Transport Stream Interface. The data is in the form of consecutive MPEG-2 Transport
Packets, possibly with data gaps within and between Transport Packets.

The MPEG interface consists of an input clock (MCLKI for S-Mode and MICLK for M-Mode), an input start of
packet signal (MISTRT), an eight-bit input bus (MDI[7-0]), an output clock (MCLKO for S-Mode and MOCLK for
M-Mode), an output start of packet signal (MOSTRT), and an eight-bit output bus (MDO[7-0]). Note that ‘input’
and ‘output’ labels are from the perspective of the Card.

The MISTRT and MOSTRT signals indicate the start of an MPEG packet from the Card to the Host. They are
asserted at the same time as the first byte of the CableCARD MPEG Packet header.

7.3.5.1 S-Mode

The Card/Host Interface supports independent physical connections for the transport stream and for commands. The
returned transport stream may have some of the incoming transport packets returned in a descrambled form.

The Card SHALL accept an MPEG-2 Transport Stream that complies with [1SO13818-9], consisting of a sequence
of transport packets, either contiguously or separated by null data.

The Host SHALL provide an MPEG-2 Transport Stream that complies with [1S013818-9], consisting of a sequence
of transport packets, either contiguously or separated by null data.

The Card SHALL introduce a constant delay when processing an input transport packet, with a maximum delay
variation (tmdv) applied to any byte given by the following formula:

tmdvmax = (n * TMCLKI) + (2 * TMCLKO).
And-

tmdvmax <= 1 microsecond when n =0

40 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Where:
tmdv = Module Delay Variation
n = Number of gaps present within the corresponding input transport packet
TMCLKI = Input data clock period
TMCLKO = Output data clock period
A “gap' is defined to be one MCLKI rising edge for which the MIVAL signal is inactive.

Note: All Hosts are strongly recommended to output contiguous transport packets, as packets arrive
synchronously with the clock, but not necessarily continuously. Inter-packet gaps may vary
considerably.

The Card SHALL support a byte transfer clock (MCLKI) period of 110 ns. minimum
The Host SHALL provide a byte transfer clock (MCLKO) period of 110 ns minimum.

The CHI SHALL transfer commands as defined by the appropriate Transport Layer part of this document in both
directions. The data rate supported in each direction SHALL be at least 3.5 Megabits/sec.

An S-Card or the M-Card operating in S-Mode SHALL support transport stream interface data rates of 26.97035
Mb/s and 38.81070 Mb/s averaged over the period between the sync bytes of successive transport packets with
allowable jitter of +/- one MCLKI clock period.

7.3.5.2 M-Mode

The Card MPEG Packet (CMP) consists of a 188-byte MPEG packet with a pre-pended 12-byte header. In M-Mode,
the Host SHALL transmit each CMP packet header and MPEG packet with no gaps after the packet start signal is
active. In M-Mode, the Host SHALL transmit MPEG packets that consist of 200 contiguous bytes including the 12-
byte header.

In M-Mode, the Card will keep track of the number of bytes received, starting with the packet start signal, and form a
packet from the first 200 bytes.

In M-Mode, the Card SHALL provide a delay variation (jitter) of no more than one MICLK period for each CMP
packet header and MPEG.

In M-Mode, after the Card has received the first 200 bytes, it SHALL discard any following bytes until the next
packet start signal is active.

If the Card receives less than 200 bytes prior to MISTRT being asserted, it is not required to pass that packet to the
Host and may drop the bytes. This should not affect the delay through the Card for any other packets.

Figure 7.3-3 shows an example of a single CMP packet transmitted across the interface.
MICLK,
MOCLK
MISTRT,
MOSTRT

MDI[7:0],
MDOJ[7:0]

ts ts
187 /\ 188
Host Inserted 4D MPEG TS
=|< Packet
(12 bytes) (188 bytes)

Pre-Header

|A
|

Figure 7.3-3 - CMP Diagram

4/18/13 CablelLabs® 41

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

7.3.5.2.1 M-Mode MPEG Transport Stream Pre-Header

In M-Mode, the MPEG Transport Stream pre-header SHALL include a 12-byte field, as described in Figure 7.3-4,
pre-pended by the Host to each MPEG packet sent across the Card Host Interface. This pre-header provides
identification information to allow packets from multiple transport streams to be multiplexed prior to delivery to the
Card.

The Card SHALL NOT modify the LTSID field in the M-Mode MPEG Transport Stream pre-header. The data
format is shown in Figure 7.3-4. The transport streams are identified by local transport stream IDs (LTSID), which
the Host is responsible for generating. This LTSID is not required to be the same as the QAM transport stream ID.
These 8-bit IDs in the transport packet pre-header allow for correlation between the command APDUs and the
transport streams.

LTSID |RESL |HOSTres LTS CableCARD | pesy | cre PAYLOAD

. ; . - res : .
8 bits |8 bits | 16 bits 32 bits 16 bits 8 bits | 8 bits 188 bytes

<¢—— host inserted fields

\/

<¢——— mpeg TS packet————»|

Figure 7.3-4 - M-Mode MPEG Transport Stream Pre-Header

LTSID Local Transport Stream ID - All packets in a given transport stream are tagged with the
same unique LTSID. This allows multiple transport streams to be multiplexed, transferred
across the transport interface, correctly decrypted by the Card, and de-multiplexed, and
correctly routed at their destination.

Resl, Res2 Two 8-bit fields reserved for future use with a default value of 0x00.

Host_reserved A 16-bit field, containing data generated by the Host, identifying additional
characteristics of the transport packets. The use of this field is optional for the Host. The
Card SHALL NOT maodify the values in this field.

LTS Local Time Stamp - A 32-bit local time stamp, whose value is set by the Host. Setting a
value in this field is optional for the Host.

CableCARD _reserved A 16-bit field. The default value is 0x00. The usage of this field is optional for the Card.

CRC Cyclic Redundancy Check - An 8-bit value calculated and inserted by the Host to provide
the ability to check that the LTSID, CableCARD_reserved, Host_reserved, and LTS are
transferred across the transport interface without error. The CRC is calculated across the
11 bytes of the pre-header. The CRC polynomial is:

CRC-8 XEAX HxC+x X2+ 8

Figure 7.3-5 - CRC Polynomial

Note: A detailed explanation of the CRC Polynomial can be found in Annex C.
In M-Mode, the Host SHALL tag all packets in a given transport stream with the same unique LTSID.

In M-Mode, the Card SHALL ignore the MPEG transport pre-header Res1/Res?2 bit fields when the default value for
both is 0x00.

In M-Mode, the Host SHALL ignore the MPEG transport pre-header Res1/Res2 fields when the default value for
both is 0x00.

In M-Mode, the Card SHALL NOT modify the values in the Host_reserved fields.

42 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

In M-Mode, the Card SHALL NOT modify the Local Time Stamp (LTS) value.

Setting a value in the LTS field is optional for the Host. If the Host chooses to set the LTS value, it SHALL use 32-
bit value.

The Host MAY use the local time stamp to manage MPEG timing of the packets received from the Card.

In M-Mode, the Host SHALL insert an 8-bit Cyclic Redundancy Check (CRC) across the 11 bytes of the pre-header
as the means of calculating that the LTSID, the CableCARD_reserved, Host_reserved, and LTS have been
transferred across the transport interface without errors.

In M-Mode, if the Card inserts data into the CableCARD _reserved field, it SHALL recalculate the CRC for those
packets.

7.4 Electrical Specifications

In order to remain compliant with the PC Card standard [PCMCIAZ2], regardless of the powering state of the Host
(i.e., active or standby), the Host and the Card should implement the power characteristics as defined in this
document.

A Common Interface module is implemented as a variant of the 16-bit PC Card Electrical Interface of [PCMCIAZ2].
The command interface uses the least significant byte of the data bus, together with the lower part of the address bus
(A0-A14), and appropriate control signals. The command interface operates in 1/0 interface mode. The upper
address lines (A15-A25), the most significant half of the data bus (D8-D15), and certain other control signals are
redefined for this interface variant.

When the Card is first inserted into the Host, before configuration, it SHALL behave as a Memory-Only device with
the following restrictions:

1. Signals D8-D15 shall remain in the high-impedance state.

2. 16-bit read and write modes are not available.

3. CE2# SHALL be ignored and interpreted by the Card as a logic high.
4

Address lines A15-A25 SHALL NOT be available for use as address lines. The maximum address space
available on the Card is limited to 32768 bytes (16384 bytes of Attribute Memory as it only appears at even
addresses).

5. Signals BVD1 and BVD2 SHALL remain logic high.
7.4.1 DC Characteristics

74.1.1 S-Mode

In order to remain compliant with the PC Card standard [PCMCIAZ2], regardless of the powering state of the Host
(i.e., active or standby), the following power management features are required.

e If the Host supports S-Mode, it SHALL permanently supply 3.3V on the VCC pins (Card Inserted/Removed)
with the capability of supplying up to a maximum of 1 amp total on the VCC pins (500 mA each) at 3.3 VDC
per Card supported.

e If the Host supports S-Mode, it SHALL supply 5V on the VPP pins when requested by the Card’s CIS with the
capability of supplying up to 250 mA total on the VPP pins (125 mA each) at 5 VDC per Card supported.

e In S-Mode, when the Card is inserted, the Host SHALL supply 5 V on the VPP pins if requested by the Card's
CIS.

Otherwise, the Host continues to supply 3.3 V on the VPP pins while the Card is installed.
e In S-Mode, upon removal of the Card, the Host SHALL revert to or continue to supply 3.3V on the VPP pins.

4/18/13 CablelLabs® 43

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

If the Host does not support the value of 0x03 in the Power Field of Feature Selection Byte (TPCE_FS) it
receives from the Card, then it SHALL continue to supply a nominal voltage of +3.3V to both the VPP1 and
VPP2 pins.

Note: If the Host supports S-Mode and receives a value of 0x3 in the Power field of the Feature Selection Byte
(TPCE_FS) from the Card, it is not required to support the separate nominal voltage parameter descriptors in the
power descriptor structures for VPP1 and/or VPP2.

In S-Mode, the Card SHALL only support the value of 0x02 in the Power field of the Feature Selection Byte
(TPCE_FS) when the Card requires a switched nominal voltage level of +5V on the VPP lines according to
[PCMCIAA4].

In S-Mode, the Card SHALL NOT draw more than 2.5 watts averaged over a period of 10 seconds.

If the Host supports S-Mode, the OOB Receive circuitry SHALL continue to operate in all powering states of
the Host.

If the Host supports S-Mode, it SHALL support hot insertion and removal of the Card.
In S-Mode, the Card SHALL implement the mechanical Low Voltage Keying as defined in [PCMCIA2].

In S-Mode, the Card SHALL force VS1# (pin 43) to ground and VVS2# (pin 57) to high impedance until it
switches to the CableCARD device Custom Interface mode.

In S-Mode, the Card SHALL support 3.3V hot insertion.

Note: The Card does not have to meet the requirement of [PCMCIAZ2] to limit its average current to 70 mA prior to
the CableCARD device Personality Change (writing to the Configuration Option Register).

7.4.1.2 M-Mode

Hosts capable of operating in M-Mode SHALL provide 3.3 VV on VCC and 5V on VPP2 with the DC
Characteristics as defined in Table 7.4-1.

Hosts capable of operating in M-Mode SHALL be capable of providing up to 1 Amp total on the VCC pins (500
mA each) per Card supported.

Hosts capable of operating in M-Mode SHALL be capable of providing up to 125 mA on the VPP2 pin.
In M-Mode, the Card SHALL NOT draw more than 1.5 watts averaged over a period of 10 seconds.
Pin type LogicPC - DC Signal levels for 3.3V Signaling.

Hosts capable of operating in M-Mode SHALL continue to operate their OOB circuitry in all powering states of
the Host.

Hosts capable of operating in M-Mode SHALL detect the state of the CD1# and CD2# pins and power-down the
VCC and VPP interface pins upon Card removal, and upon Card insertion, determine the Card type prior to
applying VCC and VPP power.

Hosts capable of operating in M-Mode SHALL tolerate voltage ranges on VCC (3.0 to 3.6V) at up to 1 Amp
total, and VPP2 (4.75 to 5.25V) with maximum supply current of 0.125 A as defined in Table 7.4-1.

44

CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Table 7.4-1 - M-Mode Power Supply DC Characteristics

Symbol Parameter Min Max Units Notes
VCC Supply Voltage 3.0 3.6 \Y 1
lcc Supply Current - 1.0 A 2
VPP2 Supply Voltage 4.75 5.25 \Y 1
lpp2 Supply Current 0 0.125 A 2
Notes:

1. There is no standby power mode for the Card.
2. Hosts capable of operating in M-Mode provide up to 1 Amp total on the VCC pins (500 mA each) per

Card.

7.4.1.3 Signaling Interfaces

7.4.1.3.1 S- Mode

The Card and Host support the Electrical Interface as defined in [PCMCIAZ2]. Support by Hosts for overlapping 1/0
address windows as defined in [PCMCIA2] is optional.

In S-Mode, Cards SHALL use an independent I/O address window 4 bytes in size.

In S-Mode, the Host SHALL detect Card insertion and removal using CD1# and CD2#.

In S-Mode, the Card SHALL provide a means of allowing the Host to detect Card insertion and removal using CD1#
and CD2# as described in [PCMCIA2].

In S-Mode, the Card SHALL NOT implement the battery voltage detect (BVD[2::1]) function.

In S-Mode, the Card SHALL implement the 1/O transfers to the Host for 8-bit read and write timing as defined in
Figure 4-7 and Figure 4-8 of [PCMCIAZ2].

In S-Mode, the Host SHALL implement the 1/O transfers to the Card for 8-bit read and write timing as defined in
Figure 4-7 and Figure 4-8 of [PCMCIAZ2].

In S-Mode, the Card SHALL only use 8-bit read and write modes.

7.4.1.3.2 Card Signal Types

Table 7.4-2 summarizes what Card signal types are used for each of the interface signals and operating modes.

The Card SHALL utilize the signal types for each of the designated pin assignments as defined in Table 7.4-2.

Table 7.4-2 - Card Signal Types by Mode

PC Card Memory-

QTX, ETX

QTX, ETX

Only Signals S-Mode Signals M-Mode Signals Signal Type
Al3, A12 Unused MOCLK, MICLK CCLK
A[25:17] MDI[7:0], MISTRT MDI[7:0], MISTRT LogicCB (M-Mode); LogicPC
(S-Mode)
D[15:8], BVD1 MDOJ[7:0], MOSTRT MDO[7:0], MOSTRT LogicCB (M-Mode); LogicPC
(S-Mode)
AJ9:4] DRX, CRX, CTX, ITX, | DRX, CRX, CTX, ITX, LogicPC

4/18/13

CablelLabs®

45

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

PC Card Memory- . . .
Only Signals S-Mode Signals M-Mode Signals Signal Type
A[2:0],RFU Unused, A[1:0], SCTL, SCLK, SDI, SDO | LogicPC
INPACK#
VS1#, VS2# VS1#, VS2# VS1#, VS2# Sense*
RESET RESET RESET LogicPC
WP 101S16# MDET LogicPC!
VPP1, VPP2 VPP1, VPP2 VPP1, VPP2 VPP1, VPP2
CD[2:1]# CD[2:1]# CD[2:1]# Sense
Notes:
1. VS2# is also tied directly to MDET, thus MDET does not need to be sourced or driven from the Card but sourced or driven
by the Host via VS2#.
2. The LogicPC signal type applies to VPP1 and VPP2 only during Card type identification. Otherwise, VPP1 and VPP2 have
the supply voltage characteristics described in Section 7.4.
3. When the Card is operating in S-Mode, MICLK (A12 pin 21) will have the characteristics of CCLK.

Table 7.4-3 provides reference for the Card on DC signaling levels associated with signal type.

The Card SHALL support the DC Signal levels for each signal type as summarized in Table 7.4-3, defined in
[PCMCIAZ].

Table 7.4-3 - DC Signal Requirements

Signal Type DC Signal Requirements

CCLK DC Signal levels as defined in Table 5-7 DC Specifications for 3.3V Signaling in
Section 5.3.2.1.1 of [PCMCIAZ2] Release 8.0.

LogicCB DC Signal levels as defined in Table 5-7 DC Specifications for 3.3V Signaling in
Section 5.3.2.1.1 of [PCMCIAZ2] Release 8.0.

LogicPC DC Signal levels as defined in Table 4-15 DC Specifications for 3.3V Signaling in
Section 4.7.1 of [PCMCIA2] Release 8.0.

Sense Sense signals as defined in [PCMCIAZ2].

Table 7.4-4 shows the DC signaling characteristics for the “LogicPC” signaling level.
The Card SHALL support "LogicPC" signaling level parameters as defined in Table 7.4-4.

46 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Table 7.4-4 - DC Signaling Characteristics for the “LogicPC” Signaling Level

Symbol Parameter Min Max Units Notes

VCC Supply Voltage 3.0 3.6 \Y

Viu 2.0 VCC+0.3 \%

Vi -0.3 0.8 \%

Vou 2.4 \% 1

(VCC-0.2)
VoL 0.4 \% 1
0.2)

Note: All logic levels per JEDEC 8-1B. This table is for reference only.
1. For CMOS Loads

Table 7.4-5 shows the DC signaling characteristics for the “LogicCB” and "CCLK" signaling level.

The Card SHALL support "LogicCB" signaling level parameters as defined in Table 7.4-5.

Table 7.4-5 - DC Signaling Characteristics for the “LogicCB” Signaling Level

Symbol Parameter Condition Min Max Units | Notes
VCC Supply Voltage 3.0 3.6 \%
A\ 0.475VCC | VCC+0.5 \%
Vi -0.5 0.325vCC \%
I 0<Vin<VCC +/-10 uA
Vou lout = -150uA 0.9vCC \%
VoL lout = 700uA 0.1vCcC \%
Card Card Input Pin 5 17 pF
Capacitance

Chost System Load Capacitance 5 22 pF
Note: All logic levels per [PCMCIA2]. This table is for reference only.

4/18/13

CablelLabs®

47

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Table 7.4-6 indicates the required Pull-up and Pull-down resistance values that satisfy signal switching impedances

based upon the mode of operation.

The Card SHALL support pull-up/pull-down resistance requirements on the signal pins defined in Table 7.4-6 while

meeting all AC timing requirements.

The Host SHALL support pull-up resistance requirements depending on its operational mode, on the signal pins
defined in Table 7.4-6, while meeting all AC timing requirements.

Table 7.4-6 - CableCARD and Host Pullups and Pulldowns

Item Signal S-CARD M-CARD S-Host M-Host Notes
Card CD[2:1]# pullup to Host 3.3V pullup to Host 3.3V | 6
Detect R.>= 10K R.>= 10K
Voltage | VS[2:1]# pullup to Host 3.3V pullup to Host 3.3V
Sense 10K <= R.<= 100K 10K <= R.<= 100K
Card MDET pullup to Host 3.3V
Type R >= 100K
Detect
Control RESET pullup to pullup to 3
Signal VCC VCC

R>=100K | R>=100K
MPEG MICLK, pulldown 1
Interface | MISTRT, R >= 100K
MDI[7:0]
MOCLK pulldown 1
R >= 100K
MOSTRT Pullup to Host 3.3V | 1
R.>=10K
MDOQO[7:0] pulldown pulldown 1
R>=100K | R>=100K
0o0B CRX, DRX, | pulldown pulldown 1,5
Interface | CTX R>=100K | R>=100K
ITX, QTX, pulldown pulldown 1,4
ETX R>=100K | R>=100K
CPU SCTL, pulldown 1,5
Interface | SCLK, SDI R >= 100K
SDO pullup to Host 3.3V 2,4
R.>= 10K
Notes:
1. Due to PC Card Requirement for pull-ups and pull-downs on the Memory Interface.
2. S-Host has R >= 10K pullup required for INPACK#. The M-Host is responsible for providing signal conditioning (i.e., a pullup)
in a manner that meets the DC an AC requirements of this signal.
3. Note 3 of Table 4-16 in Section 4.7.1 of [PCMCIA2] Release 8.0 applies.
4. Note 4 of Table 4-16 in Section 4.7.1 of [PCMCIAZ2] Release 8.0 applies.
5. Note 5 of Table 4-16 in Section 4.7.1 of [PCMCIA2] Release 8.0 applies.
6. The CableCARD device forces VS1# (pin 43) to ground and VS2 (pin 57) to high impedance until it switches to the
CableCARD device Custom Interface mode.

7.4.2 AC Characteristics

74.2.1

S-Mode and M-Mode Signal Parameters

The Card SHALL comply with the OOB FDC signal parameters and RDC timing requirements as defined in Table
7.4-7 and illustrated in CableCARD Device Output and Input Timing Diagrams in Figure 7.4-1 and Figure 7.4-2.

48

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Note: Signal Parameters are measured with no less than the maximum load of the receiver as defined in table 4-16 of
[PCMCIAZ].

The PC Card A7, A6, and A5 pin definitions have been modified to QTX, ETX, and ITX. These pins will be driven

by the Card and will have Data Signal characteristics per table 4-16 of [PCMCIAZ2]. Additionally, the signals
MOVAL and MOSTRT will be driven by the Card and will have Data Signal characteristics per table 4-16 of
[PCMCIAZ2]. The remaining signals follow the signal type assignments as listed in table 4-16 of [PCMCIAZ2].

The Host SHALL support signal voltage levels that are compatible with normal 3.3V CMOS levels.
The Host SHALL support CTX (Transmit Gapped Symbol Clock) for 772/1544 and 128KHz.

Table 7.4-7 - S-Mode/M-Mode Signal Parameters

Parameter Signal Unit | Min | Typ Max Conditions

Frequency CTX kHz 3088

Frequency CRX kHz 3088

Clock High Time | CTX, CRX ns 129 Notes 1, 2, 3

(THIGH)

Clock Low Time | CTX, CRX ns 129 Notes 1, 2, 3

(TLOW)

Delay (tp) ETX, ITX,QTX | ns 5 180 Notes 1, 2

Set-up (Ts) DRX ns 10 From time signal reaches 90% of high
level (rising) or 10% of high level
(falling) until CRX mid-point
transition

Hold (T}) DRX ns 5 From CRX mid-point transition until
signal reaches 10% of high level
(rising) or 90% of high level (falling)

Notes:

1. Refer to Figure 7.4-1 - CableCARD Device Output Timing Diagram.

2. AC Timing is measured with Input/Output Timing Reference level at 1.5V.

3. Minimum value derived assuming a duty cycle of 60/40.

The Host SHALL support CRX to maximum frequency equal to 3088 KHz.

The Host SHALL comply with CTX high time (THCTX) timing limit of 129 ns minimum.
The Host SHALL comply with CTX low time (TLCTX) timing limit of 129 ns minimum.

The Host SHALL comply with the minimum ETX,ITX,QTX signal delay time (tp) of 5 ns up to 180 ns maximum
delay, measured from CTX rising at 1.5V to ETX, ITX, QTX going valid/invalid at 1.5V.

The Host SHALL comply with the minimum DRX signal set-up time (Tg,) requirement of 10 ns from time signal
reaches 90% of high level (rising) or 10% of high level (falling) until CRX mid-point transition.

The Host SHALL comply with the minimum DRX signal hold time (T}) of 5 ns from CRX mid-point until signal
reaches 10% of high level (rising) or 90% of high level (falling).

The AC Timing characteristics of the OOB FDC and RDC timing for the Card operating in S-Mode and M-Mode is
illustrated in Figure 7.4-1 and Figure 7.4-2.

4/18/13 CablelLabs® 49

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

CableCARD Device RDC
Timing Diagram

t

D HCTX LCTX

CTX
from Host
ETX 71
ITX or QTX 7< >< >< ><:

Figure 7.4-1 - CableCARD Device Output Timing Diagram

CableCARD Device Input Timing
Diagram

from Host
DRX
from Host X X X

t

H SU

Figure 7.4-2 - CableCARD Device Input Timing Diagram

7.4.2.2 M-Mode

When the Card is operating in M-Mode, the AC signaling characteristics of CCLK, LogicPC and LogicCB SHALL
be as described below.

e Pintype CCLK has AC Signal levels as defined in Table 5-9, AC Specifications for 3.3V Signaling (CCLK), in
Section 5.3.2.1.4 of [PCMCIA2] Release 8.0.

e Pintype LogicCB- AC Signal levels as defined in Table 5-8, AC Specifications for 3.3V Signaling, in Section
5.3.2.1.2 of [PCMCIAZ2] Release 8.0.

7.4.22.1 Power and Reset Timing

The power-on sequence timing is similar to the 16-bit PC card standard, with the exception that the MICLK and the
SCLK are running prior to RESET being released and VVPP2 will be 5V instead of 3.3V. Figure 7.4-3 and Table 7.4-
8 show the power up timing requirements.

In M-Mode, the Card SHALL comply with the Power-On and Reset Timing Requirements defined in Table 7.4-8
and illustrated in Figure 7.4-3.

50 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

IS

vee VCC min
(3.3v) /

«rle
t (VPP2-VCC) (e

4
A

> t, (Hi-z RESET)

Y

t,(Hi-z RESET)

VPP2 VPP2 min

(5Vv)

t,(RESET)

A

<

RESET 4 x

t,(RESET)

ty(CLK-RESET)

A
\

MICLK
SCLK

t (RESET-SCTL)

SCTL

t, (IN-RESET)

A
A

CableCARD
INPUT
SIGNALS

t,(RESET - OUT)

A
A

CableCARD
OUTPUT
SIGNALS

Figure 7.4-3 - M-CARD Power-On and Reset Timing Diagram

4/18/13 CablelLabs® 51

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Table 7.4-8 - M-CARD Power-On and Reset Timing Requirements

Symbol Parameter Min Max Units Notes
tsu(VPP2-VCC) VCC valid to VPP2 valid 50 us 1
th(Hi-z RESET) VCC and VPP2 valid to RESET assert 1 ms
tw(RESET) Reset pulse width 10 us
t su(CLK-RESET) Clock valid to RESET negate 0 ms
tsu(RESET-SCTL) Reset Negate to CPU Interface Active 20 ms 2
tsu(IN-RESET) Reset Negate to CPU Interface Active 0 ms 2
t4(RESET-OUT) Reset Negate to M-CARD Output Signals Valid | 0 20 ms 3
Notes:

1. VPP2 should not exceed VCC=0.3V until VCC has reached VCC min as defined in Table 7.4-1.
2. In M-Mode, the Card input logic signals are Hi-z from when VCC and VPP2 are applied until RESET is asserted.
3. In M-Mode, the Card output logic signals are Hi-Z from when VCC and VPP2 are applied until RESET is de-asserted/negated.

7.4.2.2.2 MPEG Packet Jitter
The Host SHALL be responsible for multiplexing and demultiplexing the transport packets, in a manner to minimize
jitter of the MPEG PCR.

MPEG packets are sent across the interface from the Host to the Card and returned to the Host with a delay variant
from receipt to transmission back to the Host.

The delay variation through the Card is the MPEG transport interface input clock, i.e., + 1 MICLK period).

All transport stream packets sent across the interface will be returned in the same order in which they are received by
the Card.

7.4.2.2.3 MPEG Transport Timing

The Card SHALL support the M-Mode MPEG transport Timing requirements as defined in Table 7.4-9.
The Host SHALL comply with the M-Mode MPEG transport Timing requirements defined in Table 7.4-9.

52 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Table 7.4-9 - M-CARD MPEG Transport Timing

Symbol Parameter Min Max Units Notes

teye MICLK and MOCLK Cycle Time 37.00 37.074 | ns 1,2,3

thigh MICLK and MOCLK High Time 15 ns 3

tiow MICLK and MOCLK Low Time 15 ns 3

tsy Input Setup time of MDI[7:0] and MISTRT to MICLK and | 7 ns 4
Input Setup Time of MDO[7:0] and MOSTRT to MOCLK

th Input Hold time of MICLK to MDI[7:0] and MISTRT and | O ns 4
Input Hold Time of MOCLK to MDOQO[7:0] and MOSTRT

tyal MICLK to and MOCLK to Output Signal Valid Delay. 2 18 ns 4

Notes:

1. MOCLK will be derived directly from MICLK.

2. The Nominal Frequency is 27MHz. As specified, the Card operating in M-Mode will be required to operate at 27MHz +/-
1000ppm although the M-Host may be required to operate at tighter tolerances to maintain MPEG timing.

3. See Figure 5-28, CardBus PC Card Clock Waveform, of [PCMCIA2] Release 8 for reference levels.

4. See Figure 5-30, Input Timing Measurement Conditions, and Table 5-12, Measurement and Test Condition Parameters, of
[PCMCIA2] Release 8 for reference levels.

7.4.22.4 CPU Interface Timing

The CPU functions for the Card operating in S-Mode are defined in Section 7.6.1.

In M-Mode, CPU functions are determined by the following control signals and the timing relationship between the
signals.

Hosts capable of operating in M-Mode SHALL provide their serial clock (SCLK) at a nominal rate of 6.75 MHz (27
MHz/4).

In M-Mode, the Card SHALL change its serial control signal on the falling edge of the SCLK signal.

Hosts capable of operating in M-Mode SHALL change their serial data input (SDI) on the falling edge of the SCLK
signal. In M-Mode, the Card SHALL input its serial data input (SDI) on the rising edge of the SCLK signal.

In M-Mode, the Card SHALL change its serial data output (SDO) on the falling edge of the SCLK signal. Hosts
capable of operating in M-Mode SHALL input their serial data output (SDO) data on the rising edge of the SCLK
signal.

4/18/13 CablelLabs® 53

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Tperiod

T
low | Thigh

A

SCLK \

A

AN
d

Tsetup Thold

A
\J

SCTL, SDO,
SDI
Figure 7.4-4 - M-Mode Serial Interface Timing Diagram
Table 7.4-10 - M-Mode Serial Interface Timing
Signal Value Nominal Max Min Unit
SCLK Frequency 6.75 7.00 6.50 MHz
Thigh 74 88 59 ns
Tiow 74 88 59 ns
SCTL Tsetup n/a n/a 7 ns
Thold n/a n/a 0 ns
SDI Tsetup n/a n/a 7 ns
Thold n/a n/a 0 ns
SDO Tsetup n/a n/a 7 ns
Thold n/a n/a 0 ns
Note:
Minimum times are specified with 0 pF equivalent load; maximum times are specified with 30 pF equivalent load.

In M-Mode, the Card SHALL support the Serial Interface Timing requirements as defined in Table 7.4-10.

Hosts capable of operating in M-Mode SHALL comply with the Serial Interface Timing requirements as defined in

Table 7.4-10.

Hosts capable of operating in M-Mode SHALL support the duty cycles on SCLK of no less than 40%, no more than

60%.

54

CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

7.5 Mechanical Specifications

7.5.1 Form Factor

The mechanical design of the Card SHALL comply with the PC Card and CardBus specifications as defined in
[PCMCIAZ]. Additionally, any future modifications to the physical specification, which are backwards compatible,
may be implemented.

The Card SHALL comply with the Type Il PC Card Package Dimensions of Low Voltage Keying as defined in
[PCMCIAZ], with the exception that the length dimension can range from 85 mm to 102 mm.

The Card SHALL include the CardBus/CardBay PC Card Recommended Connector Grounding as defined in
[PCMCIAZ]. Visual identification to distinguish between a Single-Stream CableCARD device and a Multi-Stream
CableCARD device will be via the label on the Card.

7.5.2 Connector

The Card connector and guidance SHALL comply with the PCMCIA Cardbus Type Il connector and guidance as
defined in [PCMCIA3].

7.5.3 Environmental

When the Host and Card are operating at room temperature and humidity, no greater than 25°C ambient temperature,
no greater than 95% RH non condensing, with a reference power load Card, the Host with the Card inserted SHALL
NOT allow any external protruding surface point hotter than 50°C for metallic, and 60°C for non-metallic surfaces,
and no non-accessible surface point hotter than 65°C.

7.5.4 PC Card Guidance
The Host SHALL comply to PC Card guidance standard as defined in [PCMCIA3].

7.5.5 Grounding/EMI Clips
The Card SHALL provide contact resistance grounding and EMI clips as defined in [PCMCIA3].

7.5.6 Connector Reliability
The Host SHALL meet all connector reliability test requirements as defined in [PCMCIA3].

7.5.7 Connector Durability
The Host SHALL meet all connector durability test requirements as defined in [PCMCIA3].

7.5.8 PC Card Environmental

The Card SHALL meet all environmental test requirements for Environmental Resistance as defined in [PCMCIA3].
The Card SHALL operate at temperature specification of up to 55°C, as defined in [PCMCIAZ2]. This is primarily to
enable reliable battery operation in Cards.

The Host SHALL limit the temperature rise between the ambient environment outside the Host and the ambient
environment surrounding the Card to 15°C when the Card is dissipating its full rated power.

Notes:

To minimize the risk of Card/Host Interface misoperation, Cards containing batteries should follow the
recommendations in the PC Card standard on battery placement.

4/18/13 CablelLabs® 55

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Host designers should conform to the relevant mandatory safety specifications with regard to Host thermal design
and Card temperature.

7.6 CPU Interface

7.6.1 S-Mode

With OOB traffic included, the Card requires more bandwidth and connections on the CPU Interface than are
supported by the Data Channel alone. Two distinct communication paths, the Data Channel and the Extended
Channel, share the same pins on the PC Card connector (see Table 7.1-1).

Except for the physical layer, the Data Channel and Extended Channel are logically separate from each other, each
containing its own buffers and packet queue. No operation at the transport, link, session or application layer of the

Data Channel inhibits reception or transmission of data on the Extended Channel, and no operation at the link layer
of the Extended Channel inhibits reception or transmission of data on the Data Channel.

At the physical layer, the Card SHOULD NOT expect the Host to perform a write operation on the Data or Extended
Channel in any order or preference, i.e., these channels can be written to at will by the Host whenever the
corresponding Status Register FR (Free) bit is set to “1”.

At the physical layer, the Host SHOULD NOT expect the Card to set the Status Register DA (Data Available) bit on
the Data or Extended Channel in any order or preference, i.e., when the Status Register DA bit is set to “1” on the
Card Data or Extended Channel, the Host reads the data for that channel regardless of the state of the Status Register
DA bit on the other channel.

Data Channel Operation - This channel is compliant as defined below, plus the interrupt mode extension. Card
applications will use this path when they require support from Host resources.

The Host/Card relation on the data channel is defined to be a master-slave interface. The Host will periodically poll
the Card to determine if data is available. The Card will only transmit data to the Host after one of these polls. The
interrupts are particularly useful when the transaction has to be fragmented. The method of interrupt implementation
is dependent on the Host manufacturer and is not defined in this document.

The hardware interface consists of four registers occupying 4 bytes in the address space on the PC Card interface.
Byte offset O is the Data Register. This is read to transfer data from the Card and written to transfer data to the Card.
At byte offset 1 are the Control Register and Status Register. Reading at offset 1 reads the Status Register, and
writing at offset 1 writes to the Control Register. The Size Register is a 16-bit register at byte offsets 2 and 3. Offset
2 is the Least Significant half and offset 3 the Most Significant half. The register map is shown in Table 7.6-1.

Only two address lines, A0 and Al, are decoded by the interface. This block of 4 bytes can be placed anywhere
within its own address space by suitable decoding or mapping of other address lines within the Host.

Table 7.6-1 - Hardware Interface Registers

Offset Register

0 Data Register

1 Control/ Status Register
2 Size Register (LS)
3 Size Register (MS)

The Status Register is depicted in Table 7.6-2.

56 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Table 7.6-2 - Status Register

bit 7 6 5 4 3 2 1 0
DA FR R IR R R WE RE

DA (Data Available) is set to '1' when the Card has some data to send to the Host.

FR (Free) is set to '1' when the Card is free to accept data from the Host, and at the conclusion of a Reset cycle
initiated by either a Card hardware reset, or by the RS command.

IR (Initialize Interface Request) is sent by the Card to request the Host to perform a Card reset.
R indicates reserved bits that are set to zero.
WE (Write Error) and RE (Read Error) are used to indicate length errors in read or write operations.

The Control Register is depicted in Table 7.6-3.

Table 7.6-3 - Control Register

bit 7 6 5 4 3 2 1 0
DAIE FRIE R R RS SR SW HC

The DA and FR bits of the Status Register are gated onto the IREQ# line by the Interrupt Enable bits for the
Control Register: DAIE (bit 7) and FRIE (bit 6) respectively.

RS (Reset) is set to '1' to reset the interface. It does not reset the whole Card.

SR (Size Read) is set to '1' to ask the Card to provide its maximum buffer size. It is reset to '0' by the Host after
the data transfer.

SW (Size Write) is set to '1' to tell the Card what buffer size to use. It is reset to '0' by the Host after the data
transfer.

HC (Host Control) is set to '1' by the Host before starting a data write sequence. It is reset to '0' by the Host after
the data transfer.

R indicates reserved bits that are always set to zero.

For Host to Card transfers, the Host sets the HC bit and then tests the FR bit. If FR is ‘0’ then the interface is busy
and the Host must reset HC and wait a period before repeating the test. If FR is ‘1’ then the Host writes the number
of bytes it wishes to send to the Card into the Size register and then writes that number of data bytes to the Data
register. The Host SHALL NOT interrupt multiple write operations to the Data Register with any other operations on
the interface except for reads of the Status Register. When the first byte is written the module sets WE to *1’ and sets
FR to '0". During the transfer the WE bit remains at ‘1’ until the last byte is written, at which point it is set to ‘0’. If
any further bytes are written then the WE bit is set to “1’. At the end of the transfer the Host shall reset the HC bit by
writing ‘0’ to it.

The Host SHALL test the DA bit before initiating a Host-to-Card data transfer in order to avoid deadlock.

This C code fragment illustrates the Host side process:

if (Status_Reg & 0x80) /* go to module-to-host transfer (see below) */
Control_Reg = 0x01;
if (Status_Reg & 0x40) {
Size_Reg[0] = bsize & OxFF;
Size_Reg[1l] = bsize >> 8;
for (i=0; i<bsize; i++)
Data Reg = write buf[i];

}
Control_Reg = 0x00;

4/18/13 CablelLabs® 57

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

For Card-to-Host Transfers, the Host periodically tests the DA bit in the Status Register. If DA is ‘1’, then the Host
reads the Size Register to find out how much data is to be transferred. It then reads that number of data bytes from
the Data register. The Host SHALL NOT interrupt multiple read operations with any other operations on the
interface except for reads of the Status Register. When the first byte is read the Card sets RE to ‘1’ and sets DA to '0'.
During the transfer the RE bit remains at ‘1’ until the last byte is read, at which point it is set to ‘0’. If any further
bytes are read then the RE bit is set to “1’. This C code illustrates the host side process:

if (Status_Reg & 0x80) {
bsize = Size_Reg[0] | Size_Reg[1l] << 8;
for (i=0; i<bsize; i++)
read buf[i] = Data Reg;
}

The bytes of the Size Register can be read or written in either order.

Extended Channel Operation - This communication channel only includes physical and link layers. The purpose of
the Extended Channel is to provide a communication path between the Card and the Host such that applications in
one entity can communicate with the headend via a link layer or modem function in the other entity. Whereas the
content and format of the messages for the Data Channel are well defined, the content and format of the messages for
the Extended Channel are application specific.

An extended channel application in the Card opens a session to the Extended Channel Support resource to allow for
the establishment of flows on the extended channel. These flows will be used for transferring IP packets, MPEG
table sections, and DSG PDUs across the CHI. Under normal operating conditions, this session will never be closed.

Depending on whether the Card or the Host is acting as the modem (or link device), the Extended Channel has a
reversible function as described in Figure 7.6-1 and Figure 7.6-2.

CPU Interface

HEADEND HOST
P CableCARD Extended I
00B < i Channel” %
—Tnterface CableCARD . Daa
APPS 4 Channer 7]
Figure 7.6-1 - Modem in-the-Card System Overview
CPU Interface
HEADEND HOST ™
/ Extended * CableCARD

P .
KL i Channel
< >
Modem Data

or OOB HOST APPS ’:1.2 Channel _."; ’

Figure 7.6-2 - Modem in-the-Host System View

The Data Channel is physically activated by CE1# (Card Enable 1), and the Extended Channel is enabled by CE2#
(Card Enable 2).

The Extended Channel includes the same type of registers for the Command Interface. The Card enables access to
the Extended Channel after the initialization phase. At this time, the CE2# signal interpretation begins, and the

58 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Extended Channel hardware interface registers can be read and written. The signals mentioned in the table below are
all inputs for the Card. The registers depicted in Figure 7.6-3 are part of the Card.

Table 7.6-4 - Extended Interface Registers

Extended Interface Reg. REG# | CE2# | CE1# Al A0 IORD# IOWR#
Standby mode X H H X X X X
Ext_Data Write L L H L L H L
Ext_Data Read L L H L L L H
Ext_Command Write L L H L H H L
Ext_Status_Reg. Read L L H L H L H
Ext_Size (LS) Write L L H H L H L
Ext_Size (LS) Read L L H H L L H
Ext_Size (MS) Write L L H H H H L
Ext_Size (MS) Read L L H H H L H

The Extended Channel has its own data buffers that may have a different size than the Data Channel buffers.

Since there are two communication channels (data channel and extended channel), the behavior of the interface is
defined in such a way that when the Host sets the RS bit on either channel, the interface is reset for both channels.

CPU Interface
A
CE2# CE1#
I I
> Ext_Data Register Data Register <
Ext_Control/Ext_Status Reg. Control/Status Reg.
Ext_Size Register (LS) Size Register (LS)
Ext_Size Register (MS) Size Register (MS)
Ext_buffer Buffer
I

Figure 7.6-3 - Map of Hardware Interface Registers

7.6.1.1 Interrupt Operation

This section describes the interrupt operation using the DAIE and FRIE bits in the Control Register for both the Data
Channel and the Extended Channel.

When set, DAIE allows any assertion of the DA (Data Available) bit in the Status register also to assert IREQ#.
When set, FRIE allows any assertion of the FR (Free) bit in the Status register also to assert IREQ#.

4/18/13 CablelLabs® 59

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

The following diagram shows the Card interrupt logical operation.

Data Channel
DA —|
DAIE —
FR
FRIE
IREQ#

DA
DAIE

FR —]
FRIE _|

Figure 7.6-4 - CableCARD Device Interrupt Logical Operation

The Card SHALL assert IREQ# whenever the DA or FR bits are set for the data channel and the DAIE or FRIE
interrupt enable bit is set.

The Card SHALL assert IREQ# whenever the DA or FR bits are set for the extended channel and the DAIE or FRIE
interrupt enable bit is set.

Since the data and extended channel interrupts are logically OR’ed together to a single interrupt signal, a priority
must be established. Since the data channel is defined to be the command interface, it will have priority over the
extended channel. Additionally, the data channel will have less traffic overall than the extended channel.

When IREQ# is asserted by the Card, the Host SHALL first check the data channel and then the extended channel to
determine the source of the interrupt.

7.6.2 M-Mode

When the Card is operating in M-Mode, the CPU interface consists of two logical channels, the data (or command)
channel and the extended channel. The command channel is typically used for command and control transactions,
while the extended channel is typically used for data transfers (SI, EAS, IP, etc.).

7.6.2.1 Physical Interface

The physical interface for the CPU interface is a modified SPI (Serial Peripheral Interface). Since the only
connection is between the Host and the Card, the phase is fixed with the data changing on the falling edge of the
clock (SCLK) and clocked in on the rising edge. A control signal (SCTL) is provided by the Host to signal the start
of a byte of data as well as the start of a new packet. Two separate data signals are used: M-Host to Card data (SDI),
and Card to M-Host (SDO).

7.6.2.2 Packet Format

When the start of a packet occurs, the first byte is defined to be the interface query byte, which includes the interface
flags defined below.

After the interface query byte, the packet length is contained in the next two bytes, which contain the number of data
bytes following in the packet. In other words, the ‘length’ does not include the first three bytes of the packet. The
MSB of the packet count is transmitted first. The maximum number of data bytes in a packet is 4,096. Therefore, the
three most significant bits of the 16-bit length should always be zero.

60 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Table 7.6-5 - CPU Interface Packet Format

Bit 7 6 5 4 3 2 1 0
Query X HR EC L F DA ER X
Host Length MSB b7 b6 b5 b4 b3 b2 bl b0
Length LSB b7 b6 b5 b4 b3 b2 bl b0
Data Byte(s) b7 b6 b5 b4 b3 b2 bl b0
Query X CR EC L F DA ER X
Length MSB b7 b6 b5 b4 b3 b2 bl b0
M-CARD
Length LSB b7 b6 b5 b4 b3 b2 bl b0
Data Bytes(s) b7 b6 b5 b4 b3 b2 bl b0

If the DA, HR and CR bits are set in the interface query byte, then either data channel or extended channel data will
follow the packet length bytes.

7.6.2.3
HR

CR

EC

DA

Interface Flags

Host Ready: The Host SHALL set the HR (Host Ready) flag in the interface query byte when it is
ready to receive only or transmit and receive data. This flag allows the Host to control the throughput
of packets from the Card.

CableCARD Ready: The Card SHALL set the CR (CableCARD Ready) flag in the interface query
byte when it is ready to receive only or transmit and receive data. After the RESET signal goes
inactive, this signal will indicate to the Host when the Card is ready. The Card SHALL set the CR
(CableCARD Ready) flag in the interface query byte less than 5 seconds after RESET goes inactive.
This flag also allows the M-CARD to control the throughput of packets from the Host.

Extended Channel: 0 = Command Channel, 1 = Extended Channel. The Host or Card SHALL use
the EC (Extended Channel) flag in the interface query byte to determine whether the data transmitted
from the source is intended for the Command or Extended channels. It should be noted that it is
possible for the Host to transmit data (from either channel) or vice versa.

Last: Indicates to the Host/Card that the packet is the last one. Transactions are segmented into
multiple packets only when the data size is greater than 4,096 bytes. Transactions that contain less
than 4,096 data bytes will set this flag.

First: Indicates to the Hosts/Card that the packet is the first one. Transactions are segmented into
multiple packets only when the data size is greater than 4,096 bytes. Transactions that contain less
than 4,096 data bytes will set this flag.

Data Available: Indicates to the Host/Card that data is available.

In case HR and CR is set and the Host and the Card set its DA within the same 1QB, two different
cases can occur.

Here are examples for each case:
1. Host indicates to send 5 data bytes, Card indicates to send 9 data bytes.

The Card will ignore the SDI signal while it sends (and the Host receives) the extra Card to Host data
(data clocks 6 to 9), with the next 1QB byte occurring on the clock after the 9th data byte is
transferred.

2. Host indicates to send 12 data bytes, Card indicates to send 4 data bytes.

4/18/13

CablelLabs® 61

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

The Host will ignore the SDO signal while it sends (and the Card receives) the extra Host to Card data
(data clocks 5 to 12), with the next 1QB byte occurring on the clock after the 12th data byte is
transferred.

ER Error detected: The Host or Card has detected an error in the CPU interface. If the Host detects that
the Card has set the ER (Error Detected) flag in interface query byte, it SHALL perform a PCMCIA
reset on the Card. The Card MAY choose to ignore the Host’s ER flag in the interface query byte.

7.6.2.4 Interface Model

The Host is the master of this interface. The Host SHALL always transmit the interface query byte (1QB), even when
it does not have data to transmit. If the Card has data (DA = 1) and the Card is ready (CR=1) and the Host is ready
(HR=1), then the Host is responsible for clocking and receiving the entire packet length and inputting all bytes as
defined in the packet count. The Host SHALL transmit the IQB immediately following the last byte of the previous
packet byte, even if the previous packet did not include any data. This allows for a high-speed interface for both
Host and Card sourced data without resorting to separate interrupt signals.

When the Host detects that the Card has set the DA (Data Available) flag in the interface query byte and the CR flag
and its HR flag is set, the Host SHALL read the following length bytes from the Card and clock all of the remaining
data in.

When the Host sets its DA and HR flag and detects that the Card has set its CR flag in the interface query byte, the
Host SHALL send the length bytes to the Card and send all remaining data.

The Host SHALL repeatedly send the 1QB followed by 2 bytes of packet count until a message transfer begins. If the
Host does not have any data to send, it SHALL set the packet count following the 1QB to 0.

The Host SHALL have separate read and write buffers that are 4,096 bytes, excluding the interface query byte and
packet count.

The Card SHALL have separate read and write buffers that are 4,096 bytes, excluding the interface query byte and
packet count.

The Host SHALL format packets as follows:

e Each packet will only be either a command or extended type, i.e., no mixing of types.

For the command channel, only one SPDU is allowed per packet.

e For the extended channel, only one flow ID is allowed per packet.
o If a packet is not segmented, then both the F and L bits will be set.
e Packets smaller than 4,096 bytes are not to be segmented.

o Ifapacket is larger than 4,096 bytes, then it will be segmented into contiguous packets with the F bit set for
the first packet and the L bit set for the last packet.

The Card SHALL format packets as follows:
e Each packet will only be either a command or extended type, i.e., no mixing of types.
e For the command channel, only one SPDU is allowed per packet.
e For the extended channel, only one flow ID is allowed per packet.
o Ifapacket is not segmented, then both the F and L bits will be set.
e Packets smaller than 4,096 bytes are not to be segmented.

o Ifapacket is larger than 4,096 bytes, then it will be segmented into contiguous packets, with the F bit set
for the first packet, and the L bit set for the last packet.

62 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

The Card SHALL set the ER bit upon detection of an error condition (e.g. under-run). This should be considered to
be a catastrophic failure during normal operation, causing the Host to perform a PCMCIA reset on the Card. There is
an ER bit for the Host to set; however, the Card may ignore this bit.

7.6.3 S-Mode Initialization and Operation
This section defines the interface initialization procedure between the Card operating in S-Mode and the Host.

All devices go through an initialization phase whenever a reset condition occurs, such as when initial power is
applied, manual reset, or an unrecoverable software error condition occurs.

The Host and Card both initialize to the PCMCIA interface upon a power-up or a PCMCIA Reset condition and will,
at a particular point in the sequence, change to the CableCARD device interface. This point at which the interface
changes from the PCMCIA interface to the CableCARD Device interface is defined as the CableCARD Device
Personality Change.

There are two possible resets that can occur in the Card interface: a hard reset (PCMCIA reset) and a soft reset (Card
reset).

7.6.3.1 PCMCIA Reset

A PCMCIA reset is defined to be one in which the Host brings the RESET signal to the Card active. This causes the
Card to revert to the PCMCIA interface [PCMCIA2] and will no longer route the MPEG data stream through the
Card. Obviously this will cause problems to the viewer and should be avoided except in the case that a catastrophic
failure has occurred in the Card or in the interface between the Host and the Card.

7.6.3.2 Card Reset

Card Reset is defined to occur when the Host sets the RS bit in the Card Control Register any time after the
CableCARD personality change has completed. Card Reset operation is accomplished in the following manner:

To initiate a Card Reset, the Host SHALL set the RS bit in both the data channel and extended channel Control
Registers.

After a Card Reset, the Card interface operation SHALL revert to the state of operation that occurs just after
completion of the CableCARD Device personality change.

The Card SHALL continue to route MPEG data streams during a Card Reset operation.
The Host SHALL continue to route MPEG data streams to the Card during a Card Reset operation.

Upon initiation of Card Reset, the Card SHALL cease CA-descrambling of any MPEG data stream until a new
session is opened to the CA Resource.

The Card reset should occur when the Host detects an error in the Card interface or the Card has set the IR flag.

7.6.3.3 Initialize Interface Request Flag

A status bit called the Initialize Interface Request (I1R) flag is included in bit 4 of the status register to allow the
Card to request that the interface be re-initialized. This bit exists in both the data channel and extended channel.
When the Card needs to request an interface initialization, it SHALL set the IIR bit in both the Data and Extended
Channel Control Registers. Upon recognition of the IIR flag being set, the Host SHALL implement a Card Reset by
setting the RS bit in the control registers. The Card SHALL clear the IIR flag when the RS bit is set. The Card
SHALL NOT send LPDUs to the Host after setting the 1IR bit until the completion of Card Reset operation.

7.6.34 Detailed CableCARD Reset Operation

The following flowchart (Card Reset Sequence) is the required implementation of the Card RS operation.

4/18/13 CablelLabs® 63

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Host sets RS flag
on Data Channel

v

Host clears RS
flags on Data
Channel after a
minimum of 40
usec

v

Host sets RS flag
on Extended
Channel

v

Host clears RS
flags on Extended
Channel after a
minimum of 40
usec

Data Channel No
FR flag set?
-«
Extended No
Channel

R flag set?

Yes

Host executes
Data Channel
buffer size
negotiation

v

Host executes
Extended Channel
buffer size
negotiation

Figure 7.6-5 - Card RS Operation

64

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

7.6.3.5 Configuration Option Register

The Host SHALL support configuration of the Configuration Option Register in the Card as defined in section 4.14
of [PCMCIAZ2]. Host support for registers other than the Configuration Option Register is optional.

The Card SHALL support the Configuration Option Register as defined in section 4.13 of [PCMCIAZ2].

The Configuration Option Register (COR) in the Card is only accessible prior to the CableCARD personality change
(Section 7.3.4). After the CableCARD personality change, the COR is no longer available. Any relevant
configuration data is transferred via the data or extended channels and is not covered in this document.

By writing the COR with the value defined by the Configuration-Table index byte, TPCE_INDX, from the
CISTPL_CFTABLE_ENTRY tuple, the Host configures the Card into the CableCARD device mode, thus causing
the CableCARD personality change.

7.6.3.6 Initialization Conditions
There are four possible conditions that can cause the PCMCIA interface initialization phase, they are as follows:

1. The Host and Card are powered up at the same time. After both have performed their internal
initialization, then the interface initialization will begin.

2. Host has been powered and in a steady state. A Card is then inserted. After the Card has performed its
internal initialization, the interface initialization phase will begin.

3. The Host has performed a reset operation for some reason (spurious signal, brownout, software
problem, etc.) that has not caused the Card to reset. The Host will go through its initialization and then
should perform a PCMCIA reset on the Card, if it can detect that the Card has not been reset. After the
Card has performed its internal initialization, then the interface initialization will begin.

4. The Host has lost communications with the Card.

7.6.3.7 OOB Connection and Disconnection Behavior

The Host will not activate or transmit from its OOB transmitter until a Card is connected to the Host and initialized
to the CableCARD Device interface.

The Host SHALL disable the RDC OOB transmitter when a Card is disconnected after the Host and Card have been
initialized.

The OOB receiver in the Host SHALL be connected only to the Card interface.

7.6.3.8 Card Personality Change Sequence

The CableCARD personality change covers the detection of the Card and the transition to the CableCARD device
interface. A step-by-step operation for the interface initialization of the physical layer is defined below.

1. The Card is inserted or already present in a Host.
2. Please refer to section 4.12.1 of [PCMCIAZ2] for timing diagrams and specifications.

Power-up: Power is applied to the Card with the RESET signal in a high-Z state for a minimum of 1
msec after VCC is valid (section 4.4.20 of the PC Card Electrical Specification). Upon power-up, the
Card’s READY signal (pin 16) SHALL be inactive (logic 0) within 10 usec after the RESET signal
goes inactive (logic 0), unless the Card will be ready for access within 20 msec after RESET goes
inactive. After power-up, while the Card's READY signal pin is inactive, the Card SHALL only operate
as an un-configured PCMCIA module.

PCMCIA Reset: The RESET signal goes active for a minimum of 10 usec. Upon PCMCIA reset, the
Card’s READY signal (pin 16) SHALL be inactive (logic 0) within 10 usec after RESET goes inactive
(logic 0), unless the Card will be ready for access within 20 msec after RESET goes inactive. After

4/18/13 CablelLabs® 65

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

PCMCIA reset, while the Card's READY signal pin is inactive, the Card SHALL only operate as an un-
configured PCMCIA module.

After a minimum of 20 msec after RESET goes inactive (section 4.4.6 of [PCMCIAZ2]), the Host
SHALL test the Card’s READY signal. The Host SHALL NOT attempt to access the Card until the
READY signal is active (logic 1).

After the Card has completed its PCMCIA internal initialization, it SHALL bring the READY signal
active. At this time, all of the interface signals are defined by the PC Card interface standard for
Memory Only Card interface (Table 4-1 of [PCMCIAZ2]). The Card SHALL bring READY active
within 5 seconds after RESET goes inactive (section 4.4.6 of [PCMCIA2]).

The Host SHALL read the Configuration Information Structure (CIS) available in the attribute memory
to determine that the device is a CableCARD device, what version is used, and any other pertinent
information. This data is outlined in Section 7.3.4 of this document.

The Host SHALL read all the CCST_CIF subtuples to verify that the SCTE interface ID number
(STCIL_IFN) is present (0x341).

Informative Note: If it is not present, this means that a different PCMCIA module has been inserted,
which is not capable of operating with the SCTE format, however, it may be capable of operating as an
NRSS-B module [NRSSB].

The Host SHALL write into the Configuration Option Register (COR) the value read in TPCE_INDX.
Following the write cycle of the COR during a personality change, the Host SHALL switch the address
signals A4-A8 to the OOB interface signals and the inband transport stream signals. The Host
implements a pull-down resistor on the ETX signal to prevent spurious operation of the transmitter. It
also implements a pull down resistor on the MCLKO signal to prevent invalid inband transport data
from being received prior to the CableCARD device personality change.

At a minimum of 10 usec after the COR write signal during a personality change, the Card SHALL
switch to the OOB interface signals and the inband transport stream signals.

In the event that the Card requires additional initialization, it SHALL NOT bring the FR bit in the
status register active until it is ready to begin communications with the Host.

10. This completes the physical link layer initialization.

Figure 7.6-6 illustrates this operation.

66

CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

CableCARD Personality Change

Begin upper layer initialization

Sequence
Host CableCARD Device
RESET =0
Host reset) S " | CableCARD Device reset
Host completes internal initialization READY =0 CableCARD Device completes internal
])] h initialization
Waits until READY = 1 to begin READY =1
CableCARD Device Personality <
Change Sequence Read CCST_CIF
Host reads CCST_CIF from SCTE - Return hex341
CableCARD Device's module's
attribute register
i CableCARD Device changes from
Host enables CableCARD Device Write TPCE_INDX »| PCMCIA interface to Cab?eCARD
interface in SCTE POD module by Device interface.
writing TPCE_INDX value to
Configuration Option Register (COR) Wait 10 usec min.
Host converts toCableCARD Device | g FR=1 CableCARD Device OOB interface
interface (A4-A8 become OOB becomes active
interface)

End of CableCARD Personality
Change Sequence

7.6.3.9

Figure 7.6-6 - CableCARD Personality Change Sequence

Physical Layer Initialization

The physical layer initialization covers the buffer size negotiation of both the data and extended channels, and the
initialization of the Host-Card transport layer and resource manager. The Host SHALL initialize the Data Channel
first and the Extended Channel second.

7.6.3.9.1 Data Channel Initialization

The data channel SHALL be initialized by the Host as follows:

The Host writes a ‘1’ to the RS bit in the data channel Control Register.
After a minimum of 40 usec, the Host writes a ‘0’ to the RS bit in the data channel Control Register.

The Card clears any data in the data channel data buffer and configures the interface so it can perform the
data channel buffer size negotiation protocol.

When the Reset operation is complete, the Card sets the data channel FR bit to “1°.

The Host waits a minimum of five seconds for the Card to set the FR bit to ‘1" before performing a
PCMCIA reset.

4/18/13

CablelLabs®

67

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

7.6.3.9.2 Extended Channel Initialization

The extended channel SHALL be initialized by the Host as follows:
e The Host writes a ‘1’ to the RS bit in the extended channel Control Register.

e After a minimum of 40 usec, the Host writes a ‘0’ to the RS bit in the extended channel Control/Status
Register.

e The Card clears any data in the extended channel data buffer and configures the interface so it can perform
the extended data channel buffer size negotiation protocol.

e When the Reset operation is complete, the Card sets the extended channel FR bit to “1°.

e The Host waits a minimum of five seconds for the Card to set the FR bit to ‘1’ before performing a
PCMCIA reset.

7.6.3.9.3 Data Channel Buffer Size Negotiation

After initialization of the Data Channel, the Host SHALL determine the Data Channel buffer size of the Card by
using the buffer size negotiation protocol. Neither Host nor Card may use the interface for transferring data until this
protocol has completed. The Host starts the negotiation by writing a '1' to the SR bit in the Control Register, waiting
for the DA bit to be set and then reading the buffer size by a Card to Host transfer operation. At the end of the
transfer operation the host resets the SR bit to '0'. The data returned will be 2 bytes with the most significant byte
first. The Card SHALL support a minimum Data Channel buffer size of 16 bytes. The maximum is set by the
limitation of the Size Register (65535 bytes). Similarly the Host may have a buffer size limitation that it imposes.
The Host SHALL support a minimum Data Channel buffer size of 256 bytes, but it can be up to 65535 bytes. After
reading the buffer size the Card can support, the Host takes the lower of its own buffer size and the Card buffer size.
This will be the buffer size used for all subsequent data transfers between Host and Card. The Host now tells the
Card to use this buffer size by writing a ‘1’ to the SW bit in the Command Register, waiting until the FR bit is set
and then writing the size as 2 bytes of data, most significant byte first, using the Host to Card transfer operation. At
the end of the transfer the Host sets the SW bit to '0'. The negotiated buffer size applies to both directions of data
flow, even in double buffer implementations.

The Host SHALL negotiate to the lower of its buffer size and the Card buffer size, and report that back to the Card.

7.6.3.94 Extended Channel Buffer Size Negotiation

The Extended Channel buffer size negotiation is the same as the data channel defined in Section 7.6.3.9.3. Note that
the buffer sizes of the data and extended channels do not have to be the same. The Card SHALL support a minimum
Extended Channel buffer size of 16 bytes and a maximum of 65,535 bytes. The Host SHALL support a minimum
Extended Channel buffer size of 256 bytes and a maximum of 65,535 bytes.

Using the Buffer Size Negotiation protocol called out in Section 7.6.3.9.3, the Host will read the Card’s extended
channel buffer size, compare the result to its extended channel buffer size, and write the smaller of the two buffer
sizes to the Card’s extended channel.

7.6.4 M-CARD Initialization and Operation

For the M-CARD, the following describes the operation of the CPU interface at initialization through opening the
resource manager session. In this description, it is assumed that the M-CARD and Host contain four buffers, one
each for transmission and receiving for both channels, each buffer is 4,096 bytes. All flags are assumed to be
initialized to zero and will remain unchanged unless specifically called out below. In the tables below, an X is
defined to be "don’t care” for the receiving device.

68 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

In M-Mode, the CableCARD Interface SHALL be initialized as follows:

Table 7.6-6 - Buffer 1

The Host brings RESET inactive. The Host SHALL bring its HR flag active within 1 second of RESET
becoming inactive. It should be noted that it is expected for the Host to be fully operational prior to
bringing RESET inactive.

Bit 7 6 5 4 3 2 1
Query X HR=1 EC=X |L=X |F=X DA=0 ER=0 X
Host Length MSB (0 0 0 0 0 0
Length LSB |0 0 0 0
Query X CR=0 EC=X |L=X |F=X DA=0 ER=0 X
M-CARD |Length MSB | X X X X X X X X
Length LSB | X X X X X X X X

e The M-CARD brings its CR flag active within 5 seconds of RESET becoming inactive.
Table 7.6-7 - Buffer 2

Bit 7 6 5 4 3 2 1
Query X HR=1 EC=X |L=X [F=X DA=0 ER=0 X
Host Length MSB (0 0 0 0
Length LSB (0 0 0 0
Query X CR=1 EC=X |L=X [F=X DA=0 ER=0 X
M-CARD |Length MSB | X X X X X X X X
Length LSB | X X X X X X X X

The M-CARD loads its open_session_request SPDU to open a session to the Host's resource manager

resource into its command channel output buffer.

The M-CARD sets its DA flag and clears its EC flag on the next Host query. Since there are 6 bytes in the

open_session_request, it will set the length to 0x0006. The Host will read the second and third bytes of data

from the M-CARD.
The Host then clocks in 6 data bytes from the M-CARD.

Table 7.6-8 - Buffer 3

Bit 7 6 5

Host

4
Query =X

Length MSB

Length LSB

M-CARD | Length MSB

Query

o|lo|x|o|o|x

Length LSB

o|lo|x|o|o|x

4/18/13

CablelLabs®

69

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

e The Host reads the value in its command channel input buffer, then responds by putting its
open_session_response SPDU into its command channel output buffer. If the time to process this is
significant, then the Host may clear its HR flag until it is ready to send/receive more data.

e The Host sets its DA flag and HR flag then clears its EC flag on the next Host query. The 2nd and 3rd bytes
contain the length of the data, which will be 0x0009 for the open_session_response SPDU.

e The Host clocks out all data in its command channel output buffer. The M-CARD will clock this data into
its command channel receive buffer.

Table 7.6-9 - Buffer 4

Bit 7 6 5 4 3 2 1 0
Query X HR=1 |EC=0 |[L=1 F=1 DA=1 ER=0 X
Host Length MSB |0 0 0 0 0
LengthLSB |0 0 1 0 1
Query X CR=1 |EC=X |L=X F=X DA=0 ER=0 X
M-CARD |LengthMSB |0 0 0 0
LengthLSB |0 0 0 0

e The M-CARD then clears its ready flag, CR, while it processes the data in its buffer.

e Once the resource manager session is open, the M-CARD will load the profile_ing() APDU into its
command channel output buffer and then bring the CR and DA flags active.

70 CablelLabs® 4/18/13

OC-SP-CCIF2.0-126-130418

CableCARD Interface 2.0 Specification

ereg

le———as1ubue]

W

P}

aSN ubue] ————

e

)

[onuo) —————»

ads

dHs

110S

A0S

Figure 7.6-7 - M-Mode Serial Interface Protocol Diagram

71

CablelLabs®

4/18/13

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

7.7 Link Layer Connection

The Link Layer on the Command Interface fragments Transport Protocol Data Units (TPDU), if necessary, for
sending over the limited buffer size of the Physical Layer, and reassembles received fragments. It assumes that the
Physical Layer transfer mechanism is reliable, that is, it keeps the data in the correct order and neither deletes nor
repeats any of it.

A Link Connection is established automatically as a consequence of the establishment of the Physical Layer
connection, that is, plugging in the Card or powering up, reading the Card Information Structure, and configuring the
Card in the appropriate mode. No further explicit establishment procedure is required. The size of each Link
Protocol Data Unit (LPDU) depends on the size that the Host and Card negotiated using the SR & SW commands on
the interface. Each LPDU consists of a two-byte header followed by a fragment of a TPDU, the total size not
exceeding the negotiated buffer size. The first byte of the header is the Transport Connection Identifier for that
TPDU fragment. The second byte contains a More/Last indicator in its most significant bit. If the bit is set to '1' then
at least one more TPDU fragment follows, and if the bit is set to '0' then it indicates this is the last (or only) fragment
of the TPDU for that Transport Connection. All other bits in the second byte are reserved and are set to zero. This is
illustrated in Figure 7.7-1.

Transport Connection ID
M/L 0

TPDU fragment

Figure 7.7-1 - Layout of Link Protocol Data Unit

Each TPDU starts in a new LPDU, that is, the LPDU carrying the last fragment of the previous TPDU on a
Transport Connection cannot also carry the first fragment of the next one.

No explicit initialization of the Link Layer is required.

7.8 Transport Layer Connection

The transport layer (TPDU) connection is covered in the following sections. The maximum length of the transport
data is limited to 65,534 bytes.

The communication of data across the Data Channel is defined in terms of objects plus the interrupt mode extension.
Card applications use the Data Channel when they require support from Host resources. The objects are coded by
means of a general Tag-Length-Value coding derived from that used to code ASN.1 syntax.

72 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Table 7.8-1 - Length field used by all PDUs at Transport, Session and Application Layers

Syntax No. of Mnemonic
bits

Length_field(){
size_indicator
if (size_indicator ==0)
length_value
else if size_indicator==1){

1 bslbf
7

length_field_size 7 uimsbf
8

uimsbf

for (i=0;i<length_field_size; i++){
Length_value_byte bslbf
}

}

3

This section describes the ASN.1 objects for the Transport and Session Layers that travel over the command
interface. For all these objects, and for the Application Layer objects, the coding in Table 7.8-1 applies for the
Length field, which indicates the number of bytes in the following Value field.

Size_indicator is the first bit of the length_field. If size_indicator = 0, the length of the data field is coded in the
succeeding 7 bits. Any length from 0 to 127 can thus be encoded on one byte. If the length exceeds 127, then
size_indicator is set to 1. In this case, the succeeding 7 bits code the number of subsequent bytes in the length field.
Those subsequent bytes shall be concatenated, first byte at the most significant end, to encode an integer value. Any
value field length up to 65535 can thus be encoded by three bytes. The indefinite length format specified by the basic
encoding rules of ASN.1 is not used [I1SO8825].

7.8.1 Transport Layer

The Transport Layer of the Data Channel operates on top of a Link Layer provided by the particular physical
implementation used. The transport protocol assumes that the Link Layer is reliable, that is, data is conveyed in the
correct order and with no deletion or repetition of data. The transport protocol is a command-response protocol
where the Host sends a command to the Card, using a Command Transport Protocol Data Unit (C_TPDU) and waits
for a response from the Card using a Response Transport Protocol Data Unit (R_TPDU). The Card cannot initiate
communication: it must wait for the Host to poll it or send it data first. The protocol is supported by 11 Transport
Layer objects. Some of them appear only in C_TPDUs from the Host, some only in R_TPDUs from the Card and
some can appear in either. Create_ T_C and C_T_C_Reply, create new Transport Connections. Delete_ T_C and
D_T_C_Reply, shut them down. Request T_C and New_T_C allow a Card to request the Host to create a new
Transport Connection. T_C_Error allows error conditions to be signaled. T_SB carries status information from Card
to Host. T_RCV requests waiting data from a Card and T_Data_More and T_Data_Last convey data from higher
layers between Host and Card. T_Data_Last with an empty data field is used by the Host to poll regularly for data
from the Card when it has nothing to send itself. A C_TPDU from the Host contains only one Transport Protocol
Object. A R_TPDU from a Card may carry one or two Transport Protocol Objects. The sole object or second object
of a pairina R_TPDU is always a T_SB object.

7.8.2 Transport protocol objects

Note: the transport layer and protocol was originally defined for a Host that supports multiple modules, or Cards.
However, the OpenCable Host platform is currently specified to only support one Card at a time, so there will only
be one transport connection open at a time. Many of these transport protocol objects are not used in the OpenCable
Host, but are left here for possible future expansion.

All transport layer objects contain a transport connection identifier. This is one octet, allowing up to 255 Transport
Layer connections to be active on the Host simultaneously. Transport connection identifier value 0 is reserved. The
identifier value is always assigned by the Host. The protocol is described in detail here as it is common to all

4/18/13 CablelLabs® 73

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

physical implementations but the objects are only described in general terms. The detailed coding of the objects
depends upon the particular physical layer used.

1. Create_T_C creates the Transport Connection. It is only issued by the Host and carries the transport
connection identifier value for the connection to be established.

2. C_T_C_Reply is the response from the Card to Create_T_C and carries the transport connection
identifier for the created connection.

3. Delete_T_C deletes an existing Transport Connection. It has as a parameter the transport connection
identifier for the connection to be deleted. It can be issued by either Host or Card. If issued by the Card
it does so in response to a poll or data from the Host.

4. D_T_C_Reply is the reply to the delete. In some circumstances this reply may not reach its destination,
so the Delete_T_C object has a time-out associated with it. If the time-out matures before the reply is
received then all actions which would have been taken on receipt of the reply can be taken at the
timeout.

5. Request_T_C requests the Host to create a new Transport Connection. It is sent on an existing
Transport Connection from that Card. It is sent in response to a poll or data from the Host.

6. New_T_C isthe response to Request_T_C. It is sent on the same Transport Connection as the
Request_T_C object, and carries the transport connection identifier of the new connection. New_T_C
is immediately followed by a Create_T_C object for the new connection, which sets up the Transport
Connection proper.

7. T_C_Error is sent to signal an error condition and carries a 1-byte error code specifying the error. This
is sent in response to Request_T_C to signal that no more Transport Connections are available.

8. T_SBissentasareply to all objects from the Host, either appended to other protocol objects or sent
on its own, as appropriate. It carries one byte which indicates if the Card has data available to send.

9. T_RCV is sent by the Host to request that data the Card wishes to send (signaled in a previous T_SB
from the Card) be returned to the Host.

10. T_Data_More and T_Data_Last convey data between Host and Card, and can be in eithera C_TPDU
or a R_TPDU. From the Card they are only ever sent in response to an explicit request by a T_RCV
from the Host. T_Data_More is used if a Protocol Data Unit (PDU) from a higher layer has to be split
into fragments for sending due to external constraints on the size of data transfers. It indicates that at
least one more fragment of the upper-layer PDU will be sent after this one. T_Data_Last indicates the
last or only fragment of an upper-layer PDU.

7.8.3 Transport protocol

When the Host wishes to set up a transport connection to the Card, it sends the Create_T_C object and moves to
state 'In Creation'. The Card shall reply directly witha C_T_C_Reply object. If after a time-out period the Card does
not respond, then the Host returns to the idle state (via the 'Time-out' arc). The Host will not transmit or poll again on
that particular transport connection, and a late C_T_C_Reply will be ignored. If, subsequently, the Host re-uses the
same transport connection identifier, then the Card will receive Create_T_C again, and from this it will infer that the
existing transport connection is terminated, and a new one is being set up.

When the Card replies with C_T_C_Reply, the Host moves to the 'Active’ state of the connection. If the Host has
data to send, it can now do so, but otherwise it issues a poll and then polls regularly thereafter on the connection.

If the Host wishes to terminate the transport connection, it sends a Delete_T_C object and moves to the ‘In Deletion’
state. It then returns to the 'Idle’ state upon receipt of a D_T_C_Reply object, or after a time-out if none is received.
If the Host receives a Delete_T_C object from the module it issues a D_T_C_Reply object and goes directly to the
idle state. Except for the 'Active’ state, any object received in any state which is not expected is ignored.

In the 'Active’ state the Host issues polls periodically, or sends data if it has an upper-layer PDU to send. In response
it receives a T_SB object, possibly preceded by a Request_T_C or Delete_T_C object if necessary.

74 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

In the 'Active' state, data can be sent by the Host at any time. If the Card wishes to send data it must wait for a

message from the Host - normally data or a poll - and then indicate that it has data available in the T_SB reply. The

Host will then at some point - not necessarily immediately - send a T_RCV request to the Card to which the Card
responds by sending the waiting data in a T_Data object. Where T_Data_More is used, each subsequent fragment

must wait for another T_RCV from the Host before it can be sent.

‘Create’ request
from Host S/W

Send “Create_T_C”

'

T Timeout—

[Send “D_T_C_Reply™
Timeout D_T_C_Reply .
g received
|

_ ‘"Delete_T_C"
. received

In Deletion

‘Delete’ request
Send “Delete_T_C” from Host S/W

‘\‘C_T_C_Reply"

\ received

Send “Poll”

Figure 7.8-1 - State Transition Diagram - Host Side of the Transport Protocol

Table 7.8-2 - Expected Received Objects - Transport Connection on the Host

State Expected Objects - Host

Idle None

In Creation C_T_C_Reply (+T_SB)

Active T Data_More, T_Data_Last, Request T_C, Delete T C, T_SB

In Deletion D_T C_Reply (+T_SB)

4/18/13 CablelLabs®

75

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

“Create_T_C”
received
Send “C_T_C_Reply”
4 N Send
“_ | “D_T_C_Reply”
Timeout \
| /
“ / ._“Delete_T_C" ‘
“D_T_C_Reply” “_received . ,
received A Create_T_C
) received
N
In Deletion //
P Send “C_T_C_Reply”
- ‘Delete’ request
Send “Delete_T_C” from Host S/W

Figure 7.8-2 - State Transition Diagram - Card Side of the Transport Protocol

Table 7.8-3 - Expected Received Objects - Transport Connection on the Card

State Expected Objects - Host

Idle Create T C

Active Create_ T_C, T_Data_More, T_Data_Last, New _T_C, Delete T _C,
T_RCV, T_C_Error

In Deletion D_T_C_Reply

An example of an object transfer sequence to create and use a Transport Connection is illustrated in Figure 7.8-3.

76 CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Host Card
Create_T_C (1)
-
C_T_C_Reply (1, no_data)
-
T_Data_Last (1,data)
>
T_SB (1, no_data)
-«
T_Data_Last (1,poll)
|
T_SB(1, data)
-«
T_RCV(1)
>
T_Data_Last(1, data)
-«
T_Data_Last (1, data)
|
T_SB (1, no_data)
-«

Figure 7.8-3 - Object Transfer Sequence - Transport Protocol

In this example it is assumed that the Card has just been plugged in and a physical connection has been established
(PC Card initialization, etc.). The Host now issues a Create_T_C for Transport Connection number 1. The Card
replies immediately with C_T_C_Reply for Transport Connection 1, also indicating it has no data to send. The Host
now sends some data with a T_Data_Last and the Card responds with just a T_SB indicating no data to send. Some
time later the Host polls the Card with an empty T_Data_Last, and the Card responds with a T_SB, indicating that it
has data to send on this connection. The Host responds with T_RCV to receive the data, and the Card responds with
T_Data_Last containing the data. The Host replies with data of its own and the Card responds to that indicating it
has no further data to send.

7.8.4 Transport Protocol Objects

7.84.1 Command TPDU

The Host SHALL use the Command TPDU (C_TPDU) as defined in Table 7.8-4 to convey Transport Protocol
objects from to the Card.

Header Body
C_tpdu_tag length_field t cid [data field]

Figure 7.8-4 - C_TPDU Structure

4/18/13 CablelLabs® 77

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Table 7.8-4 - Command TPDU (C_TPDU)

Syntax No. of Bits Mnemonic
C_TPDUQ {
Cc_tpdu_tag 8 uimsbf
length_field()
t c id 8 uimsbf
for (i=0; i<length value; i++) {
data_byte 8 uimsbf
}
3}

The C_TPDU is made of two parts:

e A mandatory header made of a tag value ¢_tpdu_tag, coding the TPDU command, a length_field, coding the
length of all the following fields, and a transport connection identifier noted t ¢ _id.

e A conditional body of variable length equal to the length coded by length_field minus one.

7.8.4.2 Response TPDU

The Card SHALL use the Response TPDU (R_TPDU) as defined in Table 7.8-5 to convey Transport Protocol

objects to the Host.

Header Body Status
r_tpdu_tag length_field t c_id [data field] SB_tag length_field = 2 t c_id
SB_value
Figure 7.8-5 - R_TPDU Structure
Table 7.8-5 - Response TPDU (R_TPDU)
Syntax No. of Bits Mnemonic

R_TPDUQ {

r_tpdu_tag 8 uimsbf

length_field()

t c id 8 uimsbf

for (i=0; i<length value; i++) {

data_byte 8 uimsbf

}

SB_tag 8 uimsbf

length_field()=2

t c id 8 uimsbf

SB_value 8 uimsbf
3}

The R_TPDU is made of three parts:

e A conditional header made of a tag value r_tpdu_tag, coding the TPDU response, a length field, coding the
length of the following transport connection identifier and data fields, and a transport connection identifier field
noted t_c_id. The status is not included in the calculation of length_field.

e A conditional body of variable length equal to the length coded by length_field minus one.

78 CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

e A mandatory Status made of a Status tag SB_tag, a length_field equal to 2, a transport connection identifier and
a one-byte Status Byte value (SB_value) coded according to Table 7.8-6 and Table 7.8-7.

Table 7.8-6 - SB_value

Bit 7 6 5 4 3 2 1 0
DA reserved

The 1-bit DA (Data Available) indicator field indicates whether the module has a message available in its output
buffer for the host. The host has to issue a Receive_data C_TPDU to get the message (see 7.8.4.10). The coding of
DA indicator is given in Table 7.8-7. The seven bits in the ‘reserved’ field are set to zero.

Table 7.8-7 - Coding of bit 7 of SB_value

Bit 7 Meaning
0 No Data available
1 Data available

7.8.4.3 Create Transport Connection (Create_T_C)

The Host SHALL open exactly one transport connection to the Card using the Create_ T_C TPDU as specified in
Table 7.8-8.

Table 7.8-8 - Create Transport Connection (Create_T_C)

Syntax Value (hex) No. of bits Mnemonic
Create T CQO {
create T _C_tag 0x82 8 uimsbf
length_field(Q 0x01 8 uimsbf
t c id XX 8 uimsbf
3}

Where XX is defined by the Host. A transport connection ID (t_c_id) value of zero is invalid.
The Create_T_C object is made of only one part:

A mandatory header made of a tag value create_T_C_tag, coding the Create_T_C object, a length_field
equal to one, and a transport connection identifier noted t_c_id.

Header

Create T C tag length_field t cid

Figure 7.8-6 - Create_T_C Structure

7.8.4.4 Create Transport Connection Reply (C_T_C_Reply)
The Card SHALL respond to the Create_ T_C TPDU with the C_T_C_Reply TPDU as specified in Table 7.8-9.

4/18/13 CablelLabs® 79

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Table 7.8-9 - Create Transport Connection Reply (C_T_C_Reply)

Syntax Value (hex) No. of bits Mnemonic
C_T_C Reply O{
C_T C Reply_tag 0x83 8 uimsbf
length_field() 0x01 8 uimsbf
t c id XX 8 uimsbf
b5

The C_T_C_Reply object is made of only one part:

A mandatory header made of a tag value C_T_C_Reply_tag, coding the C_T_C_Reply object, a
length_field equal to one, and a transport connection identifier.

Header

C_T_C_Reply tag

length_field

t cid

7.8.4.5

Delete Transport Connection (Delete_T_C)

Figure 7.8-7 - C_T_C_Reply Structure

Delete_T_C is issued by either the Card or the Host to delete an existing Transport Connection.

Table 7.8-10 - Delete Transport Connection (Delete_T_C)

Syntax Value (hex) No. of bits Mnemonic
delete T C (){
Delete T C_ _tag 0x84 8 uimsbf
length_field() 0x01 8 uimsbf
t c id XX 8 uimsbf
b5

The Delete_T_C object is made of only one part:

A mandatory header made of a tag value delete_T_C_tag, coding the Delete_T_C object, a length_field
equal to one, and a transport connection identifier.

Header

delete T C tag

length_field

t cid

7.8.4.6

Figure 7.8-8 - Delete_T_C Structure

Delete Transport Connection Reply (D_T_C_Reply)

D_T_C_Reply is sent by either the Card or the Host in reply to Delete_ T_C.

80

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Table 7.8-11 - Delete Transport Connection Reply (D_T_C Reply)

Syntax Value (hex) No. of bits Mnemonic
D_T_C Reply O{
d T C Reply_tag 0x85 8 uimsbf
length_field() 0x01 8 uimsbf
t c id XX 8 uimsbf
b5

The D_T_C_Reply object is made of only one part:

A mandatory header made of a tag value d_T_C_Reply tag, coding the D_T_C_Reply object, a
length_field equal to one, and a transport connection identifier.

Header
d T_C Reply tag length_field t cid

Figure 7.8-9 - D_T_C_Reply Structure

7.8.4.7 Request Transport Connection (Request_T_C)

Request_T_C is sent by the Card to the Host on an existing Transport Connection to create a new Transport
Connection.

Table 7.8-12 - Request Transport Connection (Request_T_C)

Syntax Value (hex) No. of bits Mnemonic
Request T C (O){
Request_T _C tag 0x86 8 uimsbf
length_field() 0x01 8 uimsbf
t c id XX 8 uimsbf
b5

The Request_T_C object is made of only one part:

A mandatory header made of a tag value request_T_C _tag, coding the Request_T_C object, a length_field
equal to one, and a transport connection identifier.

Header

Request T_C tag length_field t cid

Figure 7.8-10 - Request_T_C Structure

7.8.4.8 New Transport Connection (New_T_C)

New_T_C is sent in response to Request_T_C on the same Transport Connection as the Request_T_C object and
carries the transport connection identifier of the new connection.

4/18/13 CablelLabs® 81

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Table 7.8-13 - New Transport Connection (New_T_C)

Syntax Value (hex) No. of bits Mnemonic
New_ T _C O{
new T _C_tag 0x87 8 uimsbf
length_field() 0x02 8 uimsbf
t c id XX 8 uimsbf
new_t c_id XX 8 uimsbf
b5

The New_T_C object is made of two parts:

A mandatory header made of a tag value new_T_C_tag, coding the New_T_C object, a length_field equal to
two and a transport connection identifier.

A mandatory body consisting of the transport connection identifier for the new connection to be established.

Header
length_field

new T _C tag t cid

Figure 7.8-11 - Request_T_C Structure

7.8.4.9 Transport Connection Error (T_C_Error)

T_C_Error is sent in response to Request_T_C to signal that no more Transport Connections are available.

Table 7.8-14 - Transport Connection Error (T_C_Error)

Syntax Value (hex) No. of bits Mnemonic
T C Error (Q{
T C_Error_tag 0x88 8 uimsbf
length_field() 0x02 8 uimsbf
t c id XX 8 uimsbf
error_code XX 8 uimsbf
b5

The T_C_Error object is made of two parts:

e A mandatory header made of a tag value T_C_Error_tag, coding the T_C_Error object, a length_field equal to
two and a transport connection identifier.

e A mandatory body consisting of the error code for the particular error being signaled.

Transport Connection Error Codes are defined in Table 7.8-15.

Header
T_C _Error_tag length_field t cid
Figure 7.8-12 - T_C_Error Structure
Table 7.8-15 - Error Code Values
Error Code Meaning
1 No transport connections available
82 CableLabs” 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

7.8.4.10 Sending and receiving data using C_TPDU and R_TPDU

The send data command is used by the Host, when the transport connection is open, either to send data to the Card or
to get information given by the status byte. The Card replies with the status byte. See Figure 7.8-13.

Host

C_TPDU
(Send data header + data field)

Card

R_TPDU
(Status)

»
-

A

Figure 7.8-13 - Send Data command/ Response Pair

Table 7.8-16 - Send Data C_TPDU

c_TPDU_tag

Tdata_more
Tdata_last

length_field

Length of data field according to [ISO8825]

t cid

Transport connection identifier

data_field

Subset of (TLV TLV

TLV

Table 7.8-17 - Send Data R_TPDU

| Status

| according to Table 7.8-6

A C_TPDU with tag value Tdata_last and length_field=1 (no data field) can be issued by the Host to retrieve
information given by the status byte (see polling function, Section 7.8.4.10.1).

The Receive Data C_TPDU is used by the Host to receive data from the Card. See Figure 7.8-14.

Host

C_TPDU (Receive Data)

Card

R_TPDU
(header+data field+Status))

\J

ol
-«

Figure 7.8-14 - Receive Data command/ Response Pair

4/18/13

CablelLabs®

83

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Table 7.8-18 - Receive Data C_TPDU

C_TPDU_tag TRCV
length_field c_TPDU length is set to ‘1’
t cid Transport connection identifier

Table 7.8-19 - Receive Data R_TPDU

r TPDU_tag Tdata_more
Tdata_last
length_field Length of data field according to [ISO8825]
t cid Transport connection identifier
data_field Subset of (TLV TLV ... TLV
Status According to Table 7.8-6

A list of the TPDU _tag values is given in Table 7.8-20.

Table 7.8-20 - Transport Tag Values

tpdu_tag Tag Value (hex) Primitive or Direction
Constructed Host « Card
TSB “80” P «
TRCV “81” P -
Tcreate_t_c <82’ P -
Tc_t_c_reply <83 P “«
Tdelete_t_c <84 P ©
d_t_c_reply “85” P ©
Trequest_t_c “86” P “«
Tnew_t_c <87 P -
t_c_error <88~ P -
Tdata_last “AO” C ©
Tdata_more “Al” C ©

7.8.4.10.1 Data Channel Polling Function

The transport layer polling function is used by the Host to determine if the Card has data available to be sent on the
Data Channel. There is no corresponding polling function for the Extended Channel, since the transport layer is
absent.

The Host SHALL provide the Data Channel polling function by periodically sending the C_TPDU, T_data_last()
with length_field = 1 (t_c_id field only, no data field) to retrieve the Data Channel status byte.

The maximum period between Host executions of the Data Channel polling function SHALL be equal to 100ms.

The Card SHALL respond to the Data Channel polling function C_TPDU, T_data_last() with length_field = 1, with
the R_TPDU, T_SB().

If the Card receives the Data Channel polling function C_TPDU and does not have data to send, it SHALL reply
with the R_TPDU, T_SB() with SB_value field having the DA (Data Available) bit set to 0.

If the Card receives the Data Channel polling function C_TPDU and has data to send, it SHALL reply with the
R_TPDU, T_SB() with SB_value field having the DA (Data Available) bit set to 1.

84 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

If the Card indicates that data is available in the R_TPDU, T_SB(), the Host can issue one or more C_TPDUSs,
T_RCV() to retrieve the data until the DA (Data Available) bit of the SB_value field in the R_TPDU is set to 0.

The Host SHALL suspend the Data Channel polling function during data retrieval until the Card indicates that no
more data is available by returning an R_TPDU with SB_value field having the DA (Data Available) bit set to 0. The
Host SHALL restart the Data Channel polling function when the Card indicates that no more data is available by
returning an R_TPDU with SB_value field having the DA (Data Available) bit set to 0.

The Card SHALL respond to the Data Channel polling function regardless of the status of the Card Extended
Channel buffers (i.e., the Card responds with the R_TPDU, T_SB(), even if the Extended Channel status register
indicates that data is available for transmission).

When the Host sends the Data Channel polling function C_TPDU, it SHALL start a time-out period of five seconds,
which is reset when the poll response, R_TPDU, T_SB, is received. After the Host has sent the Data Channel polling
function C_TPDU and no poll response has been received within five seconds from the Card, the Host SHALL
perform a PCMCIA reset. The Host SHALL NOT send any additional Data Channel polling function C_TPDUs
while waiting for a poll response from the Card, even if the normal poll interval is exceeded.

4/18/13 CablelLabs® 85

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

8 COPY PROTECTION

Copy protection SHALL be provided for content marked with a non-zero EMI delivered in MPEG transport streams
flowing from the Card to the Host when the Card is required to remove conditional access scrambling from the
received MPEG transport stream(s). Such protection, including scrambling of content from Card to Host and
authenticated delivery of messages through the CPU interface for permitted use of content marked with a non-zero
EMI, is defined in OpenCable CableCARD Copy Protection 2.0 Specification [CCCP].

86 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

9 COMMAND CHANNEL OPERATION

The Command Channel is the control interface between the Card and the Host. S-Mode and M-Mode Command
Channel (also known as Data Channel) operation employ identical Session Resource and Application layers.

S-Mode uses the Link and Transport layers as defined in Sections 5 and 7 of this document.

For M-Mode, the Transport Layer as defined for S-Mode operation is not used, and the Link Layer Operation is
implemented using the F and L bits in the Interface Query Byte. The Interface Query Byte functionality is further
defined in Section 7.6.2.2.

9.1 Session Layer

The Session Layer provides the mechanism by which applications on the Card communicate with and make use of
resources on the Host. Resources are a mechanism for encapsulating functionality at the Application Layer and vary
in the number of simultaneous sessions they can support. Some resources support only one session at a time. If a
second application tries to request a session to such a resource already in use then it will receive a 'resource busy'
reply. Other resources can support more than one simultaneous session, in which case resource session requests will
be honored up to some limit defined by the resource. An example of the latter would be the display resource, which
in some Host implementations may be able to support simultaneous displays in different windows.

All sessions are opened by the Card applications. All resources defined by this specification, by definition, are
resident in the Host.

9.1.1 SPDU Structure

The session layer uses a Session Protocol Data Unit (SPDU) structure to exchange data at session level either from
the Host to the Card or from the Card to the Host. The general form of the SPDU structure is made of two parts, a

mandatory session header, consisting of a tag value, a length field and the session object value, and the conditional
body of variable length.

spdu_tag length_field | sess_obj value apdu

Figure 9.1-1 - SPDU Structure

The SPDU is made of two parts:

e A mandatory session header made of a Tag value spdu_tag, a length_field coding the length of the session object
value field and a session object value. Note that the length field does not include the length of any following
APDUs.

e A conditional body of variable length that contains an APDU (see application layer). The presence of the body
depends on the session header.

4/18/13 CablelLabs® 87

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Table 9.1-1 - SPDU Structure Syntax

Syntax No. of Bits Mnemonic
SPDUQ) {
spdu_tag 8 uimsbf
length_field()
for (i=0; i<length value; i++) {
session_object value_byte 8 uimsbf
by
for (i=0; i<N; i++) {
data_byte 8 uimsbf
3}
spdu_tag One of the values listed in Table 9.1-7.
N Variable, depending on the specific spdu_tag.

Only the session_number SPDU is followed by a data_byte field containing one APDU.

A SPDU is transported in the data field of one or several TPDU. See TPDU description of each physical module

implementation for more information.

9.1.2 Session Layer Protocol

The session objects are described in general terms here.

1. open_session_request is issued by an application over its transport connection to the Host requesting

the use of a resource.

2. open_session_response is returned by the Host to an application that requested a resource in order to

allocate a session number or to tell the Card that its request could not be fulfilled.

3. close_session_request is issued by a Card or by the Host to close a session.

4. close_session_response is issued by a Card or by the Host to acknowledge the closing of the session.

5. session_number always precedes the body of the SPDU containing APDU(s).

The dialogue in the session layer is initiated by the Card. One example is illustrated in Figure 9.1-2, where a Card

requests to open a resource provided by the host.

88

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Host Card
open_session_request
el
|
open_session_response
(ses_nb =n)
|
session_nb (n, data)
el
|
session_nb (n, data)
-
close_session_request (n)
-
close_session_response (n)
| -
Ll

Figure 9.1-2 - Object Transfer Sequence - Transport Protocol

The Card requests a session to be opened to a resource on its transport connection. Since the Host provides the
resource itself, it replies directly with a session number in its open session response. Communication now proceeds
with application layer data preceded by session_number objects. Eventually the session is closed, in this example, by
the Card, but it could also have been closed by the Host, for example, if the resource became unavailable for any
reason. Section 9.1 defines the message structure.

9.1.2.1 Open Session Request (open_session_request)

The open_session_request() SPDU is issued by the Card in order to request the opening of a session to a specific
resource provided by the Host. The resource_identifier field in the open_session_request() SPDU sent by the Card
SHALL match the class and type of a resource that the Host has already declared support for in the profile_reply()
APDU. Should the Card request version = 0 in the open_session_request() SPDU, the Host SHALL use the
resource version number it reported in the profile_reply() APDU.

Once the Card has obtained the types and versions of all resources supported by the Host, it must determine the
highest version of each resource common to both devices.

If the highest version of a resource that the Card supports is equal to the version reported by the Host in the
profile_reply() APDU, the Card SHALL request this resource version in the open_session_request() SPDU.

If the highest version of a resource that the Card supports is greater than the version reported by the Host in the
profile_reply() APDU, the Card SHALL request the resource version reported by the Host, in the
open_session_request() SPDU.

If the highest version of a resource that the Card supports is less than the version reported by the Host in the
profile_reply() APDU, the Card SHALL request the highest resource version it supports, in the
open_session_request() SPDU.

Table 9.1-2 - open_session_request() Syntax

Syntax No. of Bits Mnemonic
open_session_request() {
open_session_request_tag 8 uimsbf

length_field() /* always equal to 0x04 */
resource_identifier()

bs

4/18/13 CablelLabs® 89

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

open_session_request_tag 0x91

resource_identifier See Table 9.3-2.

9.1.2.2 Open Session Response (open_session_response)

The Host SHALL issue an open_session_response() SPDU to the Card in response to an open-session_request()
from the Card, with the syntax as defined in Table 9.1-3, to allocate a session number or inform the Card that its
request could not be met.

Table 9.1-3 - open_session_response() Syntax

Syntax No. of Bits Mnemonic
open_session_response() {
open_session_response_tag 8 uimsbf
length_field() /* always equal to Ox07 */
session_status 8 uimsbf
resource_identifier()
session_nb 16 uimsbf
}
open_session_response_tag 0x92
session_status Status of the open session request.

0x00 Session is opened

OxFO Session not opened - resource non-existent or not supported

OxF1 Session not opened - resource exists but unavailable

0xF2 Session not opened - resource exists but version lower than requested
OxF3 Session not opened - resource busy

0x01-0xEF Reserved

OxF4-0xFF Reserved

resource_identifier See Table 9.3-2 for description. The Host returns the resource identifier of the
version requested by the Card

session_nb A unique 16-bit integer number allocated by the Host for the requested session.
When the session could not be opened (session_status = 0x00), this value has no
meaning. Note that the value 0x00 is reserved.

The Host SHALL NOT use a value of 0x00 for the session_nb (session number) in the open_session_response()
SPDU.

The Host SHALL allocate a unique session_nb for each new session requested by the Card within resources and
across all resources.

The Card SHALL use the session_nb allocated in the open_session_response() SPDU for all subsequent exchanges
of APDUs between the Card and the Host until the session is closed.

The Host SHALL use the session_nb allocated in the open_session_response() SPDU for all subsequent exchanges
of APDUs between the Card and the Host until the session is closed.

9.1.2.3 Close Session Request (close_session_request)
Either the Host or the Card can issue a close_session_request() to close a session.
The Host SHALL issue a close_session_request() SPDU with the syntax as defined in Table 9.1-4 to close a session.

The Card SHALL issue a close_session_request() SPDU with the syntax as defined in Table 9.1-4 to close a session.

90 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Table 9.1-4 - close_session_request() Syntax

Syntax No. of Bits Mnemonic
close_session_request() {
close_session_request_tag 8 uimsbf
length_field() /* always equal to 0x02 */
session_nb 16 uimsbf
3}
close_session_request_tag 0x95
session_nb The 16-bit integer value assigned to the session.
9.1.24 Close Session Response (close_session_response)

Either the Host or the Card will issue a close_session_response() in response to a close_session_request().
The Host SHALL issue the close_session_response() SPDU after receiving a close_session_request() SPDU.

The Card SHALL issue the close_session_response() SPDU after receiving a close_session_request SPDU.

Table 9.1-5 - close_session_response() Syntax

Syntax No. of Bits Mnemonic
close_session_response() {
close_session_response_tag 8 uimsbf
length_field() /* always equal to 0x03 */
session_status 8 uimsbf
session_nb 16 uimsbf
3}
close_session_response_tag 0x96

Status of the close session request.

0x00 Session is closed as required
0xFO session_nb in the request is not allocated

session_status

0x01-OxEF Reserved

OxF1-OxFF Reserved
session_nb The 16-bit integer value assigned to the session.
9.1.25 Session Number (session_number)

The Host SHALL precede an APDU with a session_number() SPDU with the syntax as defined in Table 9.1-6.
The Card SHALL precede an APDU with a session_number() SPDU with the syntax as defined in Table 9.1-6.

Table 9.1-6 - session_number() Syntax

Syntax No. of Bits Mnemonic
session_number() {
session_number_tag 8 uimsbf
length_field() /* always equal to 0x02 */
session_nb 16 uimsbf
3}
session_number_tag 0x90

4/18/13 CablelLabs®

91

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

session_nb The 16-bit integer value assigned to the session.

9.1.2.6 Summary of Session Tags (spdu_tag)

Table 9.1-7 - Summary of SPDU Tags

spdu_tag tag value Direction
Host « Card
open_session_request 0x91 <«
open_session_response 0x92 -
close_session_request 0x95 ©
close_session_response 0x96 “
session_number 0x90 ©

9.2 Application Layer

The application layer implements a set of protocols based upon the concept of a resource. A resource defines a unit
of functionality which is available to applications running on a Card. Each resource supports a set of objects and a
protocol for interchanging them to use the resource. Communication with a resource is by means of a session created
to that particular resource.

Resources are provided by the Host. Resources are used by an application creating a session to a resource. By an
initialization process carried out by the Resource Manager, the Host identifies all available resources and can
complete the session. Once this session has been created the application can then use the resource by an exchange of
objects according to the defined protocol.

By definition, applications reside on the Card and resources reside on the Host.

9.2.1 Resource Identifier Structure

A resource identifier consists of 4 octets. The two most significant bits of the first octet indicate whether the resource
is public or private. Values of 0, 1, and 2 indicate a public resource. A value of 3 indicates a private resource.

Public resource is divided into three components: resource class, resource type, and resource version. Resource class
defines a set of objects and a protocol for using them. Resource type defines distinct resource units within a class. All
resource types within a class use the same objects and protocol, but offer different services or are different instances
of the same service. Resource version allows the Host to identify the latest version (highest version number) of a
resource where more than one of the same class and type are present.

Public resource classes have values allocated in the range 1 to 49150, treating the resource_id_type field as the most
significant part of resource_class. Value 0 is reserved. The maximum (all-ones) value of all fields is reserved. Private
resources are identified by the private_resource_definer, defined to be the CHICA-assigned manufacturer number
(see [CCCP]). Each private resource definer can define the structure and content of the private_resource_identity
field in any way except that the maximum (all-ones) value is reserved.

Table 9.2-1 - Public Resource Identifier

Bit
31 | [T [[T2af23[[[[[[Jaefas[[[[[[[[[e[s] [[[Jo
type resource_class resource_type resource_version

92 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Table 9.2-2 - Private Resource ldentifier

Bit
31 | [T T [TaaJaa] [] [[Tawefas [[[T [[Tefz] [[T [[] Jo
3 private_resource_definer private_resource_identity

Table 9.2-3 - resource_identifier() Syntax

Syntax No. of Bits Mnemonic
resource_identifier() {
resource_id_type 2 uimsbf
if (resource_id_type = 0x3) {
resource_class 14 uimsbf
resource_type 10 uimsbf
resource_version 6 uimsbf
else {
private_resource_definer 10 uimsbf
private_resource_identity 20 uimsbf
}
bs

Applications on the Card make use of resources on the Host to perform tasks for the user of the Host.

9.3 APDUs

All protocols in the Application Layer use a common Application Protocol Data Unit (APDU) structure to send
application data between Host and the Card. The APDU is made up of two parts, a mandatory header, consisting of a

the apdu_tag value and a length field coding the length of the following data field and the conditional body of

variable length as shown in Figure 9.3-1.

Header body

apdu_tag length_field [data field]

Figure 9.3-1 - APDU Structure

The Host SHALL send only a single APDU within the body of a single SPDU.
The Card SHALL send only a single APDU within the body of a single SPDU.

Table 9.3-1 - APDU Structure Syntax

}

3

Syntax No. of Bits Mnemonic
APDUQ {
apdu_tag 24 uimsbf
length_fieldQ
for (i=0; i<length_value; i++) {
data_byte 8 uimsbf

Table 9.3-2 is a summary of all of the supported Resource Identifiers.

4/18/13

CablelLabs®

93

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Table 9.3-2 - Resource Identifier Values

Resource Resource Resource | Resource
(Type =0 unless noted) Class Type Version Resource identifier

Resource Manager 1 1 1 0x00010041
Application Information 2 2 1 0x00020081
Application Information 2 2 2 0x00020082
Conditional Access Support 3 1 2 0x00030042
Conditional Access Support* 3 2 1 0x00030081
Host Control 32 1 3 0x00200043
Host Control* 32 2 1 0x00200081
System Time 36 1 1 0x00240041
MMI 64 2 1 0x00400081
Low Speed Communication® 96 321 3 0x00605043
Low Speed Communication® 96 513 3 0x00608043
Homing® 17 1 2 0x00110042
Copy Protection 176 3 1 0x00B000C1
Copy Protection* See [CCCP] for the current Resource Class, Type and Version for this resource.
Specific Application Support 144 1 2 0x00900042
Generic Feature Control 42 1 1 0x002A0041
Generic Feature Control 42 1 2 0x002A0042
Generic Feature Control 42 1 3 0x002A0043
Generic Feature Control 42 1 4 0x002A0044
Headend Communication 44 1 1 0x002C0041
Extended Channel 160 1 1 0x00A00041
Extended Channel 160 1 2 0x00A00042
Extended Channel 160 1 3 0x00A00043
Extended Channel 160 1 4 0x00A00044
Extended Channel 160 1 5 0x00A00045
Extended Channel 160 1 6 0x00A00046
Generic IPPV Support 128 2 1 0x00800081
Generic Diagnostic Support 260 1 2 0x01040042
Generic Diagnostic Support* 260 2 1 0x01040081
Generic Diagnostic Support* 260 2 2 0x01040082
System Control 43 1 1 0x002B0041
System Control*** 43 1 2 0x002B0042
System Control*** 43 1 3 0x002B0043
System Control 43 2 1 0x002B0081
CARD RES* 38 3 1 0x002600C1
DSG**** 4 1 1 0x00040041
Host Addressable Properties 256 1 1 0x01000041
Card MIB Access 90 1 1 0x005A0041
Reserved** 177 1 1 0x00B10041
Reserved***** Type 1, 0-255 N/A N/A N/A

94

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Notes:

*For the Card operating in M-Mode.

**Reserved.

***These versions have been deprecated.

****This mode will only be implemented on M-Cards.
**Reserved for use by ATIS. NOTE: Type = 1.

1. The Homing resource is defined in 9.18.4.

2. The Resource identifier delivered by a Host will be either 0x00605043 for a Host device with Cable Return Channel, or
0x00608043 for a Host with a Host Modem (e.g., DOCSIS). If no Low Speed Communication Resource ldentifier is reported by
the Host, then the Host device is assumed to be a FDC only. The Card may utilize the presence of this resource identifier as a
means to identify what type of Cable Return Channel is supported by the Host.

The coding of the apdu_tag follows the ASN.1 rules. Each apdu_tag is coded on three bytes. Among the 24 bits of

each apdu_tag, 10 are fixed by the ASN.1 rules as described in Figure 9.3-2. Only primitive tags are used.
Byte 1 Byte 2 Byte 3
b24 b17 b16 b9 | b8 bl
10011111 IXXXXXXX OXXXXXXX

Figure 9.3-2 - Primitive Tag Coding

Table 9.3-3 is a summary of all of the supported APDUs.

Table 9.3-3 - Application Object Tag Values

apdu_tag Tag value Resource Hcl)jslzi—)Ctlggrd
profile_inq 0x9F8010 Resource Manager ©
profile_reply 0x9F8011 Resource Manager ©
profile_changed 0x9F8012 Resource Manager ©
application_info_req 0x9F8020 Application Info -
application_info_cnf 0x9F8021 Application Info «—
server_query 0x9F8022 Application Info -
server_reply 0x9F8023 Application Info «—
ca_info_ing 0x9F8030 CA Support -
ca_info 0x9F8031 CA Support «—
ca_pmt 0x9F8032 CA Support -
ca_pmt_reply 0x9F8033 CA Support «—
ca_update 0x9F8034 CA Support <«
oob_tx_tune_req 0x9F8404 Host Control «—
oob_tx_tune_cnf 0x9F8405 Host Control -
oob_rx_tune_req 0x9F8406 Host Control «—
oob_rx_tune_cnf 0x9F8407 Host Control -
inband_tune_req 0x9F8408 Host Control «—
inband_tune_cnf 0x9F8409 Host Control -
system_time_ing 0x9F8442 System Time «—
system_time 0x9F8443 System Time -
open_mmi_req 0x9F8820 MMI «—

4/18/13 CablelLabs® 95

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Direction
apdu_tag Tag value Resource Host < Card
open_mmi_cnf 0x9F8821 MMI -
close_mmi_req 0x9F8822 MMI <«
close_mmi_cnf 0x9F8823 MMI -
comms_cmd* 0x9F8C00 Low speed comms. —
connection_descriptor* 0x9F8C01 Low speed comms. —
comms_reply* 0x9F8C02 Low speed comms. —
comms_send_last* 0x9F8C03 Low speed comms. —
comms_send_more* 0x9F8C04 Low speed comms. —
comms_rcv_last* 0x9F8C05 Low speed comms. —
comms_rcv_more* 0x9F8C06 Low speed comms. —
Host Card
modem | Modem
new_flow_req 0x9F8EQ0 Extended Channel Support < -
new_flow_cnf 0x9F8E01 Extended Channel Support <
delete_flow_req 0x9F8E02 Extended Channel Support < -
delete_flow_cnf 0x9F8EQ3 Extended Channel Support < «—
lost_flow_ind 0x9F8E04 Extended Channel Support < <«
lost_flow_cnf 0X9F8EQ5 Extended Channel Support < -
inquire_DSG_mode 0x9F8EQ6 Extended Channel Support — -
set DSG_mode 0Xx9F8EQ7 Extended Channel Support «— «—
DSG_error 0x9F8E08 Extended Channel Support “— N/A
dsg_message 0x9F8EQ9 Extended Channel Support - N/A
configure_advanced_DSG O0X9F8EOQA Extended Channel Support “— N/A
send_DCD _info 0x9F8EOB Extended Channel Support - N/A
Reserved 0x9F8F00 - Ox9F8F07 Generic IPPV Support
inquire_DSG_mode 0x9F9100 DSG - -
set DSG_mode 0x9F9101 DSG «— “—
DSG_error 0x9F9102 DSG <« N/A
DSG_message 0x9F9103 DSG - N/A
DSG_directory 0x9F9104 DSG <« N/A
send_DCD _info 0x9F9105 DSG - N/A
feature_list_req 0x9F9802 Generic Feature Control >
feature_list 0x9F9803 Generic Feature Control <
feature_list_cnf 0x9F9804 Generic Feature Control >
feature_list_changed 0x9F9805 Generic Feature Control <
feature_parameters_req 0x9F9806 Generic Feature Control <«
feature_parameters 0x9F9807 Generic Feature Control <
features_parameters_cnf 0x9F9808 Generic Feature Control >
open_homing 0x9F9990 Homing -
96 CableLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

apdu_tag Tag value Resource Hcl)DsI:(i—)C“g:\rd
homing_cancelled 0x9F9991 Homing -
open_homing_reply 0x9F9992 Homing <«
homing_active 0x9F9993 Homing -
homing_complete 0x9F9994 Homing <«
firmware_upgrade 0x9F9995 Homing «—
firmware_upgrade_reply 0x9F9996 Homing -
firmware_upgrade_complete 0x9F9997 Homing «—
SAS_connect_rgst 0x9F9A00 Specific Application Support —
SAS_connect_cnf 0x9F9A01 Specific Application Support «—
SAS_data_rgst 0x9F9A02 Specific Application Support <
SAS data_av 0x9F9A03 Specific Application Support <
SAS_data_cnf 0x9F9A04 Specific Application Support <
SAS_server_query 0X9F9A05 Specific Application Support <
SAS_server_reply 0x9F9A06 Specific Application Support <
SAS_async_msg() 0X9F9AQ7 Specific Application Support <
stream_profile() 0x9FA010 CARD RES <«
stream_profile_cnf() 0x9FA011 CARD RES -
program_profile() 0x9FA012 CARD RES <«
program_profile_cnf() 0x9FA013 CARD RES -
es_profile() 0x9FA014 CARD RES <«
es_profile_cnf() 0x9FA015 CARD RES -
request_pids() 0x9FA016 CARD RES -
request_pids_cnf() 0x9FA017 CARD RES «—
asd_registration_req ** 0x9FA200 Authorized Service Domain —
asd_challenge** 0x9FA201 Authorized Service Domain «—
asd_challenge_rsp** 0x9FA202 Authorized Service Domain —
asd_registration_grant** 0x9FA203 Authorized Service Domain «—
asd_dvr_record_req** 0x9FA204 Authorized Service Domain -
asd_dvr_record_reply** 0x9FA205 Authorized Service Domain «—
asd_dvr_playback_req** 0x9FA206 Authorized Service Domain —
asd_dvr_playback_reply** 0X9FA207 Authorized Service Domain «—
asd_dvr_release_req** 0x9FA208 Authorized Service Domain -
asd_dvr_release_reply** 0x9FA209 Authorized Service Domain «—
asd_server_playback_req** 0x9FA20A Authorized Service Domain —
asd_server_playback_reply** 0x9FA20B Authorized Service Domain «—
asd_client_playback_req** 0x9FA20C Authorized Service Domain —
asd_client_playback_reply** 0x9FA20D Authorized Service Domain «—
host_info_request 0x9F9C00 System Control <«
host_info_response 0x9F9C01 System Control -
4/18/13 CableLabs® 97

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

apdu_tag Tag value Resource Hcl)DsI:(i—)C“g:\rd
code_version_table2 0x9F9C02 System Control «—
code_version_table_reply 0x9F9C03 System Control -
host_download_control 0x9F9C04 System Control -
code_version_table 0x9F9C05 System Control <«
diagnostic_req 0x9FDF00 Generic Diagnostic Support «—
diagnostic_cnf 0x9FDFO01 Generic Diagnostic Support —
host_reset_vector 0x9F9EQ0 Headend Communication «—
host_reset_vector_ack 0x9F9E01 Headend Communication -
host_properties_req 0x9F9F01 Host Addressable Properties -
host_properties_reply 0x9F9F02 Host Addressable Properties “—
snmp_req 0Xx9FA000 Card MIB Access -
snmp_reply 0x9FA001 Card MIB Access “«—
get_rootQOid _req 0x9FA002 Card MIB Access -
get_rootOid_reply 0x9FA003 Card MIB Access <«
Reserved*** O0x9FEO00-OX9FEF7F N/A N/A
Notes:
* Messages defined in EIA 679-B Part B [NRSSB].
** Reserved.
*** Reserved for use by ATIS.

98

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

9.3.1 Interface Resource Loading

Table 9.3-4 - Host-Card Interface Resource Loading

Iltem Name Maximum sgssions Closes
at one time
1 Resource Manager 1 No
2 MMI 1 No
3 Application Info 1 No
4 Low Speed Communication 1 Yes
5 Conditional Access Support 1 No
6 Copy Protection 1 No
7 Host Control 1 No
8 Extended Channel Support 1 No
9 DSG 1 No
10 Specific Application Support 32 Yes
11 Generic Feature Control 1 No
12 Homing 1 Yes
13 Generic Diagnostic Support 1 No
14 System Time 1 Yes
15 System Control 1 No
16 CARD RES (Card Resource) 1 No
17 Authorized Service Domain 1 No
18 Headend Communication 1 No
19 Host Addressable Properties 1 No
20 Card MIB Access 1 No

NOTES:

After buffer negotiation, the Host will create a transport connection. The Card will ignore the t_c_id value in the link
layer when there is no transport connection established. Transport Connection is never to be closed. The Host
SHALL open only one Transport Connection session at a time.

9.4 Resource Manager

The Resource Manager is a resource provided by the Host. There is only one type in the class. The Host SHALL
provide a Resource Manager resource that supports a maximum of one Resource Manager session. The Resource
Manager controls the acquisition and provision of resources to all applications. A discovery mechanism exists for the
Card to determine which resources as well as the versions are supported on the Host.

The first session that the Card opens SHALL be to the Resource Manager resource. After a session to the Resource
Manager resource is open, the Host sends the profile_ing() APDU to the Card. In response to the profile_inq()
APDU from the Host, the Card sends the profile_reply() APDU, which may contain a list of resource identifiers. In
response to the profile_reply() APDU, the Host sends the profile_changed() APDU to the Card. The Card responds
to the profile_changed() APDU with the profile_ingq() APDU. The Host responds to the profile_ing() APDU with
the profile_reply() APDU containing a list of supported resources.

4/18/13 CablelLabs® 99

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

In the rare event that a resource is modified on the Host, the Host SHALL reset the Card using any one of the
available reset types.

Table 9.4-1 - Resource Manager Resource Identifier

Resource Mode Class Type Version Identifier (hex)

Resource Manager S-Mode/M-Mode 1 1 1 0x00010041

The Resource Manager includes three APDUSs as described in the following table:

Table 9.4-2 - Resource Manager APDU List

APDU Name Tag Value Resource Direction
Host < Card
profile_inq() 0x9F8010 Resource Manager ©
profile_reply() 0x9F8011 Resource Manager ©
profile_changed() 0x9F8012 Resource Manager ©

9.4.1 profile_inq()

The Card SHALL send the profile_inq() APDU, as defined in Table 9.4-3, in response to the profile_changed()
APDU.

The Host SHALL send the profile_ing() APDU, as defined in Table 9.4-3, after a session to the Resource Manager
resource has been opened.

Table 9.4-3 - profile_inq() APDU Syntax

Syntax No. of Bits Mnemonic

profile_ing({
profile_ing_tag 24 uimsbf
length_field() /* always = 0x00 */

¥

profile_ing_tag 0x9F8010

9.4.2 profile_reply()

The Host SHALL send the profile_reply() APDU, as defined in Table 9.4-4, in response to a profile_ing() APDU.
The resource_identifier field in the profile_reply() APDU sent by the Host reports the type(s) and version of each
resource applicable to its operating mode (S/M-Mode). The Host SHALL report the highest supported version
number within each type in the profile_reply() APDU.

The resource_identifier field in the profile_reply() APDU sent by the Host MAY report more than one type of each
resource applicable to its operating mode (S/M-Mode), if multiple types exist.

The Host SHALL provide support for ALL versions up to the version reported in the profile_reply() APDU within
each type, for all resources applicable to its operating mode (S/M-Mode), in order to ensure backward compatibility
with Cards that may not support the current implementation of resources.

The Host MAY provide support for previous, non-deprecated types and versions of a particular resource, applicable
to its operating mode (S/M-Mode).

100 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Note: An M-Mode-only Host does not have to implement the S-Mode version of a resource, if one exists, and an S-
Mode-only Host does not have to implement the M-Mode version of a resource.

The Card SHALL send the profile_reply() APDU, as defined in Table 9.4-4, in response to a profile_inq() APDU.
The resource_identifier field in the profile_reply() APDU sent by the Card MAY contain a null list of resource
identifiers.

The Card SHALL provide support for all previous, non-deprecated types, in addition to the highest type defined in
Table 9.3-2 and ALL previous, non-deprecated versions of a particular resource, in order to ensure backward
compatibility with Hosts that may not support the latest implementation of resources. The M-Card SHALL support
both the S-Mode and M-Mode versions of a resource, if one exists.

Table 9.4-4 - profile_reply() APDU Syntax

Syntax No. of Bits Mnemonic
profile_reply({
profile_reply tag 24 uimsbf

length_field()

for (i=0; i<N; i++) {
resource_identifier()

}

3

profile_reply tag 0x9F8011
N length divided by 4

9.4.3 profile_changed()
The Host SHALL send the profile_changed(), as defined in Table 9.4-5, in response to the profile_reply() APDU.

Table 9.4-5 - profile_changed() APDU Syntax

Syntax No. of Bits Mnemonic
profile_changed() {
profile_changed tag 24 uimsbf

length_field() /* always = 0x00 */

¥

profile_changed_tag 0x9F8012

9.5 Application Information

The Host SHALL provide the Application Information Resource using identifier(s) as defined in Table 9.5-1. The
Card SHALL open only one session to the Application Information Resource after it has completed the profile
inquiry operation with the Resource Manager resource.

The Application Information resource provides:

e Support for the Host to expose its display characteristics to the Card
e Support for the Card to expose its applications to the Host

e Support for the Card to deliver HTML pages to the Host

Two Application Information resource versions are identified to reflect the changes listed in this section as compared
to [NRSSB]. (The Card is not required to support type 1.) During initialization, the Card opens a session to the
Application Information resource on the Host.

4/18/13 CablelLabs® 101

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

The Host SHALL keep the session to the Application Information Resource open during normal operation.

The Card SHALL keep the session to the Application Information Resource open during normal operation.

Table 9.5-1 - Application Information Resource Identifier

Resource Mode Class Type Version Identifier (hex)
Application Info S-Mode/M-Mode 2 2 1 0x00020081
Application Info S-Mode/M-Mode 2 2 2 0x00020082

The Application Information resource includes four APDUs as described in Table 9.5-2.

Table 9.5-2 - Application Information APDU List

APDU Name Tag Value Resource H(I)Dsl'[eg“ggrd
application_info_req() 0x9F8020 Application Info -
application_info_cnf() 0x9F8021 Application Info «
server_query() 0x9F8022 Application Info -
server_reply() 0x9F8023 Application Info «

The method for initiating an application is beyond the scope of this document.

9.5.1 application_info_req()

After the Card has opened the Application Information resource, the Host SHALL send an application_info_req()
APDU as defined in Table 9.5-3 to the Card. The Host includes its display capabilities in the
application_info_req() APDU. The Card replies to an application_info_req() with an application_info_cnf()
APDU to describe its supported applications.

Table 9.5-3 - application_info_req() APDU Syntax

Syntax No. of Bits Mnemonic
application_info_req() {
application_info_req_tag 24 uimsbf
length_field(
display_rows 16 uimsbf
display_columns 16 uimsbf
vertical_scrolling 8 uimsbf
horizontal_scrolling 8 uimsbf
display_type_support 8 uimsbf
data_entry_support 8 uimsbf
HTML_support 8 uimsbf
if (HTML_support == 1) {
l1ink_support 8 uimsbf
form_support 8 uimsbf
table_support 8 uimsbf
list_support 8 uimsbf
image_support 8 uimsbf

102 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

application_info_req_tag

display_rows

Display_columns

Vertical_scrolling

horizontal_scrolling

display_type_support

Data_entry_support

HTML_support

0x9F8020

Defines the number of rows the Host device can support. If the Host supports
more than 255, set this value equal to OxFF.

Defines the number of columns the Host device can support. If the Host supports
more than 255, set this value equal to OxFF.

Defines if the Host supports vertical scrolling. Default value is 0.

0x00 Vertical scrolling not supported
0x01 Vertical scrolling supported
0x02-0xFF Reserved

Defines if the Host supports horizontal scrolling. Default value is 0.

0x00 Horizontal scrolling not supported
0x01 Horizontal scrolling supported
0x02-0xFF Reserved

Defines the window support capability of the Host.

0x00 Full screen. The Host supports full screen windows for MMI screens.

0x01 Overlay. The Host supports Overlay Windows for MMI screens.

0x02-0x6F Multiple windows. Indicates that the Host supports multiple
simultaneous MMI windows. The value equals the maximum number of
simultaneous open windows the Host can support.

0x70-0xFF Reserved

This field defines the type of windowing the Host supports, and if the Host
supports multiple windows, the number of simultaneous windows the Host
display application can manage.

Defines the preferred data entry capability of the Host.

0x00 None

0x01 Last/Next

0x02 Numeric Pad

0x03 Alpha keyboard with mouse
0x04-0xFF Reserved

Defines the HTML support capability of the Host.

The Host SHALL support at a minimum the Baseline HTML profile as defined in Annex A.

link_support

form_support

0x00 Baseline Profile
0x01 Custom Profile
0x02 HTML 3.2

0x03 XHTML 1.0
0x04-0xFF Reserved

Defines whether the Host can support single or multiple links.
0x00 One link
0x01 Multiple links
0x02-0xFF Reserved
Defines the Form support capability of the Host.
0x00 None
0x01 HTML 3.2 w/o POST method

0x02 HTML 3.2
0x03-0xFF Reserved

4/18/13

CablelLabs® 103

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

table_support Defines the Table support capability of the Host.

0x00 None
0x01 HTML 3.2
0x02-0xFF Reserved

list_support Defines the List support capability of the Host

0x00 None

0x01 HTML 3.2 w/o Descriptive Lists

0x02 HTML 3.2
0x03-0xFF Reserved

image_support Defines the Image capability of the Host

0x00 None

0x01 HTML 3.2 - PNG Picture under RGB w/o resizing

0x02 HTML 3.2
0x03-0xFF Reserved

9.5.2 application_info_cnf()

The Card SHALL send the application_info_cnf() APDU as defined in Table 9.5-4 after receiving an
application_info_req() from the Host. The S-Card and the M-Card operating in S-Mode SHALL use “pod” in the
application_url_byte field of the application_info_cnf() APDU. A properly constructed URL would be:

pod:///apps/filename.html

The M-Card operating in M-Mode SHALL use “CableCARD” in the application_url_byte field of the

application_info_cnf() APDU. A properly constructed URL would be:
CableCARD///apps/filename.html

Table 9.5-4 - application_info_cnf() APDU (Type 2, Version 1 and Version 2) Syntax

Syntax No. of Bits Mnemonic
application_info_cnf() {
application_info_cnf_tag 24 uimsbf
length_field()
Card_manufacturer_id 16 uimsbf
Card_version_number 16 uimsbf
if (resource version >= 2) {
Card_MAC_address 48 uimsbf
Card_serial_number_length 8 uimsbf
for (J=0; j<Card_serial_number_length; j++) {
Card_serial_number_byte 8 uimsbf
3
number_of _applications 8 uimsbf
for (i=0; i<number_of _applications; i++) {
application_type 8 uimsbf
application_version_number 16 uimsbf
application_name_length 8 uimsbf
for (J=0; j<application_name_length; j++) {
application_name_byte 8 uimsbf
application_url_length 8 uimsbf
for (J=0; j<application_url_length; j++) {
application_url_byte 8 uimsbf
3
ks
104 CableLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

application_info_cnf_tag 0x9F8021
Card_manufacturer_id The first byte specifies the Card manufacturer while the second byte is defined
by the Card manufacturer to privately identify product generation and
derivatives.
0x00XX Motorola
0x01XX Cisco (Scientific-Atlanta)
0x02XX NDS
0x03XX Conax
0x04XX Nagravision
0x0500-0xFFFF Reserved for future manufacturers
Card_version_number Privately defined by the Card manufacturer.
Card_MAC_address Card MAC address in hex.
Card_serial_number_length Length in bytes for the Card serial number.
Card_serial_number_byte Vendor specific card serial number text.
number_of_applications Number of applications in the following for loop.
application_type Type of application.

0x00 Conditional access

0x01 CableCARD binding information application
0x02 IP service

0x03 Network interface [SCTE55-2]

0x04 Network interface [SCTE55-1]

0x05 Copy protection application

0x06 Diagnostic

0x07 Undesignated

0x08 Network Interface (DSG)

0x09 Conditional Access Network Handler (CANH)
O0X0A-0xFF Reserved for future applications

application_version_number Defined by the Card application supplier.

The Card SHALL upgrade the application_version_number in the application_info_cnf() APDU each time the Card
application software is modified according to the Card Firmware Upgrade Host Interface. See Section 9.18 of this
document.

application_name_length Length of the application name in the following for loop. The maximum value is
32.

The application_name_length in the application_info_cnf() APDU SHALL be equal to 0 for applications that do not
have an MMI interface.

application_name_byte The commercial name of the application specified as a text string in ASCII
format.

The Host SHALL replace the default generic identifier of the Card’s application with the application hame provided
in the application_info_cnf() APDU. The application name, when selected by the user, triggers a Host initialized
MMI dialog.

The Host SHALL be capable of displaying at least eight different Card application name strings in its menu.

application_url_length Length of the application url in the following for loop.

application_url_byte Defines the URL of the Card application’s top-level HTML page in the Card
memory. The Host uses the application URL provided in the
application_info_cnf() APDU in a server_query() APDU to initialize an MMI

4/18/13 CablelLabs® 105

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

dialog with the Card application, when an object identified by either the
application name or the application URL is selected in the Host menu.

The Host MAY display the application URL provided in the application_info_cnf() APDU in its menu.

9.5.3 server_query()

The Host SHALL send a server_query() APDU as defined in Table 9.5-5 to the Card to request the information in
the Card file server system pointed to by the provided URL. The Host SHALL use the complete URL sent by the
Card in the application_info_cnf() APDU in the url_byte field of the server_query() APDU. The URL defines the
location of the data that the Host is requesting. Upon receipt of the URL, the Card locates the requested data and
provides it back to the Host in the server_reply() APDU.

Table 9.5-5 - server_query() APDU Syntax

Syntax No. of Bits Mnemonic
server_query() {
server_query_tag 24 uimsbf
length_field()
transaction_number 8 uimsbf
header_length 16 uimsbf
for (i=0; i<header_length; i++) {
header_byte 8 uimsbf
}
url_length 16 uimsbf
for (i=0; i<url_length; i++) {
url_byte 8 uimsbf
b5
server_query_tag 0x9F8022
transaction_number A number supplied by the Host issued from an 8-bit cyclic counter that identifies
each server_query() APDU and allows the Host to route the server_reply to the
correct MMI dialog.
header_length The number of header bytes in the following for loop.
header_byte Each header_byte is an octet of an optional parameter that uses the same format

as the HTTP/1.1 request header to pass additional parameters related to the
request, like browser version, accepted mime types, etc.

A Host that does not support HTTP headers SHALL set header_length in the server_query() APDU to 0x00.
The Card MAY ignore the header_byte in the server_query() APDU.

url_length The number of URL bytes in the following for loop.
url_byte Each url_byte is an octet of a parameter that defines a protocol, domain, and
location for the transfer of data.

The scheme designator in the URL (first part of the URL) for the Host communicating to an S-Card or an M-Card
operating in S-Mode is “pod”. The scheme designator in the URL (first part of the URL) for the Host communicating
to an M-Card operating in M-Mode is “CableCARD”.

The second part of the URL is the Host. The convention for “current server” (i.e., the server that generated the
current page) can be used and is indicated by an empty Host.

The third part of the URL is the file location. This is indicated by a hierarchical directory/file path.

106 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

For example, in order to request the file menu.html from the directory/apps/user/program_guide on the S-Card or M-
Card operating in S-Mode, the properly constructed URL would be:

pod:///apps/user/program_guide/menu.html

In order to request the file menu.html from the directory/apps/user/program_guide on M-Card operating in M-Mode,
the properly constructed URL would be:

CableCARD///apps/user/program_guide/menu.html

If, after receiving a server_reply from the Card, the Host has data that it wants to send to the Card, the Host can do
so through a server_query. In this case, the last part of the URL contains a list of name-value pairs separated by “&”.
This list is preceded by “?”. A properly constructed URL to the S-Card or M-Card operating in S-Mode would be:

pod:///path/file?namel=valuel&name2=value2&...
A properly constructed URL to the M-Card operating in M-Mode would be:
CableCARD///path/file?namel=valuel&name2=value2&...

Such a URL sent to an application on the Card as a response to a server_reply would cause the name-value pairs to
be processed by the application. In response to a server_reply() APDU from the Card, the Host MAY be send data to
the Card through the use of name-value pairs, preceded by "?" and separated by "&", as part of the URL in a
server_query() APDU.

9.5.4 server_reply()

The Card SHALL send a server_reply() APDU as defined in Table 9.5-6 in response to a server_query() APDU
from the Host.

Table 9.5-6 - server_reply() APDU Syntax

Syntax No. of Bits Mnemonic
server_reply(Q) {
server_reply tag 24 uimsbf
length_field()
transaction_number 8 uimsbf
file_status 8 uimsbf
header_length 16 uimsbf
for (i=0; i<header_length; i++) {
header_byte 8 uimsbf
by
file_length 16 uimsbf
for (i=0; i<url_length; i++) {
file_byte 8 uimsbf
}
3}
server_reply_tag 0x9F8023
transaction_number A number supplied by the Host issued from an 8-bit cyclic counter that identifies
each server_query() APDU and allows the Host to route the server_reply to the
correct MMI dialog.
file_status Notifies the Host of the status of the requested file.

0x00 OK

0x01 URL not found

0x02 URL access not granted
0x03-0xFF Reserved

4/18/13 CablelLabs® 107

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

header_length The number of header bytes in the following for loop.

header_byte Each header_byte is an octet of an optional parameter that uses the same format
as the HTTP/1.1 request header to pass additional parameters related to the
request, like browser version, accepted mime types, etc.

A Card that does not support HTTP headers SHALL set the header_length in the server_reply() APDU to 0x00. The
Host MAY ignore the header_byte field in the server_reply() APDU.

file_length The number of bytes in the following for loop.

file_byte The requested URL file. A server reply object with file_length equals to 0 will
be interpreted as a null file.

9.6 Low Speed Communication

The Low Speed Communication resource is used to support the identification of the Forward Data Channel (FDC),
the Reverse Data Channel (RDC), and any type of Host modem implementations. The Low Speed Communication
resource is not a means for passing upstream/downstream OOB data to/from the Card via the CHI. A Host using the
FDC/RDC QOB as defined in [SCTE55-1] or [SCTE55-2] SHALL forward all data directly to/from the Card via the
OOB Interface.

Table 9.6-1 - A Low Speed Communication Resource

Resource Mode Class Type Version Identifier (hex)
Low_Speed_Communication S-Mode/ 96 321 3 0x00605043
(Cable Return) M-Mode
Low_Speed_Communication S-Mode/ 96 513 3 0x00608043
(DOCSIS Modem) M-Mode

The Host SHALL report a Low_Speed_Communication Identifier that is 0x00605043 for a device with Cable Return
Channel, as defined in Table 9.6-2.

The Host SHALL report a Low_Speed Communication Resource Identifier that is 0x00608043 for a device with an
embedded DOCSIS cable modem, as defined in Table 9.6-2.

A Host that has a DOCSIS Cable Modem but does not have an SCTE 55 transmitter is not supported and SHALL
NOT report a Low Speed Communication identifier of either 0x00605043 or 0x00608043.

The following table summarizes this operation:

Table 9.6-2 - Low-Speed Communication Resource ID Reporting Matrix

SCTE 55 SCTE 55 DOCSIS Cable | Low Speed Communication
Receiver (FDC) | Transmitter (RDC) Modem Resource ID
Yes No No None
Yes No' Yes None
Yes Yes No 0x00605043
Yes Yes Yes 0x00608043

1. This variation is not permitted

9.7 CA Support

This resource provides a set of objects to support Conditional Access applications. The Host SHALL provide a
Conditional Access Support Resource using identifier(s) as defined in Table 9.7-1 with a maximum of one session.
The Card SHALL open a single session of the CA Support Resource using identifier(s) defined in Table 9.7-1 after

108 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

the Application Information session initialization has completed. The Host sends a ca_info_inquiry() APDU to the
CA application running on the Card, which responds by returning a ca_info() APDU with the appropriate
information. This session is then kept open for periodic operation of the protocol associated with the CA PMT and
CA PMT Reply APDUs.

In the case of multiple transport streams, there is a local transport stream ID (LTSID) included in the APDUs. The
Host SHALL keep the Conditional Access Support session open at all times during normal operation. The Card
SHALL keep the Conditional Access Support session open at all times during normal operation.

Table 9.7-1 - CA Support Resource

Resource Mode Class Type Version Identifier (hex)
CA Support S-Mode 3 1 2 0x00030042
CA Support M-Mode 3 2 1 0x00030081

The CA support resource consists of 5 APDUs for the S-Mode and the M-Mode.

Table 9.7-2 - CA Support APDUs

APDU Name Tag Value Resource Host grgzz?enCARD
ca_info_inquiry() 0x9F8030 CA Support -
ca_info() 0x9F8031 CA Support «
ca_pmt() 0x9F8032 CA Support -
ca_pmt_reply() 0x9F8033 CA Support «
ca_update() 0x9F8034 CA Support «—

9.7.1 ca_info_inquiry

The Host SHALL send the ca_info_inquiry() APDU as defined in Table 9.7-3 to the Card after the CA session is
opened.

Table 9.7-3 - ca_info_inquiry() APDU Syntax

Syntax No. of Bits Mnemonic
ca_info_inquiry(Q) {
ca_info_inquiry_tag 24 uimsbf

length_field() /* always = 0 */

3

ca_info_inquiry_tag 0x9F8030

9.7.2 ca_info

In response to a ca_info_inquiry() APDU, the Card SHALL send the ca_info() APDU as defined in Table 9.7-4
with length_field = 0x02 and a single CA_system _id.

4/18/13 CablelLabs® 109

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Table 9.7-4 - ca_info() APDU Syntax

Syntax No. of Bits Mnemonic

ca_infoQ {
ca_info_tag 24 uimsbf
length_field() /* always = 0x02 */
for (i=0; i<N ;i++) {

CA_system_id 16 uimsbf
b5
ca_info_tag 0x9F8031
CA system_id CA system id supported by the Card.

9.7.3 ca_pmt

The ca_pmt() APDU consists of entitlement control information extracted from the Program Map Table (PMT) by
the Host and sent to the Card. This control information allows the Card to locate and filter Entitlement Control
Message (ECM) streams, and assign the correct ECM stream to each scrambled component.

The ca_pmt() APDU contains CA_descriptors from the PMT of a selected program. If several programs are
selected, then the Host SHALL send a ca_pmt() APDU for each program. In the case that the selected program does
not contain CA descriptors, the ca_pmt contains no descriptors. The Host SHALL NOT include any descriptors
other than CA descriptors in the ca_pmt() APDU.

CA descriptors may be included in the ca_pmt() APDU at the program level and at the elementary stream level. The
Card SHALL apply program level CA descriptors in the ca_pmt() APDU to all elementary streams that have no
elementary stream level CA descriptor. When a CA descriptor is present in the ca_pmt() APDU at the elementary
stream level, the Card SHALL apply the CA descriptor to the elementary streams.

The CA descriptors in the PMT are provided by the conditional access system to inform the Card of which PID
stream carries the Entitlement Control Messages associated with each program or elementary stream. In S-Mode, the
Host MAY elect to pass all CA descriptors to the Card, or it may filter the CA descriptors based on the rules for M-
Mode given below.

When operating in M-Mode, the Host SHALL always use the CA_system_id received in the ca_info() APDU to
filter CA descriptors that are passed to the Card as follows:

The filtering process SHALL occur once at the program level and once for each elementary stream of the PMT.

To filter CA descriptors at any given level, the Host SHALL compare the CA_system_id received in the
ca_info() APDU to the CA_system_id present in each CA descriptor it encounters, passing only the first
matching CA descriptor to the Card.

If no CA descriptor matches at a given level, the Host SHALL NOT pass a CA descriptor for that level.

The Host SHALL present a CA descriptor in the ca_pmt() APDU at the same program and elementary stream levels
as it originally appeared in the program's PMT. The Host SHALL NOT replicate program level descriptors at the
elementary stream level in the ca_pmt() APDU, even if the Host elects to only request decryption of individual
streams from that program.

The Host SHALL send a new ca_pmt() APDU with ca_pmt_cmd_id 0x01 (ok _descramble) or 0x03 (query), as
defined in Table 9.7-5 for S-Mode, or Table 9.7-6 for M-Mode, when:

e the user selects a different program
e the PMT version_number changes

e the PMT current_next_indicator changes

110 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

The Host SHALL send the ca_pmt() APDU with no CA descriptor when none is present.

The Host SHALL send a new ca_pmt() APDU with ca_pmt_cmd _id 0x04 (not_selected) as defined in Table 9.7-5
for S-Mode, or Table 9.7-6 for M-Mode, when the Host no longer requires CA-decryption of a previously-selected
program, such as in the case of tuning to a different program.

Table 9.7-5 - S-Mode ca_pmt() APDU Syntax (Resource Type 1 Version 2)

Syntax No. of Bits Mnemonic
ca_pmt(Q {
ca_pmt_tag 24 uimsbf
length_field()
ca_pmt_list _management 8 uimsbf
program_number 16 uimsbf
reserved 2 bslbf
version_number 5 uimsbf
current_next_indicator 1 bslbf
reserved 4 bslbf
program_info_length 12 uimsbf
if (program_info_length = 0) {
ca_pmt_cmd_id 8 uimsbf
for (i=0; i<N; i++) {
CA _descriptor() /* program level */
}
P _
for (i=0; i<N1; i++) {
stream_type 8 uimsbf
reserved 3 bslbf
elementary PID /* elementary stream PID*/ 13 uimsbf
reserved 4 bslbf
ES_info_length 12 uimsbf
if (ES_info_length = 0) {
ca_pmt_cmd_id /* at ES level */ 8 uimsbf
for (1=0; i<N2; i++) {
CA _descriptor() /* ES level */
}
}
}
b5
ca_pmt_tag 0x9F8032
ca_pmt_list_management Indicates whether a single program is selected or a list of multiple programs on
the transport stream.
0x00 more - Indicates that the ca_pmt is neither the first nor the last one on
the list.
0x01 first - The ca_pmt is the first of a new list of more than one ca_pmt()
APDU. All previously selected programs are being replaced by the
programs of the new list.
0x02 last - The ca_pmt is the last on the list.
0x03 only - The ca_pmt is the only one on the list.
0x04 add - This ca_pmt is being added to an existing list, that is, a new
program has been selected by the user but all previously selected
programs remain selected. If the program_number has already been
received this the action is identical to “update”.
0x05 update - The ca_pmt is already on the list but either the version number
or the curent_next_indicator has changed.
4/18/13 CableLabs® 111

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

program_number
version_number
current_next_indicator
program_info_length

ca_pmt_cmd_id

ca_descriptor
stream_type
elementary_PID
ES_info_length

0x06-0xFF Reserved
The MPEG program number as defined in [1SO13818-1].

The MPEG version number as defined in [ISO13818-1].
The MPEG current/next indicator as defined in [1SO13818-1].

Number of bytes in the program_info field.

This parameter indicates what response is required from the application to a
ca_pmt() APDU.

0x00
0x01

0x02

0x03

0x04

Reserved

ok_descrambling - The Host does not expect an answer to the ca_pmt()
APDU and the CableCARD device can start descrambling the program
or start an MMI dialog immediately.

ok_mmi - The application can start a MMI dialog but will not start
descrambling before reception of a new ca_pmt() APDU with
ca_pmt_cmd_id set to “ok_descrambling”. In this case, the Host must
guarantee that a MMI session can be opened by the CableCARD
device.

query - The Host expects to receive a ca_pmt_reply() APDU. The Card
will not start descrambling or start an MMI dialog before reception of a
new ca_pmt() APDU with ca_pmt_cmd_id set to either
“ok_descrambling” or “ok_mmi”.

not selected - Indicates to the CableCARD device that the Host no
longer requires that the CableCARD device attempt to descramble the
service. The CableCARD device will close any MMI dialog it has
opened.

0x05-0xFF Reserved
The MPEG CA descriptor as defined in [1ISO13818-1].

The MPEG stream type as defined in [1SO13818-1].
The MPEG elementary PID as defined in [1ISO13818-1].

Number of bytes in the elementary stream information section.

112

CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Table 9.7-6 - M-Mode ca_pmt() APDU Syntax (Resource Type 2 Version 1)

}
}
}

3

Syntax No. of Bits Mnemonic
ca_pmt() {

ca_pmt_tag 24 uimsbf
length_field()

program_index 8 uimsbf
transaction_id 8 uimsbf
Itsid 8 uimsbf
program_number 16 uimsbf
source_id 16 uimsbf
ca_pmt_cmd_id 8 uimsbf
reserved 4 bslbf
program_info_length 12 uimsbf

if (program_info_length = 0) {
CA _descriptor() /* program level */

%or (i=0; i<N1; i++) {

stream_type 8 uimsbf
reserved 3 bslbf
elementary PID /* elementary stream PID*/ 13 uimsbf
reserved 4 bslbf
ES_info_length 12 uimsbf
if (ES_info_length = 0) {

ca_pmt_cmd_id /* at ES level 8 uimsbf

for (i=0; i<N2; i++) {
CA _descriptor() /* ES level */

ca_pmt_tag

program_index

transaction_id

Itsid

program_number
source_id

ca_pmt_cmd_id

0x9F8032

Program index values range from 0 to max_programs-1, where max_programs is
the value returned by M-CARD in the program_profile().

An 8-bit value, generated by the Host, that will be returned in the corresponding
ca_pmt_reply() and/or ca_update() from the M-CARD. The transaction_id
allows the Host to match the M-CARD’s replies with the corresponding requests.
The Host should increment the value, modulo 255, with every message it sends.
A separate transaction_id counter is maintained for each program index, so that
the transaction_ids increment independently for each index.

Local Transport Stream ID. Required when the M-CARD is present and
operating in Multi-Stream Mode.

The MPEG program number as defined in [1S013818-1].
The source ID as defined in [SCTE®65].

This parameter indicates what response is required from the application to a
ca_pmt() APDU.

0x00 Reserved

0x01 ok_descrambling - The Host does not expect an answer to the ca_pmt()
APDU and the Card can start descrambling the program or start an
MMI dialog immediately.

0x02 ok_mmi - The application can start a MMI dialog but will not start
descrambling before reception of a new ca_pmt() APDU with

4/18/13

CablelLabs® 113

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

ca_pmt_cmd_id set to “ok_descrambling”. In this case, the Host must
guarantee that a MMI session can be opened by the Card.

0x03 query - The Host expects to receive a ca_pmt_reply() APDU. The Card
will not start descrambling or start an MMI dialog before reception of a
new ca_pmt() APDU with ca_pmt_cmd_id set to either
“ok_descrambling” or “ok_mmi”.

0x04 not selected - Indicates to the Card that the Host no longer requires that
the Card attempt to descramble the service. The Card will close any
MMI dialog it has opened.

0x05-0xFF Reserved

program_info_length Number of bytes in the program_info field. If non-zero, is the number of bytes in
the CA_descriptor.

ca_descriptor The MPEG CA descriptor as defined in [1SO13818-1].

stream_type The MPEG stream type as defined in [1ISO13818-1].

elementary PID The MPEG elementary PID as defined in [1SO13818-1].

ES_info_length Number of bytes in the elementary stream information section.

The following requirements apply to Cards operating in both S-Mode and M-Mode.

Upon receipt of a ca_pmt() APDU with a ca_pmt_cmd_id of 0x02 (ok_mmi), the Card application can start an
MMI dialog but SHALL NOT start descrambling before reception of a new ca_pmt() APDU with ca_pmt_cmd_id
set to “ok_descrambling”.

If the Host sends a ca_pmt() APDU with a ca_pmt_cmd_id of 0x02 (ok_mmi), it SHALL allow an MMI session to
be opened by the Card.

Upon receipt of a ca_pmt() APDU with a ca_pmt_cmd_id of 0x03 (query), the Card SHALL NOT start
descrambling before reception of a new ca_pmt() APDU with ca_pmt_cmd_id set to “ok_descrambling”.

Upon receipt of a ca_pmt() APDU with a ca_pmt_cmd_id of 0x03 (query), the Card SHALL NOT start an MMI
dialog before reception of a new ca_pmt() APDU with ca_pmt_cmd_id set to “ok_mmi”.

Upon receipt of a ca_pmt() APDU with a ca_pmt_cmd_id of 0x04 (not selected), the Card SHALL close any MMI
dialog it has opened.

9.7.3.1 M-Mode Processing Rules for ca_pmt()

The program_index tracks the program number and LTSID assigned to a particular CA resource in the M-CARD.
The Host provides the program_index in the ca_pmt() APDU to allow the M-CARD to maintain a similar index
table to track the assignments that it receives from the Host. The Host SHALL update assignments to each
program_index as old programs are replaced by new programs or decryption is no longer required, thereby
maintaining the total number of active programs within the M-CARD’s limitations.

The figure below shows an example of Program Index Table for a Host and M-CARD with the ability to decrypt
only two programs. The Program Index Tables track the Host’s assignments of the programs that the M-CARD is to
decrypt.

114 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Host Program Index Table

Program Trans- Program | Source | ca_pmt_ | Elementary
Index action ID Itsid Number ID cmd_id Streams
0 19 15 2 1B1 1 51, 52, 53

1 72 90 3 4A8 1 90, 91

M-CARD Program Index Table

Program Trans- Program | Source | ca_pmt_ [Elementary
Index action ID Itsid Number ID cmd_id Streams
0 19 15 2 1B1 1 51, 52, 53

1 72 90 3 4A8 1 90, 91

Figure 9.7-1 - Program Index Table 1

The next figure shows that the Host has made a change to the Program Index 0, to query the M-CARD about a new
program. The transaction_ID is incremented, and the query command is passed through a new ca_pmt(), which
updates the M-CARD’s Program Index 0. The M-CARD would then reassign its CA resource to evaluate the Host’s
query, and prepare a ca_pmt_reply(). The ca_pmt_reply() would include the same transaction_id that the Host
assigned to the ca_pmt(), and the program index, to uniquely identify the reply.

Host Program Index Table

Program | Trans- Program | Source | ca_pmt_ | Elementary
Index action ID| Itsid Number ID cmd_id Streams
0 20 5F 5 8BA 3 100, 101
1 72 90 3 4A8 1 90, 91

ca-pmt

program_index =0
transaction_id = 20
Itsid = 5F
program_number =5
source_id = 8BA
ca_pmt_cmd_id =3

M-CARD Program Index Table

Program | Trans- Program | Source | ca_pmt_ | Elementary
— Index action ID| Itsid Number ID cmd_id Streams
0 20 5F 5 8BA 3 100, 101
1 72 90 3 4A8 1 90, 91

Figure 9.7-2 - Program Index Table 2

The M-CARD does not begin descrambling the new program on the basis of a query, even if it replies that
descrambling is possible. The final figure shows the Host following up with another ca_pmt(), focused on the same

program_index, with an ok_descrambling command and new transaction_ID. The M-CARD will update its index
accordingly and begin to descramble the program.

4/18/13 CablelLabs® 115

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Host Program Index Table

Program Trans- Program | Source | ca_pmt_ | Elementary
Index action ID| Itsid Number ID cmd_id Streams
0 21 5F 5 8BA 1 100, 101
1 72 90 3 4A8 1 90, 91

ca-pmt

program_index =0
transaction_id =21
Itsid = 5F <
program_number =5
source_id = 8BA

ca_ pmt_cmd_id=1

M-CARD Program Index Table

Program Trans- Program | Source | ca_pmt_ | Elementary
Index action ID Itsid Number ID cmd_id Streams
L 0 21 5F 5 8BA 1 100, 101
1 72 90 3 4A8 1 90, 91

Figure 9.7-3 - Program Index Table 3

When a ca_pmt() APDU arrives with ca_pmt_cmd_id 0x01 (ok_descramble) or 0x03 (query), the M-CARD
allocates the necessary CA resources and assigns them to the program index designated in the ca_pmt() APDU.
Upon receipt of a ca_pmt() APDU containing a program_index for which resources have previously been assigned,
the M-CARD SHALL release the former allocations. The M-CARD SHALL release any CA resources not required,
such as any allocated to programs with no CA descriptors in the ca_pmt() APDU.

The M-CARD SHALL cease decryption of, and release CA resources assigned to, a program listed in a
ca_pmt_cmd_id 0x04 (not_selected) command.

The Host assigns a transaction_id to each ca_pmt() APDU. The Host increments the transaction_id with every
ca_pmt() APDU per program index it sends. The Host SHALL maintain a separate transaction_id counter for each
program index, so that the transaction_ids increment independently for each program index in the ca_pmt() APDU.

The M-CARD SHALL use the transaction_id from the ca_pmt() APDU in any replies or updates it sends regarding
that ca_pmt() APDU. This allows the host to match the M-CARD’s messages with the corresponding ca_pmt().
Obsolete replies or updates may then be discarded.

The Host MAY set the value of the Source ID field in the ca_pmt() APDU to 0 if this information is not available. If
the Source ID field was previously set to 0 because it was not yet available, the Host SHALL update this field when
the value becomes known in the next ca_pmt() APDU.

When a ca_pmt_reply() APDU is received with a ca_enable of “descrambling possible under conditions (purchase
required)”, the Host SHALL send the ca_pmt() APDU with a ca_pmt_cmd_id of “ok_descrambling”. This will cause
the M-CARD to allocate the necessary resources and assign them to the program index designated in the ca_pmt, so
that the program can be descrambled immediately after the conditions are met. For example, when a ca_pmt(query)
is received and the CableCARD determines it is an Impulse Pay-Per-View program, the ca_pmt_reply(descrambling
possible under conditions (purchase required)) will be returned to the Host, and the Host will respond by sending a
ca_pmt(ok_descrambling) to the CableCARD, to ensure it is prepared to descramble the program when the purchase
is completed.

116 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

9.7.4 ca _pmt_reply

The Card SHALL send the ca_pmt_reply() APDU, as defined in Table 9.7-7 for S-Mode or Table 9.7-8 for M-
Mode, to the Host after receiving a ca_pmt() APDU with ca_pmt_cmd_id 0x03 (query).

The M-CARD SHALL reply to ca_pmt() APDU with a ca_pmt_cmd_id 0x03 (query) and no ca_descriptors, by
sending a ca_pmt_reply() APDU with ca_enable 0x01 (descrambling possible with no extra conditions).

The Card MAY send the ca_pmt() APDU after reception of a ca_pmt() APDU with the ca_pmt_cmd_id set to
‘'ok_mmi" in order to indicate to the Host the result of the MMI dialogue (‘descrambling_possible' if the user has
purchased, 'descrambling not possible (because no entitlement)' if the user has not purchased).

Table 9.7-7 - S-Mode ca_pmt_reply() APDU Syntax (Resource Type 1 Version 2)

Syntax No. of Bits Mnemonic
ca_pmt_reply(Q {
ca_pmt_reply_tag 24 uimsbf
length_field()
program_number 16 uimsbf
reserved 2 bslbf
version_number 5 uimsbf
current_next_indicator 1 bslbf
CA_enable_flag 1 bslbf
if (CA _enable flag == 1) {
CA_enable /* program level */ 7 uimsbf
else {
reserved 7 uimsbf
}
for (i=0; i<N1; i++) {
reserved 3 bslbf
elementary PID /* elementary stream PID*/ 13 uimsbf
CA_enable_flag 1 bslbf
if (CA _enable flag == 1) {
CA_enable /* elementary stream level*/ 7 uimsbf
else {
reserved 7 uimsbf
}
}
3}
ca_pmt_reply_tag 0x9F8033
program_number The MPEG program number as defined in [1SO013818-1].
version_number The MPEG version humber as defined in [ISO13818-1].
current_next_indicator The MPEG current/next indicator as defined in [1SO13818-1].
elementary PID The MPEG elementary PID as defined in [1SO13818-1].
ca_enable Indicates whether the Card is able to perform the descrambling operation

requested in the ca_pmt() APDU.

0x00 Reserved

0x01 Descrambling possible with no extra conditions.

0x02 Descrambling possible under conditions (purchase dialog). The Card
has to enter a purchase dialog with the user before being able to
descramble.

4/18/13 CablelLabs® 117

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

The syntax contains one possible ca_enable at program level and, for each elementary stream, one possible

0x03

Descrambling possible under conditions (technical dialog). The Card
has to enter a technical dialog with the user before being able to
descramble (e.g., request fewer elementary streams because the

descrambling capabilities are limited).
0x04-0x70 Reserved

0x71 Descrambling not possible (no entitlement). The selected program is

not entitled and is not available for purchase.
0x72 Reserved

0x73 Descrambling not possible (technical reasons); for example, if all the

elementary streams capable are being used.
0x74-0xFF Reserved

ca_enable at elementary stream level.

e When both are present, only ca_enable at ES level applies for that elementary stream.

e When none is present, the Host does not interpret the ca_pmt_reply object.

If the Card supports different authorizations for components of a program, the Card SHALL implement its CA
application such that when ca_enable is present in ca_pmt_reply() both at program level and elementary stream
level, only the ca_enable at ES level applies for that elementary stream.

Table 9.7-8 - M-Mode ca_pmt_reply() APDU Syntax (Resource Type 2 Version 1)

Syntax No. of Bits Mnemonic
ca_pmt_reply(Q {
ca_pmt_reply_tag 24 uimsbf
length_field()
program_index 8 uimsbf
transaction_id 8 uimsbf
Itsid 8 uimsbf
program_number 16 uimsbf
source_id 16 uimsbf
CA_enable_flag 1 bslbf
if (CA_enable_flag == 1) {
CA_enable /* program level */ 7 uimsbf
else {
reserved 7 uimsbf
}
for (i=0; i<N1; i++) {
reserved 3 bslbf
elementary_ PID /* elementary stream PID*/ 13 uimsbf
CA_enable_flag 1 bslbf
if (CA_enable_flag == 1) {
CA_enable /* elementary stream level*/ 7 uimsbf
else {
reserved 7 uimsbf
}
}
}

ca_pmt_reply_tag

program_index

0x9F8033

The same program index that was used in the original ca_pmt. The combination

of transaction_id and program_index uniquely identifies this update.

118

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

transaction_id
Itsid

program_number
source_id
elementary PID

ca_enable

9.7.5 ca_update

The same 8-bit transaction_id that was used in the original ca_pmt.

Local Transport Stream ID. Required when the M-CARD is present and
operating in M-Mode.

The MPEG program number as defined in [1SO013818-1].
The source ID as defined in [SCTE®65].
The MPEG elementary PID as defined in [1SO013818-1].

Indicates whether the Card is able to perform the descrambling operation
requested in the ca_pmt() APDU.

0x00 Reserved

0x01 Descrambling possible with no extra conditions.

0x02 Descrambling possible under conditions (purchase required). In order
for the Card to descramble this program, the program must be
purchased using a process specific to the Conditional Access System.

0x03 Descrambling possible under conditions (technical dialog). The Card
has to enter a technical dialog with the user before being able to
descramble (e.g., request fewer elementary streams because the
descrambling capabilities are limited).

0x04-0x70 Reserved

0x71 Descrambling not possible (no entitlement). The selected program is
not entitled and is not available for purchase.

0x72 Reserved

0x73 Descrambling not possible (technical reasons), for example if all the
elementary streams capable are being used.

Ox74-0xFF Reserved

The Card SHALL use the ca_update() APDU, as defined in Table 9.7-9 for S-Mode and Table 9.7-10 for M-Mode,
to inform the Host when CA information for the currently tuned program has changed. The Card SHALL always
reference the service to which the Host is currently tuned in a ca_update() APDU. This is the last service for which

a ca_pmt() APDU was sent from the Host to the Card that was not a query.

4/18/13 CablelLabs®

119

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Table 9.7-9 - S-Mode ca_update() APDU Syntax (Resource Type 1 Version 2)

Syntax No. of Bits Mnemonic
ca_update() {
ca_update_tag 24 uimsbf
length_field(Q
program_number 16 uimsbf
reserved 2 bslbf
version_number 5 uimsbf
current_next_indicator 1 bslbf
CA_enable_flag 1 bslbf
if (CA _enable flag == 1) {
CA_enable /* program level */ 7 uimsbf
else {
reserved 7 uimsbf
}
for (i=0; i<N1; i++) {
reserved 3 bslbf
elementary PID /* elementary stream PID*/ 13 uimsbf
CA_enable_flag 1 bslbf
if (CA _enable flag == 1) {
CA_enable /* elementary stream level*/ 7 uimsbf
else {
reserved 7 uimsbf
}
}
3}
ca_update_tag 0x9F8034
program_number The MPEG program number as defined in [1SO13818-1].
version_number The MPEG version humber as defined in [ISO13818-1].
current_next_indicator The MPEG current/next indicator as defined in [1SO13818-1].
elementary PID The MPEG elementary PID as defined in [1SO13818-1].
ca_enable Indicates whether the Card is able to perform the descrambling operation

requested in the ca_pmt() APDU.

0x00 Reserved

0x01 Descrambling possible with no extra conditions.

0x02 Descrambling possible under conditions (purchase dialog). The Card
has to enter a purchase dialog with the user before being able to
descramble.

0x03 Descrambling possible under conditions (technical dialog). The Card
has to enter a technical dialog with the user before being able to
descramble (e.g., request fewer elementary streams because the
descrambling capabilities are limited).

0x04-0x70 Reserved

0x71 Descrambling not possible (no entitlement). The selected program is
not entitled and is not available for purchase.

0x72 Reserved

0x73 Descrambling not possible (technical reasons), for example if all the
elementary streams capable are being used.

0x74-0xFF Reserved

120 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Table 9.7-10 - M-Mode ca_update() APDU Syntax (Resource Type 2 Version 1)

Syntax No. of Bits Mnemonic
ca_update() {
ca_update_tag 24 uimsbf
length_field(Q
program_index 8 uimsbf
transaction_id 8 uimsbf
Itsid 8 uimsbf
program_number 16 uimsbf
source_id 16 uimsbf
CA_enable_flag 1 bslbf
if (CA _enable flag == 1) {
CA_enable /* program level */ 7 uimsbf
else {
reserved 7 uimsbf
}
for (i=0; i<N1; i++) {
reserved 3 bslbf
elementary PID /* elementary stream PID*/ 13 uimsbf
CA_enable_flag 1 bslbf
if (CA _enable flag == 1) {
CA_enable /* elementary stream level*/ 7 uimsbf
else {
reserved 7 uimsbf
}
}
3}

ca_update_tag

program_index

transaction_id

Itsid

program_number
source_id
elementary PID

ca_enable

0x9F8034

The same program index that was used in the original ca_pmt. The combination
of transaction_id and program_index uniquely identifies this update.

The same 8-bit transaction_id that was used in the original ca_pmt.

Local Transport Stream ID. Required when the M-CARD is present, and
operating in M-Mode.

The MPEG program number as defined in [1SO13818-1].
The source ID as defined in [SCTE®65].
The MPEG elementary PID as defined in [1SO13818-1].

Indicates whether the Card is able to perform the descrambling operation
requested in the ca_pmt() APDU.

0x00
0x01
0x02

0x03

Reserved

Descrambling possible with no extra conditions.

Descrambling possible under conditions (purchase required). In order
for the Card to descramble this program, the program must be
purchased using a process specific to the Conditional Access System.
Descrambling possible under conditions (technical dialog). The Card
has to enter a technical dialog with the user before being able to
descramble (e.g., request fewer elementary streams because the
descrambling capabilities are limited).

0x04-0x70 Reserved

4/18/13

CablelLabs® 121

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

0x71 Descrambling not possible (no entitlement). The selected program is
not entitled and is not available for purchase.

0x72 Reserved

0x73 Descrambling not possible (technical reasons); for example, if all the
elementary streams capable are being used.

0x74-0xFF Reserved

9.8 Host Control

This resource allows the Card to set up the Host OOB RF receiver and transmitter, if available, and to allow the Card
the capability to tune the Host’s FAT tuner under certain conditions defined by the Homing resource. The Host will
perform its internal in-band tuning operation without requiring opening a session to the Host Control resource.
Therefore, when it receives any in-band tuning APDUs from the Card, it can decide whether to grant them or not.
Typically, unless either a Homing resource has been opened or the Host is in standby state or the CableCARD has
transmitted a firmware_upgrade, the Host will be unable to grant the Card access to the in-band tuner.

The Host SHALL support a maximum of one session of the Host Control Resource, using the resource identifier(s)
as defined in Table 9.8-1.

Table 9.8-1 - Host Control Support Resource

Resource Mode Class Type Version Identifier (hex)
Host Control S-Mode 32 1 3 0x00200043
Host Control M-Mode 32 2 1 0x00200081

The Card SHALL open a single session the Host Control Resource using the resource identifiers as defined in Table
9.8-1.

The Card SHALL leave the Host Control Resource open independent of the operation of the state of the Homing
resource.

The Host Control resource consists of six APDUEs.

Table 9.8-2 - Host Control Support APDUs

APDU Name Tag Value Resource Host 2r§:(;tt;(l)enCARD
OOB_TX tune_req() 0x9F8404 Host Control <«
OOB_TX tune_cnf() 0x9F8405 Host Control -
O0OB_RX _tune_req() 0x9F8406 Host Control <«
OO0OB_RX tune_cnf() 0x9F8407 Host Control -
inband_tune_req() 0x9F8408 Host Control <«
inband_tune_cnf() 0x9F8409 Host Control -

9.8.1 OOB_TX tune_req

The Card SHALL use the OOB_TX_tune_req() APDU as defined in Table 9.8-3 to set up the Host’s RDC
transmitter.

122 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

Table 9.8-3 - OOB_TX_tune_req() APDU Syntax

Syntax No. of Bits Mnemonic
00B_TX_tune_req() {
00B_TX tune_req_tag 24 uimsbf
Length_field()
RF_TX_ frequency_value 16 uimsbf
RF_TX_power_level 8 uimsbf
RF_TX rate_value 8 uimsbf
3}
OOB_TX_tune_req_tag 0x9F8404
RF_TX frequency_value This field defines the frequency of the RF transmitter, in kHz.

RF_TX_power_level

RF_TX rate_value

This value defines the power level of the RF transmitter, in units of 0.5 dBmV.

The value 0x00 corresponds to an output level of 0 dBmV.

This value defines the bit rate of the RF transmitter. The format and values are

defined in Table 9.8-6.

Table 9.8-4 - RF TX Frequency Value

Bit 7 | 6 | 5 | 4 | 3 | 2 | 1] o
Frequency (MS)
Frequency (LS)
RF_TX_frequency_value This field defines the frequency of the RF Transmitter, in kHz.
Table 9.8-5 - RF TX Power Level
Bit 7 | 6 | 5 | a4 | 3] 2 | 1] o

RF Power Level

RF_TX_power_level

Power level of the RF Transmitter, in units of 0.5dBmV. The value 0x00
corresponds to an output level of 0 dBmV.

Table 9.8-6 - RF TX Rate Value

Bit

7 | 6 5 | 4 | 3 | 2 | 1] o

Rate Reserved

RF_TX rate_value
Rate - Bit rate.

00b = 256 kbps
01b = Reserved

10b = 1544 kbps
11b = 3088 kbps

9.8.2 OOB_TX tune_cnf

Upon reception of an OOB_TX_tune_req() APDU and tuning the transmitter, the Host SHALL send the
OOB_TX tune_cnf() APDU as defined in Table 9.8-7 to the Card.

4/18/13

CablelLabs®

OC-SP-CCIF2.0-126-130418

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Table 9.8-7 - OOB_TX_tune_cnf() APDU Syntax

Syntax No. of Bits Mnemonic
00B_TX_tune_cnf() {
00B_TX tune_cnf_tag 24 uimsbf
length_field()
status_Tfield 8 uimsbf
3}

OOB_TX_tune_cnf _tag

status_field

0x9F8405

This field returns the status of the OOB_TX_tune_req(). If the request was
granted and the RF Transmitter set to the desired configuration, Status_field will
be set to 0x00. Otherwise, Status_field will be set to one of the following values:

0x00 Tuning granted

0x01 Tuning denied - RF transmitter not physically available
0x02 Tuning denied - RF transmitter busy

0x03 Tuning denied - Invalid parameters

0x04 Tuning denied - Other reasons

0x05-0xFF Reserved

The Card SHALL NOT attempt to perform any RDC operations after receiving an OOB_TX_tune_cnf() APDU with

Status_field set to 0x01.

If the Host receives a OOB_TX tune_req() APDU with any parameters that are out of range, it SHALL send the
OOB_TX tune_cnf() with Status_field set to 0x03.

9.8.3 OOB_RX tune_req

The Card SHALL use the OOB_RX_tune_req() APDU as defined in Table 9.8-8 to set up the Host’s FDC receiver.

Table 9.8-8 - OOB_RX_tune_req() APDU Syntax

Syntax No. of Bits Mnemonic
00B_RX_tune_req() {
00B_RX_tune_req_tag 24 uimsbf
length_field(
RF_RX_frequency_value 16 uimsbf
RF_RX data_rate 8 uimsbf
b5

OOB_RX tune_req_tag
RF_RX_frequency_value

0x9F8406

This field defines the frequency of the RF receiver.
(Frequency = value * 0.05 + 50 MHz.). The format is defined in Table 9.8-9.

Table 9.8-9 - RF RX Frequency Value

Bit 7 6 5 4 3 2 | 1 | o
0 0 0 0 0 Value (MS)
Value (LS)

RF_RX data_rate

This value defines the bit rate and spectral inversion of the RF transmitter. The
format is defined in Table 9.8-10.

124

CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

The following is the definition of the bit rate.

00b 2,048 kbps
01b 2,048 kbps
10b 1,544 kbps
11b 3,088 kbps
The following is the definition of the Spectral Inversion (SPEC).
0 Spectrum is non-inverted
1 Spectrum is inverted

Table 9.8-10 - OOB Transmit Rate Format

Bit 7 | 6 5 | 4 | 3 | 2 | 1 | o
Rate SPEC

9.8.4 OOB_RX tune_cnf

Upon reception of an OOB_RX_tune_req() APDU and tuning the RF receiver, the Host SHALL send the
OOB_RX_tune_cnf() APDU as defined in Table 9.8-11 to the Card. The Host SHALL send the
OOB_RX_tune_cnf() APDU after either the requested frequency has been tuned and acquired (“tune time”), or 500
msec has elapsed since receiving the request, whichever comes first.

Table 9.8-11 - OOB_RX_tune_cnf() APDU Syntax

Syntax No. of Bits Mnemonic
00B_RX_tune_cnf() {
00B_RX_tune_cnf_tag 24 uimsbf
length_field()
status_Tfield 8 uimsbf
+
OOB_RX tune_cnf_tag 0x9F8407
status_field Returns the status of the RF receiver. The following values are to be used:

0x00 Tuning granted

0x01 Tuning denied - RF receiver not physically available
0x02 Tuning denied - RF receiver busy

0x03 Tuning denied - Invalid parameters

0x04 Tuning denied - Other reasons

0x05-0xFF Reserved

9.8.5 inband_tune_req

The Card SHALL send the inband_tune_req() APDU as defined in Table 9.8-12 to request the Host to tune the
inband QAM tuner. The APDU provides support for tuning to a source_id or a frequency with the modulation type.

4/18/13 CablelLabs® 125

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Table 9.8-12 - inband_tune_req() APDU Syntax

Syntax No. of Bits Mnemonic
inband_tune_req() {
inband_tune_req_tag 24 uimsbf
length_field()
tune_type 8 uimsbf
if (tune_type == 0x00) {
source_id 16 uimsbf

}
else if (tune_type == 0x01) {

tune_frequency_value 16 uimsbf
modulation_value 8 uimsbf
}
3}
inband_tune_req_tag 0x9F8408
tune_type Determines whether to use the source ID value or the frequency and modulation
values.

0x00 Source ID
0x01 Frequency
0x02-0xFF Reserved

source_id When tune_type = 0x00, the source_id is a 16 bit unsigned integer in the range
of 0x0000 to OXFFFF that identifies the programming source associated with the
virtual channel on a system wide basis. In this context, a source is one specific
source of video, text, data, or audio programming. For the purposes of
referencing virtual channels to the program guide database, each such program
source is associated with a unique value of source_id. The source_id itself may
appear in an IPG database, where it tags entries to associate them with specific
services. The value zero for source_id, if used, indicates the channel is not
associated with a source_id.

Tune_frequency_value When tune_type = 0x01, tune_frequency_value contains the frequency for the
Host to tune. The frequency is calculated by multiplying tune_frequency_value
by 0x0.05 MHz (50 kHz resolution). The format is defined in Table 9.8-13.

Table 9.8-13 - Tune Frequency Value

Bit 7 | e | 5 | 4 | 3 | 2 | 1 | o0
MSB Value (MS)
LSB Value (LS)
modulation_value When tune_type = 0x01, modulation value sets the type of modulation for the
inband tuner.
0x00 64QAM

0x01 256QAM
0x02-0xFF Reserved

9.8.6 inband_tune_cnf

When the Host receives an inband_tune_req() APDU, it SHALL respond with the inband_tune_cnf() APDU as
defined in Table 9.8-14 for S-Mode and Table 9.8-15 for M-Mode.

126 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Table 9.8-14 - S-Mode - inband_tune_cnf() APDU Syntax (Resource Type 1 Version 3)

Syntax No. of Bits Mnemonic

inband_tuning _cnf() {
inband_tuning_cnf_tag 24 uimsbf
length_field()
tune_status 8 uimsbf

3

inband_tuning_cnf _tag 0x9F8409

tune_status The Host’s response to the inband_tuning_req() APDU.

0x00 Tuning accepted

0x01 Invalid frequency (Host does not support this frequency)

0x02 Invalid modulation (Host does not support this modulation type)
0x03 Hardware failure (Host has hardware failure)

0x04 Tuner busy (Host is not relinquishing control of inband tuner)
0x05-0xFF Reserved

Table 9.8-15 - M-Mode - inband_tune_cnf() APDU Syntax (Resource Type 1 Version 3)

Syntax No. of Bits Mnemonic

inband_tuning _cnf() {
inband_tuning_cnf_tag 24 uimsbf
length_field()
Itsid 8 uimsbf
tune_status 8 uimsbf

3

inband_tuning_cnf _tag 0x9F8409

Itsid Local Transport Stream ID. Utilized when the M-CARD is present, and
operating in M-Mode.

tune_status The Host’s response to the inband_tuning_req() APDU.

0x00 Tuning accepted

0x01 Invalid frequency (Host does not support this frequency)

0x02 Invalid modulation (Host does not support this modulation type)
0x03 Hardware failure (Host has hardware failure)

0x04 Tuner busy (Host is not relinquishing control of inband tuner)
0x05-0xFF Reserved

If the Host responds to an inband_tuning_req() APDU with tune_status field = 0x00 (Tuning accepted) in the
inband_tuning_cnf() APDU, the Host SHALL NOT remove any MPEG packets from the transport stream
associated with the tuning request (i.e., the indicated transport stream is delivered to the M-Card intact).

9.9 Generic IPPV Support
The CableCARD Interface support of the Generic IPPV resource is deprecated.

9.10 System Time

The system time resource is supplied by the Host and only one session is supported. The Card creates a session to the
resource and then inquires the current time with a system_time_inq() APDU. If response_interval is zero, the

4/18/13 CablelLabs® 127

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

response is a single system_time() APDU immediately. If response_interval is non-zero, the response is a
system_time() APDU, immediately followed by further system_time() APDUs, every response_interval seconds.

The Host SHALL support a maximum of one session to the System Time Support Resource using the identifier as
defined in Table 9.10-1.

The Card SHALL open a maximum of one session to the System Time Support Resource using the identifier as
defined in Table 9.10-1.

Table 9.10-1 - System Time Support Resource

Resource Mode Class Type Version Identifier (hex)

System Time S-Mode/M-Mode 36 1 1 0x00240041

The System Time resource consists of 2 APDUSs.

Table 9.10-2 - System Time Support APDUs

APDU Name Tag Value Resource Direction
Host « CableCARD
system_time_ing 0x9F8442 System Time «—
system_time 0x9F8443 System Time -

9.10.1 system_time_ing
The Card SHALL send the system_time_ing() APDU as defined in Table 9.10-3 to the Host.

Table 9.10-3 - Transmission of system_time_ing

Syntax No. of Bits Mnemonic
system _time_inqg O {
system_time_ing_tag 24 uimsbf
length_field()
response_interval 8 uimsbf
3}
system_time_ing_tag 0x9F8442
response_interval How often, in seconds, the Host should send the system_time() APDU to the

Card, starting immediately. A value of 0x00 means that only a single
system_time() APDU is to be sent, immediately.

9.10.2 system_time

The Host SHALL send the system_time() APDU as defined in Table 9.10-4 to the Card immediately in response to
the system_time_ing() APDU.

If the response_interval in a system_time_ing() is non-zero, the Host SHALL send the system_time() APDU every
response_interval seconds for the duration of the existence of the System Time session.

128 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Table 9.10-4 - system_time APDU

Syntax No. of Bits Mnemonic
system_time() {
system_time_tag 24 uimsbf
length_field()
system_time 32 uimsbf
GPS_UTC offset 8 uimsbf
3}
system_time_tag 0x9F8443
system_time A 32-bit unsigned integer quantity representing the current system time as the
number of GPS seconds since 12 AM, January 6, 1980, UTC.
GPS_UTC_offset An 8-bit unsigned integer that defines the current offset in whole seconds

between GPS and UTC time standards. To convert GPS time to UTC, the
GPS_UTC offset is subtracted from GPS time.

9.11 Man-Machine Interface (MMI)

The Host SHALL provide the MMI Resource using the identifier as defined in Table 9.11-1 with a maximum of one
session. The Card SHALL only open one session to the MMI resource using the identifier as defined in Table 9.11-1
to initialize one or more MMI dialogs. The Host SHALL keep the MMI session open during normal operation. The
Card SHALL keep the MMI session open during normal operation.

The MMI resource provides the following:

e Support to the Card to open an MMI dialog

e Support to the Host to confirm that the MMI dialog has been opened

e Support to the Card to close the MMI dialog it opened

e Support to the Host to confirm that the MMI dialog has been closed either upon Host or Card request

When the Host is operating in M-Mode, and receives the open_mmi_req() APDU, the Host will display in a
broadcast form the MMI dialog on all of the outputs. When the Host receives a close_mmi_cnf() the Host will close
all MMI dialog messages it opened. If the Host sends the open_mmi_req(), for support of Host diagnostics, the Host
will use the dialog number to track what output the MMI dialog will be exchanged with.

If the Host supports the Full Screen Window Type, and if that Window Type is requested by the Card via the
open_mmi_req() APDU, the Host SHALL present the MMI dialog in an opaque window.

If the Host supports the Overlay Window Type, and if that Window Type is requested by the Card via the
open_mmi_req() APDU, the Host SHALL present the MMI dialog in an opaque window which is large enough to
contain the MMI message but may not fill the entire viewable area.

If the Host supports the Multiple Windows Type, and if that Window Type is requested by the Card via the
open_mmi_req() APDU, the Host SHALL present each subsequent MMI dialog, up to the maximum number
conveyed, in an Overlay Window.

If multiple MMI Overlay Windows are supported, the Host SHALL support a method for navigating between the
different windows.

Table 9.11-1 - MMI Support Resource

Resource Mode Class Type Version Identifier (hex)
MMI S-Mode/M-Mode 64 2 1 0x00400081

4/18/13 CablelLabs® 129

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

The MMI resource consists of 4 APDUSs.

Table 9.11-2 - MMI Support APDUs

APDU Name Tag Value Resource Host grgzz?enCARD
open_mmi_req() 0x9F8820 MMI “—
open_mmi_cnf() 0x9F8821 MMI -
close_mmi_req() 0x9F8822 MMI “—
close_mmi_cnf() 0x9F8823 MMI -

9.11.1 open_mmi_req

The Card SHALL send an open_mmi_req() APDU as defined in Table 9.11-3 to the Host to initialize an MMI
dialog. For a Host that supports more than one MMI dialog at the same time (multiple windows), the Card MAY
send another open_mmi_req() APDU before it closes the previous one.

Table 9.11-3 - open_mmi_req()

Syntax No. of Bits Mnemonic
open_mmi_req() {
open_mmi_req_tag 24 uimsbf
length_field()
display_type 8 uimsbf
url_length 16 uimsbf
for (i=0; i<url_length; i1++) {
url_byte 8 uimsbf
3
b3

open_mmi_req_tag

display_type

url_length
url_byte

0x9F8820

Describes how the MMI dialog takes place. For a Host that supports more than
one MMI dialog at the same time, the new MMI dialog can be in the current
window or in a new one. One resource class is provided. It supports display and
keypad instructions to the user. Note that the Host indicates to the Card which
Display Types it supports via the Application Info Resource.

0x00 Full screen

0x01 Overlay

0x02 New window
0x03-0xFF Reserved

Number of bytes in the following loop.
Each url_byte is one octet of a parameter that points to a HTML page in the

Card and that needs to be queried by the Host using the server_query() APDU
(Application Info resource) when the MMI dialog is opened.

130

CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

9.11.2 open_mmi_cnf

After receiving an open_mmi_req() APDU from the Card, the Host SHALL reply with an open_mmi_cnf() APDU
as defined in Table 9.11-4 to confirm the status of the request. When the Host is operating in M-Mode and receives
an open_mmi_req() APDU, the Host SHALL open the MM dialog on all of its outputs.

Table 9.11-4 - open_mmi_cnf

Syntax No. of Bits Mnemonic
open_mmi_cnf(Q) {
open_mmi_cnf_tag 24 uimsbf
length_field(
dialog_number 8 uimsbf
open_status 8 uimsbf
}
open_mmi_cnf _tag 0x9F8821
dialog_number A number supplied by the Host issued from an 8-bit cyclic counter that uniquely
identifies each open_mmi_cnf() APDU and allows the Card to close the
associated MM dialog.
open_status The status of the requested MMI dialog defined as follows:

0x00 OK- Dialog opened

0x01 Request denied - Host busy

0x02 Request denied - Display type not supported
0x03 Request denied - No video signal

0x04 Request denied - No more windows available
0x05-0xFF Reserved

9.11.3 close_mmi_req

The Card SHALL send a close_mmi_req() APDU as defined in Table 9.11-5 to the Host to close an MMI dialog
previously opened with an open_mmi_req() APDU.

Table 9.11-5 - close_mmi_req

Syntax No. of Bits Mnemonic
close_mmi_req(Q) {
close_mmi_req_tag 24 uimsbf
length_field(Q
dialog_number 8 uimsbf
3}

close_mmi_req_tag 0x9F8822
dialog_number The number of the MMI dialog assigned by the Host in the open_mmi_cnf() APDU.

9.11.4 close_mmi_cnf

After receiving a close_mmi_req() APDU from the Card, the Host SHALL reply with a close_mmi_cnf() APDU as
defined in Table 9.11-6 to confirm the status of the close operation. The Host MAY send a close_mmi_cnf() APDU
without the Card having sent a close_mmi_req() APDU to inform the Card about a close operation performed by the
Host (e.g., the subscriber closes the window). After receiving a close_mmi_req() APDU from the Card, the Host
SHALL close the specified MMI dialog.

4/18/13 CablelLabs® 131

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Table 9.11-6 - close_mmi_cnf

Syntax No. of Bits Mnemonic
close_mmi_cnf(Q) {
close_mmi_cnf_tag 24 uimsbf
length_field(
dialog_number 8 uimsbf
}
close_mmi_cnf _tag 0x9F8823
dialog_number The number of the MMI dialog received in the close_mmi_req() APDU.

9.12 M-Mode Device Capability Discovery

The Host SHALL support the CableCARD Device Resources resource using the identifier as defined in Table 9.12-
1. The M-CARD when operating in M-Mode SHALL open a session to the CableCARD Device Resources resource
using the identifier as defined in Table 9.12-1 on the Host to indicate its multi-stream capabilities. The Card will
use this resource to communicate the maximum number of transport streams it supports, how many programs it
supports, and how many elementary streams it supports.

The maximum number of elementary streams does not include those PIDs which are consumed internally by the Card
for internal Card applications. This number refers only to PIDs of programs that are consumed by the Host for
viewing or storage. If the Card requires additional PIDs for internal consumption, they are not to be included in this
number.

If the Card informs the Host which PIDs it requires through the CableCARD Capability Discovery resource, CARD
RES; the Host SHALL NOT remove those PIDs from each transport stream. Since the PIDS that the Card requires
may change, it may send the request_pids_cnf() APDU at any time. Upon receipt of any request_pids_cnf() APDU,
the Host SHALL update its list of PIDs to maintain in each transport stream. The Card MAY request a maximum of
8 non-program PIDs be transmitted to it per LTSID for internal consumption.

In the event that the Card is unable to meet the stream, program, or PID processing requirements that a user has
requested, the Host SHALL notify the user.

When Operating in M-Mode, the Host is responsible for controlling the data through the CHI such that the data rate
does not exceed the interface maximum. The Host may perform this by removing selected packets from the outgoing
multiplexed transport stream with PIDs that are not used in order to have sufficient bandwidth for the CHI.

Table 9.12-1 - CableCARD Device Resources Resource

Resource Mode Class Type Version Identifier (hex)

CARD RES M-Mode 38 3 1 0x002600C1

The Card Resources resource consists of 8 APDUEs.

Table 9.12-2 - CableCARD Resources Support APDUs

APDU Name Tag Value Resource H(z:e(—itlggrd
stream_profile() 0x9FA010 CARD RES «—
stream_profile_cnf() 0x9FA011 CARD RES -
program_profile() 0x9FA012 CARD RES «
program_profile_cnf() 0x9FA013 CARD RES -

132 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

APDU Name Tag Value Resource Hcl)jsi:itiggrd
es_profile() 0x9FA014 CARD RES «
es_profile_cnf() 0x9FA015 CARD RES -
request_pids() 0x9FA016 CARD RES -
request_pids_cnf() 0x9FA017 CARD RES «

9.12.1 stream_profile APDU

The Card SHALL send the stream_profile() APDU as defined in Table 9.12-3 to the Host to report the number of
streams that it will support. This includes the maximum number of streams that the Card can support. The Card
operating in M-Mode SHALL report at least 4 MPEG transport streams in the maximum_number_of streams field in
the stream_profile() APDU.

Table 9.12-3 - stream_profile APDU Syntax

Syntax No. of bits Mnemonic
stream_profile() {
stream _profile_tag 24 uimsbf
length_field()
max_number_of _streams 8 uimsbf
b5
stream_profile_tag Value = 0x9FAQ010
max_number_of streams The maximum number of unique MPEG transport streams input into the Card

from the Host that the Card Operating in M-Mode can manage.

9.12.2 stream_profile_cnf APDU

When the Host receives the stream_profile() APDU from the Card, it SHALL respond with the
stream_profile_cnf() APDU as defined in Table 9.12-4.

Table 9.12-4 - stream_profile_cnf APDU

Syntax No. of bits Mnemonic
stream_profile_cnf() {
stream_profile_cnf_tag 24 uimsbf
length_field()
number_of streams_used 8 uimsbf
+
stream_profile_cnf_tag Value = 0x9FA011
number_of streams_used The number of unique MPEG transport streams that the Host will be sending to

the Card simultaneously.

9.12.3 program_profile APDU

The Card SHALL send the program_profile() APDU as defined in Table 9.12-5 to the Host to report the maximum
number of simultaneous programs, summed across all transport streams, that the Card's CA system can
simultaneously decrypt. The Card operating in M-Mode SHALL report the ability to decrypt at least 4 simultaneous
programs in the maximum_number_of_programs field in the program_profile() APDU.

4/18/13 CablelLabs® 133

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Table 9.12-5 - program_profile APDU

Syntax No. of bits Mnemonic
program_profile() {
program_profile_tag 24 uimsbf
length_field()
max_number_of _programs 8 uimsbf
b5

program_profile_tag

max_number_of programs

Value = 0x9FA012

The maximum number of programs that the Card’s CA system can
simultaneously decrypt (must be greater than or equal to four).

9.12.4 program_profile_cnf APDU

When the Host receives the program_profile() APDU from the Card, it SHALL respond with the
program_profile_cnf() APDU as defined in Table 9.12-6.

Table 9.12-6 - program_profile_cnf APDU

length_field()

Syntax No. of bits Mnemonic
program_profile_cnf() {
program_profile_cnf_tag 24 uimsbf

program_profile_cnf_tag

9.12.5 es_profile APDU

Value = 0x9FA013

The Card SHALL send the es_profile() APDU as defined in Table 9.12-7 to the Host to report the maximum number
of simultaneous elementary streams, summed across all transport streams that the Card can support. The Card,

operating in M-Mode, SHALL report the ability to manage at least 16 elementary streams in the
maximum_number_of es field in the es_profile() APDU.

This maximum number does not include those PIDs which are consumed internally by the Card for internal Card
applications. This number refers only to PIDs of programs that are consumed by the Host for viewing or storage. If
the Card requires additional PIDs for internal consumption, they are not to be included in this number.

Table 9.12-7 - es_profile APDU Syntax

Syntax No. of bits Mnemonic
es_profile() {
es_profile_tag 24 uimsbf
length_field()
max_number_of _es 8 uimsbf
+

es_profile_tag

max_number_of es

Value = 0x9FA014

The maximum number of elementary streams that the Card operating in M-Mode
can manage SHALL be greater than or equal to 16.

134

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

9.12.6 es_profile_cnf APDU

When the Host receives the es_profile() APDU from the Card, it SHALL respond with the es_profile_cnf() APDU
as defined in Table 9.12-8.

Table 9.12-8 - es_profile_cnf APDU Syntax

Syntax No. of bits Mnemonic
es_profile_cnf(Q) {
es_profile_cnf_tag 24 uimsbf
length_field()
b5
es_profile_cnf_tag Value = 0x9FAQ015

9.12.7 request_pids APDU

If the Host performs transport stream packet filtering (removal of packets corresponding to unneeded PIDs), the Host
SHALL send the request_pids() APDU as defined in Table 9.12-9 to request a list of PIDs required by the Card.

If the Host performs transport stream filtering, then the Host SHALL NOT remove PID 0 (PAT), the PMT PID,
ECM PIDs and any other Elementary Stream PIDs that require Card decryption.

Please refer to Section 9.8.6 regarding filtering restrictions for Card requested transport streams using the
inband_tuning_req() APDU.

Table 9.12-9 - request_pids APDU

Syntax No. of bits Mnemonic
request_pids() {
request_pids_tag 24 uimsbf
length_field()
Itsid 8 uimsbf
pid_filtering_status 8 uimsbf
b5
request_pids_tag Value = 0x9FAQ016
Itsid Local Transport Stream ID. Only required when the M-CARD is present and
operating in M-Mode.
pid_filtering_status 0x00 Host not filtering PIDs
0x01 Host filtering PIDs
0x02-FF Reserved

4/18/13 CablelLabs® 135

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

9.12.8 request_pids_cnf APDU

The Card SHALL respond to the request_pids() APDU with pid_filtering_status = 0x01 by sending the
request_pids_cnf() APDU as defined in Table 9.12-10 with the non-program PIDs it requires. The Card MAY send
the request_pids_cnf() APDU at any time.

Table 9.12-10 - request_pids_cnf APDU

Syntax No. of bits Mnemonic
request_pids_cnf(Q) {
request_pids_cnf_tag 24 uimsbf
length_field(Q
Itsid 8 uimsbf
number_of pids 8 uimsbf
for (i=0; i<number_of pids; i++) {
zero 3 uimsbf
pid 13 uimsbf
}
3}
request_pids_cnf _tag Value = Ox9FA017
Itsid Local Transport Stream ID. Only required when the M-CARD is present, and
operating in M-Mode.
number_of_pids Number of non-program PIDs required; maximum is 8
zero 3 bits of zero
pid PID value

9.13 Copy Protection

A Copy Protection Resource is opened by the Card as defined in [CCCP] and complies to the interface requirement
specifications as defined in [CCCP].

Table 9.13-1 - CableCARD Copy Protection Resource

Resource Mode Class Type Version Identifier (hex)

Copy Protection | S-Mode 176 3 1 0x00B000C1

Copy Protection | M-Mode |See [CCCP] for the current Resource Class, Type and Version for this resource.

9.14 Extended Channel Support

For purposes of the Extended Channel, the Card or the Host that provides the physical communications link to the
headend is referred to as the “link device”. The Card is the link device for the QPSK modem, and the Host is the link
device for the Embedded Cable Modem (eCM).

The Host SHALL provide the Extended Channel Support resource using identifier(s) defined in Table 9.14-1 to
register the data flows to send and receive data over the Extended Channel. The Card SHALL support the Extended
Channel Support resource using identifier(s) as defined in Table 9.14-1.

All Hosts are required to provide the hardware necessary to support a QPSK downstream (FDC) channel for the
Card. Host 2.0 devices are required to incorporate a QPSK upstream (RDC) channel for the Card and a DOCSIS
embedded Cable Modem (eCM) for bidirectional IP support. The eCM is required to support the DOCSIS Set-top
Gateway (DSG) function. There are four types of flows on the extended channel: MPEG, IP, Socket, and DSG.

136 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

When in SCTE 55 mode, the Card will forward data formatted as MPEG sections to the Host as appropriate through
one or more data flows requested by the Host. In some cases, the Card will terminate data received on the QPSK
downstream FDC channel or the DSG flows for its own use (e.g., EMMSs). In other cases, it may perform a filtering
function and discard data known to be of no interest to the Host.

Supported system architectures imply three different ways of using the Extended Channel Support resource:
e The application is in the Host and the data is transferred to/from the headend via the QPSK modem.
e The application is in the Card and the data is transferred to/from the headend via the Host’s eCM.

e The application is in the Host and the data is transferred to/from the headend via the Host’s eCM. For example,
in DSG mode, Sl data is transferred from the eCM to the Card and then from the Card to the Host in an MPEG
section flow (as explained in Section 9.14.1).

After a flow is lost, i.e., after a lost_flow_ind() is sent by the link device and a lost_flow_cnf() with the same flow _id
is sent by the application, the flow does not exist anymore.

After a flow is deleted, i.e., after a delete_flow_req() is sent by the application and a delete_flow_cnf() with the same
flow_id is sent by the link device, the flow does not exist anymore.

An application that needs to make use of a flow that doesn’t exist, either because the link device lost the flow or
because the application deleted the flow, SHALL request the flow again using new_flow_req().

If the link device granted an IP_U flow and the IP address provided in the new_flow_cnf() changes, the link device
SHALL send a lost_flow_ind() for that IP_U flow.

Version 1 of this resource is required for Hosts that do not have an embedded High Speed Host (DOCSIS) Modem.
Versions 2 and higher of this resource are required for Hosts that have an embedded High Speed Host (DOCSIS)
Modem.

Messaging for versions 2, 3, 4 and 5 of this resource are defined in Annex E of this specification.
Version 5 of this resource adds service_type = 0x04 to the new_flow_req() APDU.
Version 5 of this resource removes the following APDUSs:

e inquire_DSG_mode()

e set DSG_mode()

e DSG_error()

e DSG_message()

e configure_advanced_dsg()

e send_DCD_info()

When version 5 or higher of the Extended Channel Resource is implemented, the Host SHALL implement the DSG
Resource, as defined in Section 9.20, for DSG applications.

When version 5 or higher of the Extended Channel Resource is supported, the Host SHALL use the APDUs defined
for the DSG resource instead of the DSG-related APDUs previously defined for the Extended Channel Resource.

When version 5 or higher of the Extended Channel Resource is supported, the Card SHALL use the APDUs defined
for the DSG resource instead of the DSG-related APDUs previously defined for the Extended Channel Resource.

If the Host supports only version 1, 2, 3, and/or 4 of the Extended Channel Resource, the Card SHALL NOT request
to open the DSG Resource.

If the Host supports only version 1, 2, 3, and/or 4 of the Extended Channel Resource, the Card SHALL use the
Extended Channel Resource for DSG messaging as defined in Annex E.7.

Version 6 adds DHCP information to the socket service_type and extends the IP address length to 128 bits to support
IPV6.

4/18/13 CablelLabs® 137

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Table 9.14-1 - Extended Channel Support Resource

Resource Mode Class Type Version Identifier (hex)
Extended Channel Support S-Mode/M-Mode 160 1 1 0x00A00041
Extended Channel Support S-Mode/M-Mode 160 1 2 0x00A00042
Extended Channel Support S-Mode/M-Mode 160 1 3 0x00A00043
Extended Channel Support S-Mode/M-Mode 160 1 4 0x00A00044
Extended Channel Support S-Mode/M-Mode 160 1 5 0x00A00045
Extended Channel Support S-Mode/M-Mode 160 1 6 0x00A00046

The APDU messages are as follows:
Table 9.14-2 - Extended Channel Support APDUs
Direction
APDU Name Tag Value Resource Host <> Card
Host modem |Card modem
new_flow_req() Ox9F8EQ0 | Extended Channel Support > -
new_flow_cnf() O0x9F8EO01 | Extended Channel Support < “—
delete_flow_req() O0x9F8EQ02 | Extended Channel Support > -
delete_flow_cnf() 0x9F8E03 | Extended Channel Support < «—
lost_flow_ind() O0x9F8E04 | Extended Channel Support > “«—
lost_flow_cnf() O0x9F8EQO5 | Extended Channel Support < -
inquire_DSG_mode()* O0x9F8E06 | Extended Channel Support — -
set DSG_mode()* O0x9F8EQ7 | Extended Channel Support “— «—
DSG_error()* O0x9F8E08 | Extended Channel Support “— N/A
DSG_message()* O0x9F8EQ9 | Extended Channel Support - N/A
configure_advanced_dsg()* |Ox9F8EOA |Extended Channel Support «— N/A
send_DCD_info()* O0x9F8EOB | Extended Channel Support - N/A

* The DSG-related APDUs are not used in Version 5 or higher of the Extended Channel Resource and are redefined
in the DSG resource. For versions 2-4, definitions of these DSG-related APDUs are found in Annex E.

9.14.1 new_flow_req APDU
The Host SHALL issue a new_flow_req() APDU as defined in Table 9.14-3 to register a new flow with the Card.
The Card SHALL issue a new_flow_req() APDU as defined in Table 9.14-3 to register a new flow with the Host.

Any device opening a flow that is listed as N/A or not listed in the table (such as the Card requesting an IP_U flow
when in QPSK mode) will receive a status_field = 0x02, service type not available.

In any DSG mode, the Card SHALL request to open a single flow using the new_flow_req() APDU with DSG as the
service_type.

When not in Advanced DSG mode, the Host SHALL open an MPEG section flow with the SI_Base PID (Ox1FFC)
to the Card for reception of. SCTE 65 SI messages, SCTE 18 EAS messages, CVTs and OCAP XAITs over the
Extended Channel.

138 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

When the Host is operating in Advanced DSG mode and makes a request to open an MPEG flow to PID Ox1FFC
over the Extended Channel, the Card MAY deny the request.

The service types available are MPEG section, IP unicast, IP multicast, Socket, and DSG.
The Host SHALL support at least six concurrent MPEG section service_type flows over the Extended Channel.
The Card SHALL support at least six concurrent MPEG section service_type flows over the Extended Channel.

When version 5 or higher of the Extended Channel Resource is used, the Host SHALL provide support for at least
eight Socket service_type flows as requested by the Card.

When version 5 or higher of the Extended Channel Resource is used, the Card MAY request a Socket service_type
flow.

When version 5 or higher of the Extended Channel Resource is used, the Card SHALL limit the Socket service_type
flows to a maximum of 8.

The Host SHALL support one DSG service_type flow over the Extended Channel.
The Card SHALL support one DSG service_type flow over the Extended Channel.

The Host SHALL support at least one IP Unicast (IP_U) service_type flow, providing support for UDP and/or TCP
protocols over the Extended Channel.

The Card SHALL support at least one IP Unicast (IP_U) service_type flow, providing support for UDP and/or TCP
protocols over the Extended Channel.

The devices on either side of the CHI are required to support only one outstanding new_flow_req() transaction at a
time.

The following are different types of service flows used by the devices on either side of the CHI:

MPEG section - This service type is applicable only for flows between the Card and the Host. The Card SHALL
provide the requested MPEG service flow across the Extended Channel in the form of MPEG sections (both long
and short form). This type of flow is unidirectional, from Card to Host only. The Card SHALL provide MPEG
sections across the Extended Channel with the value of the section_length_field not to exceed 4,093.

When the table section is in long form (as indicated by the section_syntax_indicator flag set to “1”), a 32-bit CRC is
present. The 32-bit CRC is also present in short-form sections (as indicated by the section syntax indicator flag set to
“0”) carried in the SI_base_PID (0x1FFC). For MPEG table sections in which an MPEG-2 CRC is known to be
present, the Card SHALL verify the integrity of the table section using the 32-bit CRC at the table section level, or a
32-bit CRC at another protocol layer. Only MPEG long-form messages that pass the CRC check will be forwarded to
the Host. The Card SHALL discard MPEG table sections that are incomplete or fail the CRC check.

The 32-bit CRC may be present in short-form sections associated with PID values other than the SI_base PID
(0x1FFC), and the Card MAY send these sections to the Host without any checks. The Host SHALL be responsible
for CRC validation of short-form MPEG sections received over the Extended Channel.

IP Unicast - This service type applies for flows between the Host and an SCTE 55 modem in the Card (SCTE 55
mode). The requested flow will be in the form of IP packets addressed to or from the Host's IP address when in
SCTE 55 mode. The IP Unicast flow may be bidirectional. The Card SHALL support a maximum total length of any
IP_Unicast packet in SCTE 55 mode of 1,500 bytes. The Host SHALL support a maximum total length of any
IP_Unicast packet in SCTE 55 mode of 1500 bytes.

IP Multicast - This service type is applicable for flows between the Host and a modem in the Card. The requested
flows will be in the form of multicast IP packets addressed to the multicast_group_ID assigned IP address. This type
of flow is unidirectional, from link device to non-link device. The maximum total length of any IP packet is expected
to be 1,500 bytes.

DSG - This service type applies to unidirectional flows of data from the Host to the Card. This type of flow is
unidirectional, from Host to Card only.

Socket - This service type is only applicable when the Host and the Card are in DSG mode.

4/18/13 CablelLabs® 139

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Table 9.14-3 - new_flow_req APDU Syntax

Syntax No. of Bits Mnemonic
new_flow _req() {
new_flow_req_tag 24 uimsbf
length_field()
service_type 8 uimsbf
if (service_type == 00) { /* MPEG section */
Reserved 3 bslbf
PID 13 uimsbf
}
if (service_type == 01) { /* IP unicast */
MAC_address 48 uimsbf
option_field_length 8 uimsbf
for (i=0; i<option_Field length; i++) {
option_byte 8 uimsbf
3
if (service_type == 02) { /* IP multicast */
Reserved 4 bslbf
multicast_group_ ID 28 uimsbf
3
if(service_type == 04) { /* Socket*/
protocol_flag 8 uimsbf
local _port_number 16 uimsbf
remote_port_number 16 uimsbf
remote_address_type 8 uimsbf

/* Use of 0Ox00 is deprecated */
if(remote_address_type==0x00) {

name_length 8 uimsbf
for(int i1=0;i<name_length;++i) {
name_byte 8 uimsbf
}
h
if(remote_address_type == 0x01)
ipv4_address 32 uimsbf
if(remote_address_type == 0x02)
ipv6_address 128 uimsbf
connection_timeout 8 uimsbf
}
3}
new_flow_req_tag 0x9F8E00
service_type Defines the type of requested service.

0x00 MPEG section
0x01 IP unicast (IP_U)
0x02 1P multicast (IP_M)
0x03 DSG

0x04 Socket

0x05-0xFF Reserved

PID The 13-bit MPEG-2 Packet Identifier associated with the flow request.

The Card SHALL be responsible for filtering the MPEG-2 transport stream and delivering only MPEG table sections
delivered on transport packets with the given value of PID over the Extended Channel.

MAC _address The 48-bit MAC address of the entity requesting the unicast IP flow.
option_field_length The number of bytes in the following for loop.

140 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

option_byte These bytes correspond to the options field of a DHCP message. One or more
DHCP options per [RFC2132] may be included.

The device requesting the new flow SHALL NOT use the “end option” (code 255) in the option_byte field of the
new_flow_req() APDU, so that the entity granting the IP flow request may append zero or more additional option
fields before delivering the request to the server.

multicast_group_ID The multicast group ID associated with the flow request. The modem function is
responsible for filtering arriving multicast IP packets and delivering only packets
matching the given multicast_group_ID address in an IP Multicast flow on the
Extended Channel.

protocol_flag The type of socket flow requested.

00 UDP - instructs the host to establish a UDP socket for the Card to use to
pass traffic on this flow.

01 TCP - instructs the host to establish a TCP socket for the Card to use to
pass traffic on this flow.

local_port_number The local port number for a socket connection. This field MAY be 0.

remote_port_number The port number of the socket on the remote Host. For UDP Socket Flows, it is
optional for Host to filter packets to the Card base on remote_port_number. That
is, the Host may forward incoming UDP packets whose source port does not
match the remote port specified in the new_flow_req() APDU.

remote_address_type The remote Host’s IP address format.
00 name - DNS will be required to look up the remote Host’s IP address
(Deprecated)

01 ipv4 - 32-bit IPv4 address
02 ipv6 - 128-bit IPv6 address

name_length The number of bytes in the following for loop. (Deprecated)

name_byte These bytes specify the remote Host’s name in ASCII format. This field may
specify either a Host name or a fully qualified domain name. (Deprecated)

remote_IP_address The IP address of the remote Host. This address is in standard network-byte
order so the higher order bits are sent first.

connection_timeout Number of seconds the Host will attempt to establish a TCP connection.

9.14.2 new_flow_cnf APDU

The Host SHALL return a new_flow_cnf() APDU as defined in Table 9.14-4 after receiving a new_flow_req()
APDU.

The Card SHALL return a new_flow_cnf() APDU as defined in Table 9.14-4 after receiving a new_flow_req()
APDU.

The Host and Card are required to support only one outstanding new_flow_req transaction at a time. If an additional
new_flow_req() APDU is received while one is being processed, the Host SHALL send a new_flow_cnf() APDU
with a status field of 0x04 (Network Busy).

If an additional new_flow_req() APDU is received while one is being processed, the Card SHALL send a
new_flow_cnf() APDU with a status field of 0x04 (Network Busy).

4/18/13 CablelLabs® 141

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Table 9.14-4 - new_flow_cnf APDU Syntax

Syntax No. of Bits Mnemonic
new_flow _cnf() {
new_flow_cnf_tag 24 uimsbf
length_field()
status_Tfield 8 uimsbf
flows_remaining 8 uimsbf
if (status_field == 0x00) {
flow_id 24 uimsbf
service_type 8 uimsbf
if (service_type == IP_U) {
IP_address 128 uimsbf
flow_type 8 uimsbf
flags 3 uimsbf
max_pdu_size 13 uimsbf
option_field_length 8 uimsbf
for (i=0; i<option_Field length; i++) {
option_byte 8 uimsbf
link IP_address 128 uimsbf
}
if (service_type == Socket) {
reserved 3 uimsbf
max_pdu_size 13 uimsbf
link IP_address 128 uimsbf
option_field_length 8 uimsbf
for (i=0; i<option_Ffield length; i++) {
option_byte 8 uimsbf
}
}
3}
new_flow_cnf tag 0x9F8E01
status_field Returns the status of the new_flow_req.
0x00 Request granted, new flow created
0x01 Request denied, number of flows exceeded

0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
O0x0A

Request denied, service_type not available

Request denied, network unavailable or not responding
Request denied, network busy

Request denied - MAC address not accepted

Request denied, DNS not supported

Request denied, DNS lookup failed

Request denied, local port already in use or invalid
Request denied, could not establish TCP connection
Request denied, IPv6 not supported

0x0B-0xFF Reserved

flows_remaining The number of additional flows of the same service_type that can be supported.
The value 0x00 indicates that no additional flows beyond the one currently
requested can be supported.

flow_id The unique flow identifier for this application’s data flow. To avoid conflicts
between the assignment of flow_ids between the Card and the Host, the Card and
the Host will assign Ids in different ranges. The flow id value of 0x000000 is
reserved and should not be assigned by either the Host or the Card.

142

CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

The Card SHALL assign Extended Channel flow_ids in the range of 0x000001 to Ox7FFFFF in the new_flow_cnf()
APDU.

The Host SHALL assign Extended Channel flow_ids in the range of 0x800000 to OXFFFFFF in the new_flow_cnf()
APDU.

service_type The requested service_type received in the new_flow_req() APDU.
IP_address The 128-bit IP address associated with the requested flow. If the address is IPv4,
then the upper 96 bits SHALL be set to zero.
link_IP_address The 128-bit IP address assigned to the link device. If the address is IPv4, then
the upper 96 bits SHALL be set to zero.
flow_type This field is not supported in any version of the extended channel resource.
flags A 3-bit field that contains information, as defined below, pertaining to
limitations associated with the interactive network. Additional detail is provided
in Table 9.14-5.
Bit0 no_frag
bits 2:1 reserved

Table 9.14-5 - Flag field definitions

BITS
2 1 0
reserved no_frag
no_frag A 1-bit Boolean that designates if the network supports fragmentation. A value

of 0, indicates that fragmentation is supported. A value of 1, indicated that
fragmentation is not supported.

max_pdu_size A 13-bit unsigned integer number that designates the maximum PDU length that
may be transmitted across the interface.

option_field_length An 8-bit unsigned integer number that represents the number of bytes of option
field data to follow.

option_byte If service_type == IP_U, these bytes correspond to the DHCP options requested
in the new_flow_req() message. If service_type == Socket, these bytes
correspond to the DHCP options requested by the link device. The format of the
field is as defined in [RFC2132].

The device replying with the new_flow_cnf() APDU SHALL NOT use the “end option” (code 255) in the

option_byte field.

9.14.3 delete_flow_req APDU

The Host SHALL send the delete_flow_req() APDU as defined in Table 9.14-6 to the Card to delete a registered
data flow over the Extended Channel.

The Card SHALL send the delete_flow_req() APDU as defined in Table 9.14-6 to the Host to delete a registered
data flow over the Extended Channel.

4/18/13 CablelLabs® 143

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Table 9.14-6 - delete_flow_req APDU Syntax

Syntax No. of Bits Mnemonic
delete _flow_req() {
delete_flow_req_tag 24 uimsbf
length_field()
flow_id 24 uimsbf
3}
delete_flow_req_tag 0x9F8E02
flow_id The flow identifier for the flow to be deleted.

9.14.4 delete_flow_cnf APDU

When the Host receives a delete_flow_req() APDU, it SHALL respond with the delete_flow_cnf() APDU as defined
in Table 9.14-7.

When the Card receives a delete_flow_req() APDU, it SHALL respond with the delete_flow_cnf() APDU as defined
in Table 9.14-7.

Table 9.14-7 - delete_flow_cnf APDU Syntax

Syntax No. of Bits Mnemonic

delete_flow_cnf() {
delete_flow_cnf_tag 24 uimsbf
length_field(
flow_id 24 uimsbf
status_field 8 uimsbf
}

delete_flow_cnf tag 0x9F8EQ3

flow_id The flow identifier for the flow to be deleted.

status_field Returns the status of the delete_flow_req() APDU.

0x00 Request granted, flow deleted

0x01 Reserved

0x02 Reserved

0x03 Request denied, network unavailable or not responding
0x04 Request denied, network busy

0x05 Request denied, flow_id does not exist

0x06 Request denied, not authorized

0x07-0xFF Reserved

9.14.5 lost_flow_ind APDU

The Host SHALL indicate that a registered data flow has been lost by issuing the lost_flow_ind() APDU as defined
in Table 9.14-8.

The Card SHALL indicate that a registered data flow has been lost by issuing the lost_flow_ind() APDU as defined
in Table 9.14-8.

144 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Table 9.14-8 - lost_flow_ind APDU Syntax

Syntax No. of Bits Mnemonic
lost flow_1nd(Q) {
lost_flow_ind_tag 24 uimsbf
length_field()
flow_id 24 uimsbf
reason_field 8 uimsbf
3}
lost_flow_ind_tag 0x9F8E04
flow_id The flow identifier for the flow that has been lost.
reason_field Returns the reason the flow was lost.

0x00 Unknown or unspecified reason
0x01 IP address expiration

0x02 Network down or busy

0x03 Lost or revoked authorization
0x04 Remote TCP socket closed
0x05 Socket read error

0x06 Socket write error

0x07-0xFF Reserved

9.14.6 lost_flow_cnf APDU

The Host SHALL respond with the lost_flow_cnf() APDU as defined in Table 9.14-9 when a lost_flow_ind() APDU
is received.

The Card SHALL respond with the lost_flow_cnf() APDU as defined in Table 9.14-9 when a lost_flow_ind() APDU
is received.

Table 9.14-9 - lost_flow_cnf APDU Syntax

Syntax No. of Bits Mnemonic
lost flow _cnf(Q) {
lost _flow_cnf_tag 24 uimsbf
length_field(Q)
flow_id 24 uimsbf
status_Tfield 8 uimsbf
}
lost_flow_cnf_tag 0x9F8E05
flow_id The flow identifier for the flow that has been lost.
status_field Returns the status of the lost_flow_ind() APDU.

0x00 Indication acknowledged
0x01-0xFF Reserved

9.15 Generic Feature Control

The Generic Feature Control resource enables the Host device to receive control of features, which are considered
generic to Host devices. There are three aims to this resource: 1) to provide control of features that subscribers do
not desire to set themselves, 2) to provide the ability to inhibit subscriber control and only allow headend control,
and 3) to provide a mechanism in which a Card or Host device can be staged to a known value.

4/18/13 CablelLabs® 145

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

A resource is created which resides in the Host called the Generic Feature Control resource. The Card opens only
one Generic Feature Control session to the Host and should never close the session.

9.15.1 Parameter Storage

There is no requirement for the Card to store the generic feature’s parameters although there is no requirement that it
cannot.

9.15.2 Parameter Operation

9.15.2.1 Feature List Exchange

Immediately after the session to the Generic Feature Control resource has been established, the Card queries the Host
to determine which generic features are supported in the Host (feature_list_req). After the Card receives the generic
feature list from the Host (feature_list), the Card sends its confirmation of the feature list to the Host
(feature_list_cnf). The Host then queries the Card to determine which generic features are supported in the Card and
the headend (feature_list_req). The Card sends its feature list to the Host (feature_list) to which the Host then sends
its confirmation (feature_list_cnf). This is called the generic feature list exchange.

Headend Card Host

open_session_request

open_session_response

feature_list_req

feature_list

feature_list_cnf

feature_list_req

feature_list

feature_list_cnf

Figure 9.15-1 - Generic Feature List Exchange

If the generic feature list on the Host or the Card changes, then the changed device sends a feature_list_changed()
APDU to the other device. The other device then performs the generic feature list exchange to obtain the new list.

Headend Card Host

feature_list_changed

feature_list_req

feature_list

feature_list_cnf

Figure 9.15-2 - Card Feature List Change

146 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Headend Card Host

feature_list_changed

feature_list_req

feature_list

feature_list_cnf

Figure 9.15-3 - Host Feature List Change

9.15.2.2 Host to CableCARD Device Transfer

After the feature exchange has occurred, the Card may request the Host to send its feature parameters
(feature_parameters_req). After any request, the Host sends to the Card the parameters for all the generic features in
the Host’s generic feature list (feature_parameters). The Card replies with the confirmation
(feature_parameters_cnf). The Card may utilize these generic feature parameters, transfer them to the headend, or
ignore them.

Headend Card Host

feature_parameters_req

feature_parameters

feature_parameters_cnf

Figure 9.15-4 - Host to CableCARD Device Feature Parameters

When any of the parameters of the generic features that are in the Card generic feature list are changed in the Host,
for whatever reason, the Host sends these new parameters to the Card (feature_parameters). The Card replies with
the confirmation (feature_parameters_cnf).

Headend Card Host

feature_parameters

<
%

feature_parameters_cnf

Figure 9.15-5 - Host Parameter Update

The Card may request, at any time the session is open and the generic feature list exchange has occurred, the current
parameters in the Host by sending a feature_parameters_req() APDU.

4/18/13 CablelLabs® 147

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

9.15.2.3 Headend to Host

It is not intended that the headend would send all the generic feature’s parameters periodically. Most of the
parameters would only be sent once at the request of the user or for staging of the device. The generic feature’s
parameters that may need to be sent periodically are the RF output channel, time zone, daylight savings, and rating
region. The headend may send all or just some of the parameters.

The method in which the Card receives the generic feature’s parameters is proprietary to the Card manufacturer.

After the session has been established, when the Card receives a message from the headend containing generic
feature parameters, the Card transfers this information to the Host (feature_parameters). The Host will replace its
parameters with the values in the APDU. If the Card utilizes the parameters, it will replace its internal parameters
with the values in the message from the headend. The Host will respond with the confirmation
(feature_parameters_cnf). The Host may receive parameters for generic features, which it does not support. The Host
ignores any generic feature parameters that it does not implement.

Headend Card Host

proprietary generic feature control
message

feature_parameters

feature_parameters_cnf

Figure 9.15-6 - Headend to Host Feature Parameters

9.15.3 Generic Feature Control Resource Identifier

The Host SHALL support the Generic Feature Control Resource using the resource identifier(s) as defined in Table
9.15-1.

The Card SHALL open only one session to the Generic Feature Control Resource using the resource identifier as
defined in Table 9.15-1. Generic Feature Control type 1 version 2 and higher are optional for S-Mode.

Table 9.15-1 - Generic Feature Control Resource

Resource Mode Class Type Version Identifier (hex)

Generic Feature Control S-Mode/M-Mode 42 1 4 0x002A0044

9.15.4 Feature ID
The Host SHALL utilize the unique IDs for each supported generic feature as defined in Table 9.15-2
The Card SHALL utilize the unique 1Ds for each supported generic feature in Table 9.15-2.

The following is a list of the features and their assigned feature ID.

148 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Table 9.15-2 - Feature Ids

Feature ID Feature Lowest Applicable Version
0x00 Reserved
0x01 RF Output Channel 1
0x02 Parental Control PIN 1
0x03 Parental Control Settings 1
0x04 Purchase PIN 1
0x05 Time Zone 1
0x06 Daylight Savings Control 1
0x07 AC Outlet 1
0x08 Language 1
0x09 Rating Region 1
0x0A Reset PINS 1
0x0B Cable URL 1
0x0C EAS location code 1
0x0D VCT ID 3
Ox0E Turn-on Channel 3
OxOF Terminal Association 4
0x10 Download Group-ID 4
0x11 Zip Code 4
0x12-0x6F Reserved for future use
0x70-0OxFF Reserved for proprietary use

9.15.5 Generic Feature Control APDUs

The Generic Feature Control resource consists of the following 7 APDUEs.

Table 9.15-3 - Generic Feature Control APDUs

APDU Name Tag Value Resource H()Dsi:(fig;:\rd
feature_list_req 0x9F9802 Generic Feature Control >
feature_list() 0x9F9803 Generic Feature Control <
feature_list_cnf() 0x9F9804 Generic Feature Control >
feature_list_changed() 0x9F9805 Generic Feature Control <
feature_parameters_req() 0x9F9806 Generic Feature Control “—
feature_parameters() 0x9F9807 Generic Feature Control <
feature_parameters_cnf() 0x9F9808 Generic Feature Control >

4/18/13 CablelLabs® 149

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

9.15.5.1 feature_list_req APDU

After the session to the Generic Feature Control Resource is opened, the Card SHALL send the feature_list_req()
APDU as defined in Table 9.15-4 to the Host to query the generic features that are supported.

The Host SHALL send the feature_list_req() APDU as defined in Table 9.15-4 to the Card to query the generic
features that are supported in the Card.

Table 9.15-4 - feature_list_req APDU Syntax

Syntax No. of Bits Mnemonic
feature_list_req() {
feature_list_req_tag 24 uimsbf

length_field()

bs

feature list req_tag 0x9F9802

9.15.5.2 feature_list APDU

After receiving the feature_list_req() APDU, the Host SHALL send the feature_list() APDU as defined in Table
9.15-5 to the Card. The Host SHALL include in the list all the features that it is capable of sending to the Card in
feature_parameters() APDU(s). The Host SHALL NOT send any features in feature_parameters() APDU that it
does not list in feature_list() APDU.

After receiving the feature_list_req() APDU, the Card SHALL send the feature_list() APDU as defined in Table
9.15-5 to the Host. The Card SHALL include in the list all the features that it is capable of sending to the Host in
feature_parameters() APDU(s). The Card SHALL NOT send any features in feature_parameters() APDU that it
does not list in feature_list() APDU.

Table 9.15-5 - feature_list APDU Syntax

Syntax No. of Bits Mnemonic
feature_list() {
feature_list_tag 24 uimsbf
length_fieldQ
number_of features 8 uimsbf
for (i=0; i<number_of features; i++) {
feature_id 8 uimsbf
}
b5
feature_list_tag 0x9F9803

number_of features Number of features to report

feature_id Assigned feature 1D number (See Table 9.15-2).

9.15.5.3 feature_list cnf APDU

After receiving the feature_list() APDU, the Host SHALL respond with the feature_list_cnf() APDU as defined in
Table 9.15-6.

After receiving the feature_list() APDU, the Card SHALL respond with the feature_list_cnf() APDU as defined in
Table 9.15-6.

150 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Table 9.15-6 - feature_list_cnf APDU Syntax

Syntax No. of Bits Mnemonic
feature list _cnf(Q) {
feature_list_cnf_tag 24 uimsbf

length_field()
3}

feature_list_cnf_tag 0x9F9804

9.15.5.4 feature_list_changed APDU

The Host SHALL send the feature_list_changed() APDU as defined in Table 9.15-7 to inform the Card that its
feature list has changed.

The Card SHALL send the feature_list_changed() APDU as defined in Table 9.15-7 to inform the Host that its
feature list has changed.

Table 9.15-7 - feature_list_changed APDU Syntax

Syntax No. of Bits Mnemonic
feature_list_changed() {
feature_list_changed_ tag 24 uimsbf
length_field()
3}
feature_list_changed_tag 0x9F9805

9.15.5.,5 feature_parameters_req APDU

After the feature list exchange has occurred, the Card MAY, at any time, send the feature_parameters_req() APDU
as defined in Table 9.15-8 to the Host. The Host does not send this APDU to the Card.

Table 9.15-8 - feature_parameters_req APDU Syntax

Syntax No. of Bits Mnemonic
feature_paramters_req() {
feature_paramters_req_tag 24 uimsbf
length_field()
}

feature_parameters_req_tag 0x9F9806

9.15.5.6 feature_parameters APDU

The Host SHALL send the feature_parameters() APDU as defined in Table 9.15-9 with its feature list to the Card
after receiving a feature_parameters_req() APDU.

The Host SHALL send the feature_parameters() APDU as defined in Table 9.15-9 when any of the parameters in
the Host’s generic feature list are modified, except if the change is the result of receiving a feature_parameters()
APDU from the Card.

The Card MAY ignore any feature parameters received in the feature_parameters() APDU that it does not support.

The Card SHALL send the feature_parameters() APDU as defined in Table 9.15-10 to the Host as soon as both the
generic feature list exchange has occurred and the Card has received a message from the headend containing generic
feature parameters.

4/18/13 CablelLabs® 151

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

The Card SHALL send the feature_parameters() APDU as defined in Table 9.15-10 to the Host every time it
receives a message from the headend changing one or more feature parameters.

Upon receipt of the feature_parameters() APDU from the Card, the Host SHALL update its parameters with the
values in the APDU

Table 9.15-9 - feature_parameters APDU Syntax (Type 1 Versions 1-3)

Syntax No. of Bits Mnemonic
feature_parameters() {
feature_parameters_tag 24 uimsbf
length_field()
number_of features 8 uimsbf
for (i=0; i<number_of features; i++) {
feature_id 8 uimsbf
if (feature_id == 0x01) {
rf_output_channel ()
}
if (feature_id == 0x02) {
) p_c_pinQ
if (feature_id == 0x03) {
p_c_settings()
}
if (feature_id == 0x04) {
) ippv_pinQ)
if (feature_id == 0x05) {
time_zone()
}
if (feature_id == 0x06) {
daylight_savings(Q
}
if (feature_id == 0x07) {
ac_outlet()
}
if (feature_id == 0x08) {
language()
}
if (feature_id == 0x09) {
rating_region()
}
if (feature_id == 0x0A) {
reset_pin()
}
if (feature_id == 0x0B) {
cable_urls(Q
}
if (feature_id == 0Ox0C) {
EA location_code()
}
if (feature_id == 0x0D) {
vet_id(Q)
}
if (feature_id == OxOE) {
turn_on_channel ()
}
}
bs
152 CableLabs” 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

feature_parameters_tag 0x9F9807

number_of features Number of features to report

feature_id Assigned feature 1D number (see Table 9.15-2)
rf_output_channel RF output channel

p_c_pin Parental Control PIN parameter

p_c_settings Parental Control Settings parameter

ippv_pin IPPV PIN parameter

time_zone Time Zone parameter

This feature is only utilized if the cable system crosses time zones.
daylight_savings Daylight Savings parameter

This feature is only utilized if the cable system encompasses both areas, which
recognize daylight savings and those which do not.

ac_outlet AC Outlet parameter
language Language parameter
rating_region Rating Region parameter
reset_pin Reset PINs

cable_urls URL list
ea_location_code EAS location code
vct_id VCT ID
turn_on_channel Turn-on virtual channel

Table 9.15-10 - feature_parameters APDU Syntax (Type 1 Version 4)

Syntax No. of Bits Mnemonic
feature_parameters() {
feature_parameters_tag 24 uimsbf
length_field()
number_of features 8 uimsbf
for (i=0; i<number_of features; i++) {
feature_id 8 uimsbf
length 16 uimsbf
feature_parameter_data()
}
}
feature_parameters_tag 0x9F9807
number_of features Number of features to report
feature_id Assigned feature 1D number (see Table 9.15-2)
length The number of bytes to follow
feature_parameter_data() Each feature parameter structure is described in the following sections starting

from Section 9.15.5.7.1

4/18/13 CablelLabs® 153

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

9.15.5.7 Feature Parameters Confirmation

Each generic feature will have a parameter definition uniquely assigned. These parameters will be consistent for all
APDUs. The following sections define these parameters if the specified features are implemented.

When the Host receives the feature_parameters() APDU, it SHALL respond with the feature_parameters_cnf()
APDU as defined in Table 9.15-11.

When the Card receives the feature_parameters() APDU, it SHALL respond with the feature_parameters_cnf()
APDU as defined in Table 9.15-11.

Table 9.15-11 - Feature Parameters Confirm Object Syntax

Syntax No. of bits Mnemonic
Feature_parameters_cnf() {
feature_parameters_cnf_tag 24 uimsbf

length_field(

number_of features 8 uimsbf
for(i=0; i<number_of features; i++){
feature_id 8 uimsbf
status 8 uimsbf
}
}
feature_parameters_tag Value = 0x9F9808
number_of features Number of features to report
feature_ID Assigned feature ID number as defined in Table 9.15-2
status Status of feature parameter
0x00 Accepted
0x01 Denied - feature not supported
0x02 Denied - invalid parameter
0x03 Denied - other reason
0x04-0xFF Reserved
9.15.5.7.1 rf_output_channel
The Host SHALL support the RF Output Channel feature as defined in Table 9.15-12.
The Card SHALL support the RF Output Channel feature as defined in Table 9.15-12.
Table 9.15-12 - rf_output_channel
Syntax No. of Bits Mnemonic
rf_output_channel() {
output_channel 8 uimsbf
output_channel _ui 8 uimsbf
b5
output_channel RF output channel.

The Host SHALL ignore any RF output channel value that it cannot accommodate in a Generic Feature parameter
and will use its previous value.

output_channel_ui Enable RF output channel user interface.

00 Reserved
01 Enable RF output channel user interface

154 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

02 Disable RF output channel user interface
03-OxFF Reserved

If the output_channel_ui parameter is set to disable the RF output channel user interface, the Host SHALL disable
the user from changing the RF output channel.

9.15.5.7.2 p_c_pin

If the p_c_pin feature is supported, the Host SHALL support the p_c_pin parameters as defined in Table 9.15-13.
If the p_c_pin feature is supported, the Card SHALL support the p_c_pin parameters as defined in Table 9.15-13.

Table 9.15-13 - p_c_pin

Syntax No. of Bits Mnemonic

p_c_pin O { _
p_c_pin_length 8 uimsbf
for (i=0; i<p_c_pin_length; i++) {
p_c _pin_chr 8 uimsbf

bs

p_c_pin_length Length of the parental control PIN. Maximum length is 255 bytes.

p_c_pin_chr Parental control PIN character. The value is coded as defined in [1SO10646-1]. The first
character received is the first character entered by the user.

9.15.5.7.3 p_c_settings

If the p_c_settings feature is supported, the Host SHALL support the p_c_pin parameters as defined in Table 9.15-
14.

If the p_c_settings feature is supported, the Card SHALL support the p_c_pin parameters as defined in Table 9.15-
14.

Table 9.15-14 - p_c_settings

Syntax No. of Bits Mnemonic
p_c _settings({
p_c factory reset 8 uimsbf
p_c_channel_count 16 uimsbf
for (i=0; i<p_c_channel _count; i++) {
reserved 4 “1111°
major_channel _number 10 uimsbf
minor_channel_number 10 uimsbf
}
3}
p_c_factory_reset Perform factory reset on parental control feature.
0x00-0xA6 No factory reset.
OxA7 Perform factory reset.
0xA8-0xFF Reserved
p_c_channel_count Number of virtual channels to place under parental control

4/18/13 CablelLabs® 155

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

major_channel_number For two-part channel numbers, this is the major number for a virtual channel to
place under parental control. For one-part channel numbers, this is the higher 10
bits of the channel number for a virtual channel to place under parental control.

minor_channel_number For two-part channel numbers, this is the minor number for a virtual channel to
place under parental control. For one-part channel numbers, this is the lower 10
bits of the channel number for a virtual channel to place under parental control.

The Host SHALL specify two-part or one-part channel numbers as defined in [SCTE65] for the
major_channel_number and the minor_channel_number parameters in the p_c_settings feature.

The Card SHALL specify two-part or one-part channel numbers as defined in [SCTE65] or the
major_channel_number and the minor_channel_number parameters in the p_c_settings feature.

9.15.5.7.4 purchase_pin

If the purchase_pin feature is supported, the Host SHALL support the purchase_pin parameters as defined in Table
9.15-15.

If the purchase_pin feature is supported, the Card SHALL support the purchase_pin parameters as defined in Table
9.15-15.

Table 9.15-15 - purchase_pin

Syntax No. of Bits Mnemonic
purchase pin() {
purchase _pin_length 8 uimsbf
for (i=0; i<purchase_pin_length; i++) {
purchase_pin_chr 8 uimsbf
}
purchase_pin_length Length of the Purchase PIN. Maximum length is 255 bytes.
purchase_pin_chr Purchase PIN character. The value is coded as defined in [ISO10646-1]. The

first character received is the first character entered by the user.

9.15.5.7.5 time_zone

If the time_zone feature is supported, the Host SHALL support the time_zone feature parameters as defined in Table
9.15-16.

If the time_zone feature is supported, the Card SHALL support the time_zone feature parameters as defined in Table
9.15-16.

Table 9.15-16 - time_zone

Syntax No. of Bits Mnemonic
time_zone() {
time_zone_ offset 16 tcimsbf
}
time_zone_offset Two’s complement integer offset, in number of minutes, from UTC. The value

represented will be in the range of -12 to +12 hours.

156 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

9.15.5.7.6 daylight_savings

If the daylight_savings feature is supported, the Host SHALL support the daylight_savings feature parameters as
defined in Table 9.15-17 if Type 1, Version 1 of the Generic Features Resource is supported, or Table 9.15-18 for
Type 1, Version 2 and above of the Generic Features Resource.

If the daylight_savings feature is supported, the Card SHALL support the daylight_savings feature parameters as
defined in Table 9.15-17 if Type 1, Version 1 of the Generic Features Resource is supported, or Table 9.15-18 for
Type 1, Version 2 and above of the Generic Features Resource.

Table 9.15-17 - daylight_savings (Type 1 Version 1)

Syntax No. of Bits Mnemonic
daylight_savings(Q {
daylight_savings_control 8 uimsbf
daylight_savings_control Daylight savings time control. The Card derives this information from the

configuration messages received from the Headend.

0x00 Ignore this field

0x01 Do not use daylight savings time
0x02 Use daylight savings

0x03-0xFF Reserved

Table 9.15-18 - daylight_savings (Type 1 Version 2 and above)

Syntax No. of Bits Mnemonic
daylight _savings(Q {
daylight_savings_control 8 uimsbf
if(daylight_savings_control == 0x02) {
daylight_savings delta 8 uimsbf
daylight_savings_entry_time 32 uimsbf
daylight _savings_exit_time 32 uimsbf
b5
daylight_savings_control Daylight savings time control. The Card derives information needed to build the
daylight_savings() feature from the configuration messages received from the
Headend.
0x00 Reserved
0x01 Do not use daylight savings time
0x02 Use daylight savings
0x03-0xFF Reserved
daylight_savings_delta Daylight savings delta time in number of minutes.

daylight_savings_entry_time Daylight savings entry time given as system_time value as defined in [SCTEG65]
prior to any local time conversion. For example, "3/14/2010 02:00:00" would
be transmitted as 0x38C705AF.

Note: This hex value includes a +15 sec GPS offset, which is the current value
for the year 2010, but may change in the future.

daylight_savings_exit_time Daylight savings exit time given as system_time value as defined in [SCTE65]
prior to any local time conversion. The value of this parameter shall be greater

4/18/13 CablelLabs® 157

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

than the value of daylight_savings_entry_time. For example, "11/07/2010
02:00:00" would be transmitted as 0OX3A00CAAF.

Note: This hex value includes a +15 sec GPS offset which is the current value
for the year 2010 but may change in the future.

If the GPS_UTC_offset in the [SCTEG65] System Time Table is equal to zero, then the system_time field carries
UTC time directly and the current offset must be subtracted from daylight_savings_entry_time and
daylight_savings_exit_time.

If the GPS_UTC_offset in the [SCTEG65] System Time Table is non-zero, then the system_time field can be
compared directly to daylight_savings_entry_time and daylight_savings_exit_time.

9.15.5.7.7 ac_outlet

If the ac_outlet feature is supported, the Host SHALL support the ac_outlet feature parameters as defined in Table
9.15-19.

If the ac_outlet feature is supported, the Card SHALL support the ac_outlet feature parameters as defined in Table
9.15-19.

Table 9.15-19 - ac_outlet

Syntax No. of Bits Mnemonic
ac_outlet() {
ac_outlet_control 8 uimsbf
b5
ac_outlet_control AC outlet control

0x00 Use user setting

0x01 Switched AC outlet

0x02 Unswitched AC outlet (always on)
0x03-0xFF Reserved

9.15.5.7.8 language

If the language feature is supported, the Host SHALL support the language feature parameters as defined in Table
9.15-20.

If the language feature is supported, the Card SHALL support the language feature parameters as defined in Table
9.15-20.

Table 9.15-20 - language

Syntax No. of Bits Mnemonic
language() {
language_control 24 uimsbf
language_control [ISO639-1]: 2002 Codes for the representation of names of Languages - Part 1: Alpha-2
code, and [ISO639-2]: 2002 Codes for the representation of names of Languages - Part 1;
Alpha-3 code.

158 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

9.15.5.7.9 rating_region

If the rating_region feature is supported, the Host SHALL support the rating_region feature parameters as defined in
Table 9.15-21.

If the rating_region feature is supported, the Card SHALL support the rating_region feature parameters as defined in
Table 9.15-21.

Table 9.15-21 - rating_region

Syntax No. of Bits Mnemonic
rating_region() {
rating_region_setting 8 uimsbf
b5
rating_region_setting The 8-bit unsigned integer defined in [SCTE65] that defines the rating region in

which the Host resides.

0x00 Forbidden

0x01 United States (50 states + possessions)
0x02 Canada

0x03-0xFF Reserved

9.15.5.7.10 reset_pin

If the reset_pin feature is supported, the Host SHALL support the reset_pin feature parameters as defined in Table
9.15-22.

If the reset_pin feature is supported, the Card SHALL support the reset_pin feature parameters as defined in Table
9.15-22.

Table 9.15-22 - reset_pin

Syntax No. of Bits Mnemonic
reset_pin() {
reset_pin_control 8 uimsbf
reset_pin_control Defines the control of resetting PIN(S).

0x00 Do not reset any PIN

0x01 Reset parental control PIN

0x02 Reset purchase PIN

0x03 Reset both parental control and purchase PINs
0x04-0xFF Reserved

9.15.5.7.11 cable_urls

If the cable_urls feature is supported, the Host SHALL support the cable_urls feature parameters as defined in Table
9.15-23, using the restricted set of characters and the generic syntax for the url_char parameter as defined in
[RFC2396], “Uniform Resource Identifier (URI): Generic Syntax”.

If the cable_urls feature is supported, the Card SHALL support the cable_urls feature parameters as defined in Table
9.15-23, using the restricted set of characters and the generic syntax for the url_char parameter as defined in
[RFC2396], “Uniform Resource Identifier (URI): Generic Syntax”.

4/18/13 CablelLabs® 159

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Table 9.15-23 - cable_urls

Syntax No. of Bits Mnemonic
cable urlsQ {
number_of urls 8 uimsbf
for (i=0; i<number_of urls; i++) {
url_type 8 uimsbf
url_length 8 uimsbf
for (J=0; j<url_length; j++) {
url_char 8 uimsbf
}
}
b5
number_of _urls Number of URLSs defined; used in the following for loop:
url_type Type of URL
0x00 Undefined
0x01 Web portal URL
0x02 EPG URL
0x03 VOD URL
0x04-0xFF Reserved
url_length Length of the URL. Used in the following for loop. The maximum length is 255
bytes.
url_char A URL character. The restricted set of characters and generic syntax defined in

[RFC2396], “Uniform Resource Identifier (URI): Generic Syntax”, will be used.

9.15.5.7.12 EA_location_code

If the EA_location_code feature is supported, the Host SHALL support the EA_location_code feature parameters as

defined in Table 9.15-24.

If the EA_location_code feature is supported, the Card SHALL support the EA_location_code feature parameters as

defined in Table 9.15-24.

Table 9.15-24 - EA_location_code

Syntax No. of Bits Mnemonic
EA location_code() {
state_code 8 uimsbf
county_subdivision 4 uimsbf
reserved 2 “11”
county_code 10 uimsbf
+
state_code As defined in [J042]
county_subdivision As defined in [J042]
county_code As defined in [J042]

9.15.5.7.13 vct_id

If the vct_id feature is supported, the Host SHALL support the vct_id feature parameters as defined in Table 9.15-

25.

160

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

If the vct_id feature is supported, the Card SHALL support the vct_id feature parameters as defined in Table 9.15-
25.

Table 9.15-25 - VCT ID

Syntax No. of Bits Mnemonic
vet_1d(Q) {
vct_id 16 uimsbf
b5
vct_id VCT ID value to use

9.15.5.7.14 Turn-on Channel
This generic feature carries the number of the virtual channel that a Host tunes to upon power up. This generic
feature may optionally be implemented in the S-Mode, whereas it is required in the M-Mode.

If the turn_on_channel feature is supported, the Host SHALL support the turn_on_channel feature parameters as
defined in Table 9.15-26.

If the turn_on_channel feature is supported, the Card SHALL support the turn_on_channel feature parameters as
defined in Table 9.15-26.

Table 9.15-26 - Turn-on Virtual Channel

Syntax No. of Bits Mnemonic
turn_on_channel () {
reserved 3 0x0
turn_on_channel _defined 1 bslbf
if (turn_on_channel_defined == 1) {
turn_on_virtual _channel 12 uimsbf
}
else {
reserved 12 uimsbf
}
}

turn_on_channel_defined

Ob turn_on_channel not defined.
1b turn_on_channel defined.

turn_on_virtual_channel Virtual channel to be tuned to by the Host upon power up.

9.15.5.7.15 Terminal Association

This generic feature allows the Business System and the Conditional Access Controller to identify the Card and the
Host.

When operating in M-Mode, the Host SHALL support the terminal_association feature as defined in Table 9.15-27.
When operating in M-Mode, the Card MAY support the terminal_association feature as defined in Table 9.15-27.
When operating in S-Mode, the Host MAY support the terminal_association feature as defined in Table 9.15-27.
When operating in S-Mode, the Card MAY support the terminal_association feature as defined in Table 9.15-27.

4/18/13 CablelLabs® 161

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Table 9.15-27 - Terminal_Association

Syntax No. of Bits | Mnemonic
terminal_association (Q{
identifier_length 16 uimsbf
for (i=0; i<identifier_length; i++){
terminal_assoc_identifier 8 uimsbf
}
}
identifier_length The number of bytes to follow
terminal_assoc_identifier 7-bit ASCII alphanumeric value assigned to the Host. The value may be utilized

by the Host to associate itself with other Host devices residing on a local area
network (e.g., a home network).

9.15.5.7.16 Common Download Group ID Assignment

This generic feature allows for a Group ID assignment for Host(s) when Common Download [CDL] is utilized. The
vendor_id and hardware_version_id values for the Host are the same as defined in [CDL].

When operating in M-Mode, the Host SHALL support the cdl_group_id generic feature as defined in Table 9.15-28.
When operating in M-Mode, the Card MAY support the cdl_group_id generic feature as defined in Table 9.15-28.
When operating in S-Mode, the Host MAY support the cdl_group_id generic feature as defined in Table 9.15-28.
When operating in S-Mode, the Card MAY support the cdl_group_id generic feature as defined in Table 9.15-28.

The Host SHALL store the group_id value in persistent memory after receiving the cdl_group_id generic feature
from the Card.

e The Host SHALL store a default group_id value of 0x0000 in persistent memory in the absence of a
cdl_group_id generic feature received from the Card.

e The Host SHALL set the group_id value to the default value when the Card is removed or a different Card
is inserted while the Host is powered.

Table 9.15-28 - Common Download Group ID Assignment

Syntax No. of Bits Mnemonic
cdl_group_i1d(Q {
group_id 16 uimsbf
b5
group_id Group ID value to be stored in the Host’s persistent memory for use as defined
in [CDL].

9.15.5.7.17 zip_code

This generic feature allows the Business System and the Conditional Access Controller to identify the Card and the
Host using the existing postal zip code.

When operating in M-Mode, the Host SHALL support the Zip Code feature as defined in Table 9.15-29.

When operating in M-Mode, the Card MAY support the Zip Code feature as defined in Table 9.15-29.

When operating in S-Mode, the Host MAY support the Zip Code feature as defined in Table 9.15-29.

162 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

When operating in S-Mode, the Card MAY support the Zip Code feature as defined in Table 9.15-29.

Table 9.15-29 - Zip_Code

Syntax No. of Bits | Mnemonic
zip_code (O{
zip_code_length 16 uimsbf
for (i=0; i<zip_code length; i++){
zip_code byte 8 uimsbf
}
}
zip_code_length The number of zip_code_bytes to follow.
zip_code_byte 7-bit ASCII alphanumeric value that defines a 5 character or a 5+4 character ZIP

code in the format of ##H##-HitHH,

9.16 Generic Diagnostic Support

The Generic Diagnostic Support resource enables the Card to request that the Host perform a diagnostic and report
the status/result of the request to the Card. The Card may then use the diagnostic information to report diagnostics to
the headend or the OSD diagnostic application.

The Card may request that the Host perform a diagnostic and report the status/result in response to a headend OOB
message, or an SNMP message request to perform a diagnostic that is supported exclusively on the Host.

For M-Mode, this resource has been modified from Type 1. Type 2 of this Resource allows for receiving transport
stream information from a specific transport stream identified by the Local Transport Stream Identifier (LTSID).

If a Host does support Type 1 of this APDU, the information returned will only be for the primary transport stream.

The Host SHALL support the Generic Diagnostic Resource using the resource identifier(s) as defined in Table 9.16-
1.

The Card SHALL open only one session to the Generic Diagnostic Control Resource using the resource identifier(s)
as defined in Table 9.16-1.

Table 9.16-1 - Generic Diagnostic Support Resource

Resource Mode Class Type Version Identifier (hex)
Generic Diagnostic Support S-Mode 260 1 2 0x01040042
Generic Diagnostic Support M-Mode 260 2 1 0x01040081
Generic Diagnostic Support M-Mode 260 2 2 0x01040082

The Generic Diagnostic Support resource is made up of the following 2 APDUSs.

Table 9.16-2 - Generic Diagnostic Support APDUs

Direction
APDU Name Tag Value Resource Host <> CableCARD
diagnostic_req() 0x9FDF00 Generic Diagnostic Support «—
diagnostic_cnf() 0x9FDFO01 Generic Diagnostic Support -

The Host SHALL use the diagnostic IDs as defined in Table 9.16-3 in the diagnostic_cnf() APDU.

4/18/13 CablelLabs® 163

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

The Card SHALL use the diagnostic IDs as defined in Table 9.16-3 in the diagnostic_req() APDU.

Table 9.16-3 - Diagnostic Ids

Diagnostic Value
Host memory allocation 0x00
Application version number 0x01
Firmware version 0x02
MAC address 0x03
FAT status 0x04
FDC status 0x05
Current Channel Report 0x06
1394 Port 0x07
DVI_status 0x08
eCM 0x09
HDMI Port Status O0x0A
RDC status 0x0B
OCHD2 Network Address 0x0C
Home Networking Status 0x0D
Host Information 0x0E
Reserved OXOF-OxFF

9.16.1 diagnostic_req APDU

The Card SHALL send the diagnostic_req() APDU as defined in Table 9.16-4 for S-Mode and Table 9.16-5 for M-
Mode to request the Host to perform a specific set of diagnostic functions and report the result/status of the
diagnostics.

Table 9.16-4 - S-Mode - diagnostic_req APDU Syntax (Version 2)

Syntax No. of Bits Mnemonic
diagnostic_req(Q) {
diagnostic_req_tag 24 uimsbf
length_field()
number_of _diag 8 uimsbf
for (i=0; i<number_of diag; i++) {
diagnostic_id 8 uimsbf
b5
diagnostic_req_tag 0x9FDF00
number_of diag This field indicates the total number of self-diagnostics being requested.
diagnostic_id This field is a unique ID assigned to a particular diagnostic. These values are defined in
Table 9.16-3.

164 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Table 9.16-5 - M-Mode - diagnostic_req APDU Syntax (Version 1)

Syntax No. of Bits Mnemonic
diagnostic_req(Q) {
diagnostic_req_tag 24 uimsbf
length_fieldQ
number_of _diag 8 uimsbf
for (i=0; i<number_of diag; i++) {
diagnostic_id 8 uimsbf
Itsid 8 uimsbf
}
b5

diagnostic_req_tag 0x9FDF00
number_of diag

diagnostic_id
Table 9.16-3.

Itsid

This field indicates the total number of self-diagnostics being requested.

This field is a unique 1D assigned to a particular diagnostic. These values are defined in

Local Transport Stream ID. Only required when the M-CARD is present, and operating in

M-Mode. For parameters where this has no meaning, the value SHALL be 0x00.

9.16.2 diagnostic_cnf APDU

The Host SHALL send the diagnostic_cnf() APDU as defined in Table 9.16-6 for S-Mode and Table 9.16-7 for M-
Mode after reception of the diagnostic_req() APDU and the Host has completed any tests required to report the
result/status. When there are multiple instances of a diagnostic report, the Host SHALL send each report with the
same diagnostic ID in the diagnostic_cnf() APDU. In this case, the number_of_diag value will be different than the

one in the diagnostic_req() APDU.

4/18/13

CablelLabs®

165

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Table 9.16-6 - S-Mode - diagnhostic_cnf APDU Syntax (Type 1, Version 2)

if (status_field == 0x00) {
if (diagnostic_id == 0x00) {
memory_report()

(]

if (diagnostic_id == 0x01) {
software_ver_report()

-

T (diagnostic_id == 0x02) {
firmware_ver_report()

-

T (diagnostic_id == 0x03) {
MAC_address_report()

-

T (diagnostic_id == 0x04) {
FAT _status_report()

-

T (diagnostic_id == 0x05) {
FDC_status_report()

-

T (diagnostic_id == 0x06) {
current_channel_report(Q)

-

T (diagnostic_id == 0x07) {
1394 port_report()

-

T (diagnostic_id == 0x08) {
DVI_status report()

-

T (diagnostic_id == 0x09) {
eCM_status_report()

-

T (diagnostic_id == 0x0A) {
HDMI_port_status_report()

-

T (diagnostic_id == 0x0B) {
RDC_status_report()

-

T (diagnostic_id == 0x0C) {
net_address_report()

-

T (diagnostic_id == 0x0D) {
home_network_report()

-

T (diagnostic_id == 0Ox0E) {
host_information_report()

(]

Syntax No. of Bits Mnemonic
diagnostic _cnf() {
diagnostic_cnf_tag 24 uimsbf
length_field()
number_of _diag 8 uimsbf
for (i=o0; i<number_of diag; i++) {
diagnostic_id 8 uimsbf
status_Tfield 8 uimsbf

166 CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

diagnostic_cnf_tag 0x9FDFO01

number_of diag This field indicates the total number of self-diagnostics being requested.

diagnostic_id This field is a unique 1D assigned to a particular diagnostic. These values are defined in
Table 9.16-3.

status_field Status of the requested diagnostic. See Table 9.16-8.

Table 9.16-7 - M-Mode - diagnostic_cnf APDU Syntax (Type 2, Version 1)

if (status_field == 0x00) {
if (diagnostic_id == 0x00) {
memory_report()

[}

if (diagnostic_id == 0x01) {
software_ver_report()

}
if (diagnostic_id == 0x02) {
firmware_ver_report()

-)

f (diagnostic_id == 0x03) {
MAC_address_report()

-

f (diagnostic_id == 0x04) {
FAT_status_report()

-)

f (diagnostic_id == 0x05) {
FDC_status_report()

-

f (diagnostic_id == 0x06) {
current_channel_report()

-)

f (diagnostic_id == 0x07) {
1394 port_report()

-

f (diagnostic_id == 0x08) {
DVI_status()

-)

f (diagnostic_id == 0x09) {
eCM_status report()

-

f (diagnostic_id == O0x0A) {
HDMI_port_status_report()

-)

f (diagnostic_id == 0xOB) {
RDC_status_report()

-

f (diagnostic_id == 0x0C) {
net_address_report()

-)

f (diagnostic_id == 0x0D) {
home_network_report()

[}

Syntax No. of Bits Mnemonic
diagnostic_cnf() {
diagnostic_cnf_tag 24 uimsbf
length_field()
number_of_diag 8 uimsbf
for (i=o0; i<number_of diag; i++) {
diagnostic_id 8 uimsbf
Itsid 8 uimsbf
status_field 8 uimsbf

4/18/13 CablelLabs®

167

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Syntax No. of Bits Mnemonic

ifT (diagnostic_id == Ox0E) {
host_information_report

}
}
}
bs
diagnostic_cnf_tag 0x9FDFO01
number_of diag This field indicates the total number of self-diagnostics being requested.
diagnostic_id This field is a unique 1D assigned to a particular diagnostic. These values are defined in
Table 9.16-3.
Itsid Local Transport Stream ID. Only required when the Card is present, and operating in M-
Mode. For parameters where this has no meaning, the value will be 0x00.
status_field Status of the requested diagnostic. See Table 9.16-8.
Table 9.16-8 - Table Status Field Values
Bit Value (Hex) Status_field
0x00 Diagnostic Granted
0x01 Diagnostic Denied - Feature not Implemented
0x02 Diagnostic Denied - Device Busy
0x03 Diagnostic Denied - Other reasons
0x04-0xFF Reserved for future use

9.16.3 Diagnostic Report Definition

Each applicable diagnostic consists of a set of diagnostic reports that contain a specific set of parameters applicable
to the requested diagnostic. The following sections define these reports and their associated parameters.

9.16.3.1 memory_report
In response to a memory_report request in the diagnostic_req() APDU, the Host SHALL reply with a

memory_report as defined in Table 9.16-9 in the diagnostic_cnf() APDU.

Table 9.16-9 - memory_report

Syntax No. of Bits Mnemonic
memory_report() {
number_of_memory 8 uimsbf
if (i=0; i<number_of memory; i++) {
memory_type 8 uimsbf
memory_size 32 uimsbf
}
}
number_of _memory The number of memory types being reported in this message.

168 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

memory_type

memory_size

Designates the type of memory that is being reported.

0x00 ROM

0x01 DRAM

0x02 SRAM

0x03 Flash

0x04 NVM

0x05 Internal Hard drive, no DRM (Digital Rights Management) support
0x06 Video memory

0x07 Other memory

0x08 Internal Hard Drive, DRM support
0x09 External Hard Drive, no DRM support
Ox0A External Hard Drive, DRM support
0x0B Optical media, no DRM support

0x0C Optical media, DRM support
0x0D-0xFF Reserved

Designates the physical size of the specified memory type. The units are
kilobytes, defined to be 1,024 bytes.

9.16.3.2 software_ver_report

In response to a software_ver_report request in the diagnostic_req() APDU, the Host SHALL reply with a
software_ver_report as defined in Table 9.16-10 for S-Mode and Table 9.16-11 for M-Mode in the diagnostic_cnf()

APDU.

Table 9.16-10 - S-Mode software_ver_report

}

¥

Syntax No. of Bits Mnemonic
software_ver_report() {
number_of _applications 8 uimsbf
for (i=0; i<number_of applications; i++) {
application_version_number 16 uimsbf
application_status_flag 8 uimsbf
application_name_length 8 uimsbf
for (J=0; j<application_name_length; j++) {
application_name_byte 8 uimsbf
application_sign_length 8 uimsbf
for (J=0; j<application_sign_length) j++) {
application_sign_byte 8 uimsbf

number_of_applications
application_version_number

application_status_flag

application_name_length
application_name_byte

application_sign_length

Total number of applications contained with the report.
16-bit version number of the application.

Status of the software, either active, inactive or downloading.

0x00 Active
0x01 Inactive
0x02 Downloading
0x03-0xFF Reserved

Designates the number of characters required to define the applications name.
ASCII character, 8-bits per character, a string that identifies the application.

Designates the number of characters required to define the application signature.

4/18/13

CablelLabs® 169

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

application_sign_byte ASCII character, 8-bits per character, a string that identifies the application
signature.

Table 9.16-11 - M-Mode software_ver_report

Syntax No. of Bits Mnemonic
software_ver_report() {
number_of _applications 8 uimsbf
for (i=0; i<number_of applications; i++) {
application_version_length 8 uimsbf
for (J=0; j<application_version_length; j++) {
application_version_byte 8 uimsbf
application_status_flag 8 uimsbf
application_name_length 8 uimsbf
for (J=0; j<application_name_length; j++) {
application_name_byte 8 uimsbf
application_sign_length 8 uimsbf
for (J=0; j<application_sign_length) j++) {
application_sign_byte 8 uimsbf
}
3}
number_of_applications Total number of applications contained with the report.
application_version_length Designates the number of characters required to define the application version
application_version_byte ASCII character, 8-bits per character, a string that identifies the application
version.
application_status_flag Status of the software, either active, inactive or downloading.
0x00 Active
0x01 Inactive
0x02 Downloading
0x03-0xFF Reserved
application_name_length Designates the number of characters required to define the applications name.
application_name_byte ASCII character, 8-bits per character, a string that identifies the application.
application_sign_length Designates the number of characters required to define the application signature.
application_sign_byte ASCII character, 8-bits per character, a string that identifies the application

signature.

9.16.3.3 firmware_ver_report

In response to a firmware_ver_report request in the diagnostic_req() APDU, the Host SHALL reply with the
firmware_ver_report as defined in Table 9.16-12 for S-Mode and Table 9.16-13 for M-Mode in the diagnostic_cnf()
APDU.

170 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Table 9.16-12 - S-Mode firmware_ver_report

Syntax No. of Bits Mnemonic
firmware_ver_report() {
firmware_version 16 uimsbf
firmware_date{
firmware_year 16 uimsbf
firmware_month 8 uimsbf
firmware_day 8 uimsbf
}
3}
firmware_version 16-bit version number of the firmware.
firmware_year 16-bit designation of the firmware’s year.
firmware_month 8-bit numerical representation of the firmware’s month.
firmware_day 8-bit numerical representation of the firmware’s day.

Table 9.16-13 - M-Mode firmware_ver_report

Syntax No. of Bits Mnemonic
firmware_ver_report() {
firmware_version_length 8 uimsbf
for (J=0; j<Ffirmware_version_length; j++) {
firmware_version_byte 8 uimsbf
firmware_date{
firmware_year 16 uimsbf
firmware_month 8 uimsbf
firmware_day 8 uimsbf
}
}
firmware_version_length Designates the number of characters required to define the firmware version
firmware_version_byte ASCII character, 8-bits per character, a string that identifies the firmware
version.
firmware_year 16-bit designation of the firmware’s year.
firmware_month 8-bit numerical representation of the firmware’s month.
firmware_day 8-bit numerical representation of the firmware’s day.

9.16.3.4 MAC_address_report

In response to a MAC_address_report request in the diagnostic_req() APDU, the Host SHALL reply with the
MAC_address_report as defined in Table 9.16-14 in the diagnostic_cnf() APDU.

4/18/13 CablelLabs® 171

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Table 9.16-14 - MAC_address_report

Syntax No. of Bits Mnemonic
MAC_address_report() {
number_of addresses 8 uimsbf
for (i=0; i<number_of addresses; i++) {
MAC_address_type 8 uimsbf
number_of _bytes 8 uimsbf
for (J=0; j<number_of bytes; j++) {
MAC_address_byte 8 uimsbf
}
}
3}

number_of addresses

MAC _address_type

number_of bytes
MAC address_byte

9.16.3.5 FAT_status_report

Total number of MAC addresses contained in the report.

Type of device associated with reported MAC address.

0x00
0x01
0x02
0x03

No addressable device available
Host

1394 port

Reserved

0x04 DOCSIS

0x05 Reserved

0x06-0xFF Reserved

The total number of bytes required for the MAC address.
One of a number of bytes that constitute the Media Access Control (MAC)

address of the Host device. Each byte represents 2 hexadecimal values (xx) in
the range of 0x00 to OXFF.

In response to a FAT status report request in the diagnostic_req() APDU, the Host SHALL reply with a
FAT status_report as defined in Table 9.16-15 in the diagnostic_cnf() APDU. If a Host contains multiple FAT
tuners, then the Host SHALL provide multiple FAT _status_reports in the diagnostic_cnf() APDU, one for each

tuner.
Table 9.16-15 - FAT_status_report
Syntax No. of Bits Mnemonic
FAT _status_report() {
reserved 4 “1111”
PCR_lock 1 bslbf
modulation_mode 2 bslbf
carrier_lock_status 1 bslbf
SNR 16 tcimsbf
signal_level 16 tcimsbf
b5
PCR_lock Indicates if the FAT channel receiver is locked to the currently tuned channel.

(Note: Not valid if modulation_mode == 00b OR modulation_mode == 0b11)

0b Not locked
1b Locked
modulation_mode Indicates if the current forward transport is analog, QAM-64, or QAM-256
00b Analog
172 CableLabs” 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

01b QAMG64
10b QAM256
11b Other
carrier_lock_status Indicates if the current carrier is locked or not locked. (Note: Not valid if

modulation_mode == 00b OR modulation_mode == 0b11)

Ob Not locked
1b Locked

SNR Numerical representation of the signal to noise ratio in tenths of a dB. (Note:
Not valid if modulation_mode == 00b OR modulation_mode == 0b11)

signal_level Numerical representation of the signal level in tenths of a dBmV. Note: For
modulation_mode == 00b, use peak signal level. All others use average signal
level.

9.16.3.6 FDC_status_report

In response to an FDC_status_report request in the diagnostic_req() APDU, the Host SHALL reply with an
FDC_status_report as defined in Table 9.16-16 in the diagnostic_cnf() APDU.

Table 9.16-16 - FDC_status_report

Syntax No. of Bits Mnemonic
FDC_report() {
FDC_center_freq 16 uimsbf
reserved 6 “111111°
carrier_lock_status 1 bslbf
reserved 1 bslbf
b5
FDC_center_freq Indicates the frequency of the FDC center frequency, in MHz. (Frequency = value * 0.05
+ 50 MHz).
Table 9.16-17 - FDC Center Frequency Value
Bt |15|14 (13 |12 |11 |10 |9 | 8|7 |6 |5 |4]3|2|1]0
Frequency (MS) Frequency (LS)
carrier_lock_status Indicates if the current carrier is locked or not locked.
Ob Not locked
1b Locked

9.16.3.7 current_channel_report

In response to a current_channel_report request in the diagnostic_req() APDU, the Host SHALL reply with a
current_channel report as defined in Table 9.16-18 in the diagnostic_cnf() APDU. If a Host contains multiple FAT
tuners, then the Host SHALL send multiple current_channel reports in the diagnostic_cnf() APDU, one for each
tuner.

4/18/13 CablelLabs® 173

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Table 9.16-18 - current_channel_report

Syntax No. of Bits Mnemonic
current_channel _() {
Reserved 2 “11°
channel_type 1 bslbf
authorization_flag 1 bslbf
purchasable_ flag 1 bslbf
purchased_flag 1 bslbf
preview_flag 1 bslbf
parental_control_flag 1 bslbf
current_channel 16 uimsbf
b5
channel_type Indicates if the channel is analog or digital.
Ob Analog
1b Digital
authorization_flag Indicates if the Host is authorized for the currently tuned channel.

Ob Not authorized
1b Authorized

purchasable_flag Indicates if the currently tuned channel may be purchased.

Ob Not purchasable
1b Purchasable

purchased_flag Indicates if the currently tuned channel has been purchased.

Ob Not purchased
1b Purchased

preview_flag Indicates if the currently tuned channel is in preview mode.

Ob Not in preview mode
1b In preview mode

parental_control_flag Indicates if the currently tuned channel is under parental control.

Ob Channel is not blocked
1b Channel is blocked

current_channel Indicates the numerical representation of the currently tuned channel.

If a tuner is not being utilized, then the Host SHALL return OXFFFF for the current_channel parameter of the
current_channel_report in the diagnostic_cnf() APDU.

9.16.3.8 1394 port_report

In response to a 1394 _port_report request in the diagnostic_req() APDU, the Host SHALL reply with a
1394 port_report as defined in Table 9.16-19 for S-Mode, and Table 9.16-20 for M-Mode in the diagnostic_cnf()
APDU.

174 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Table 9.16-19 - S-Mode 1394_port_report

Syntax No. of Bits Mnemonic
1394 port_report() {
reserved 3 “111°
loop_status 1 bslbf
root_status 1 bslbf
cycle_master_status 1 bslbf
port_1 connection_status 1 bslbf
port_2 connection_status 1 bslbf
total _number_of nodes 16 uimsbf
b5
Table 9.16-20 - M-Mode 1394 _port_report
Syntax No. of Bits Mnemonic
1394 port_report() {
reserved 2 “11°
loop_status 1 bslbf
root_status 1 bslbf
cycle_master_status 1 bslbf
host_a/d_source_selection_status 1 bslbf
port_1 connection_status 1 bslbf
port_2 connection_status 1 bslbf
total _number_of nodes 16 uimsbf
number_of connected_devices 8 uimsbf
for (i=0;
i<number_of connected_devices; i++) {
device_subunit_type 5 uimsbf
device_a/d_source_selection_status 1 bslbf
reserved 2 “11”
eui_64 64 uimsbf
}
3}
loop_status Indicates if a loop exists on the 1394 bus.

Ob No loop exists
1b Loop exists

root_status

Ob Not root
1b Is root

cycle_master_status

Ob Not cycle master
1b Is cycle master

Indicates if the Host device is the root node on the 1394 bus.

Indicates if the Host device is the cycle master node on the 1394 bus.

host_device_a/d_source_selection_status Indicates if the Host supports A/D source selection function.

Ob Not Supported
1b Supported

port_1 connection_status

Ob Not connected
1b Connected

port_2_connection_status

Ob Not connected
1b Connected

Indicates if port 1 of the 1394 PHY is connected to a 1394 bus.

Indicates if port 2 of the 1394 PHY is connected to a 1394 bus.

4/18/13

CablelLabs®

175

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

total_number_of nodes Indicates the total number of nodes connected to the 1394 bus.
number_of connected devices Total number of sink devices connected to the Host via IEEE-1394.

device_subunit_type Subunit type of device connected to the Host, where subunit type encodes are as
defined via the 1394TA:

0x00 Monitor

0x01 Audio

0x02 Printer

0x03 Disc

0x04 Tape Recorder/Player
0x05 Tuner

0x06 CA

0x07 Camera

0x08 Reserved

0x09 Panel

O0x0A Bulletin Board

0x0B Camera Storage
0x0C-0x1B Reserved

0x1C Vendor Unique
0x1D Reserved

Ox1E Subunit_type extended to next byte
Ox1F Unit

device_a/d_source_selection_status Indicates if the device supports A/D source selection function.

Ob Not Supported
1b Supported

eui_64 64-bit Extended Unique Identifier (a.k.a. Global Identifier) of the device.

9.16.3.9 DVI Status Report

In response to a DVI_status_report request in the diagnostic_req() APDU, if the Host supports the DVI interface,
the Host SHALL reply with a DVI_status_report as defined in Table 9.16-21 in the diagnostic_cnf() APDU. A Host
SHALL provide a DVI_status_report if it has a DVI connector, even if an HDMI device is connected through the
DVI connector. If a Host does not have a DVI connector, the Host SHALL NOT respond to the DVI Status Report
Request, even if a DVI device is connected through an HDMI connector.

Table 9.16-21 - DVI Status Report Syntax

Syntax No. of bits Mnemonic
DVI_status_report() {
reserved 3 “111°
connection_status 2 bslbf
host HDCP_status 1 bslbf
device HDCP_status 2 bslbf
video format
{
horizontal lines 16 uimsbf
vertical _lines 16 uimsbf
frame_rate 8 uimsbf
aspect_ratio 2 bslbf
prog_inter_type 1 bslbf
reserved 5 bslbf
}
+

176 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

connection_status

host HDCP_status

device HDCP_status

video_format

horizontal_lines

vertical_lines

frame_rate

Indicates if a connection exists on the DVI port

00b No connection exists

01b Device connected - not repeater
10b Device connected - repeater
11b Reserved

Indicates if HDCP is enabled on the DVI link

Ob Not enabled
1b Enabled

Indicates the connected device’s HDCP status (valid only when
connection_status is not equal to 00

00b Non HDCP device

01b Compliant HDCP device
10b Revoked HDCP device
11b Reserved

Indicates the current video format utilized on the DVI port as defined in the
following fields:

Indicates the number of horizontal lines associated with the video format on the
DVI link.

Indicates the number of vertical lines associated with the video format on the
DVI link.

Indicates the frame rate associated with the video format on the DVI link as
defined in the following table.

Table 9.16-22 - Frame Rate Associated With the Video Format On the DVI Link

aspect_ratio

Frame Rate Code Frame Rate
01 23.976 Hz
02 24 Hz
04 29.97 Hz
05 30 Hz
07 59.94 Hz
08 60 Hz

Indicates the aspect ratio associated with the video format on the DVI link as
defined in the following table.

Table 9.16-23 - Aspect Ratio Associated With the Video Format On the DVI Link

Bit Value Video Format
00 4:3
01 16:9
10 Reserved
11 Reserved
4/18/13 CableLabs® 177

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

prog_inter_type Indicates if the video is progressive or interlaced on the DVI link,
Ob Interlaced
1b Progressive

9.16.3.10 eCM Status Report

In response to an embedded cable modem eCM_status_report request in a diagnostic_req() APDU, the Host SHALL
reply with an eCM_status_report as defined in Table 9.16-24 in the diagnostic_cnf() APDU.

Table 9.16-24 - eCMStatus Report Syntax

Syntax No. of bits Mnemonic
eCM_status_report() {
downstream_center_freq 16 uimsbf
downstream_power_level 16 tcimsbf
downstream carrier_lock status 1 bslbf
reserved 2 11t
channel _s-cdma_status 2 bslbf
upstream_modulation_type 3 bslbf
upstream_xmt_center_freq 16 uimsbf
upstream_power_level 16 tcimsbf
upstream_symbol_rate 8 uimsbf
}
downstream_center_freq Indicates the frequency of the FDC center frequency, in MHz
(Frequency = value * 0.05 + 50 MHz).
Table 9.16-25 - Downstream Center Frequency Value
Bit 15(14 13|12 |11 |10 |9 | 8|7 |6 |5]|4]| 3|2 110
Frequency (MS) Frequency (LS)
downstream_power_level Numerical representation of the signal level in tenths of a dBmV.

downstream carrier_lock status Indicates if the current carrier is locked or not locked.

Ob Not locked
1b Locked

channel_s-cdma_status Channel S-CDMA status

00b Channel is not S-CDMA

01b Channel is S-CDMA, TCM encoding
10b Channel is S-CDMA, TDMA encoding
11b Channel is S-CDMA, other encoding

upstream_modulation_type Indicates the current upstream modulation type.

000b QPSK

001b 16-QAM
010b 32-QAM
011b 64-QAM
100b 128-QAM
101b 256-QAM
110b 512-QAM
111b Other

upstream_xmt__center_freq Indicates the frequency of the RDC center frequency, in MHz
(Frequency = value * 0.05 + 5 MHz).

178 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Table 9.16-26 - Upstream Transmit Center Frequency Value

Bit

15114 | 13 | 12 | 11 | 10

9

8

71| 6

5|14 | 3|2

Frequency (MS)

Frequency (LS)

upstream_power _level

upstream_symbol_rate

upstream_modulation_type

0X06-0XFF
Ob QPSK
b 16QAM

9.16.3.11 HDMI Port Status Report

In response to an HDMI_status_report request in a diagnostic_req() APDU, if the Host supports the HDMI

Numerical representation of the signal level in dBmV.

Numerical representation of the symbol rate as defined below.

0x00 0.16 Msps
0x01 0.32 Msps
0x02 0.64 Msps
0x03 1.28 Msps
0x04 2.56 Msps
0x05 5/12 Msps
Reserved

Indicates the current modulation type.

interface, the Host SHALL reply with an HDMI_status_report as defined in Table 9.16-27 in the diagnostic_cnf()

APDU. A Host SHALL provide an HDMI_status_report if it has an HDMI connector, even if a DVI device is
connected through the HDMI connector. If a Host does not have an HDMI connector, the Host SHALL NOT
respond to the HDMI Status Report Request, even if an HDMI device is connected through a DVI connector.

Table 9.16-27 - HDMI Status Report Syntax

Syntax No. of bits Mnemonic
HDMI_status_report() {
device_type 1 bslbf
color_space 2 bslbf
connection_status 2 bslbf
host HDCP_status 1 bslbf
device HDCP_status 2 bslbf
video format
{
horizontal lines 16 uimsbf
vertical _lines 16 uimsbf
frame_rate 8 uimsbf
aspect_ratio 2 bslbf
prog_inter_type 1 bslbf
reserved 5 bslbf
audio_format
{
audio_sample_size 2 bslbf
audio_format 3 bslbf
audio_sample_freq 3 bslbf
}
b5
device_type Indicates whether the device is DVI or HDM

Ob Device connected through HDMI connector uses DVI

4/18/13

CablelLabs®

179

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

color_space

connection_status

host. HDCP_status

device_ HDCP_status

video_format

horizontal_lines

vertical_lines

frame_rate

1b Device connected through HDMI connector uses HDMI

Indicates the color space utilized (valid when connection_status does not equal O
AND device_type is equal to Obl)

00b RGB
01b YCC422
10b YCC444

11b Reserved
Indicates if a connection exists on the HDMI port

00b No connection exists

01b Device connected, no repeater
10b Device connected, with repeater
11b Reserved

Indicates if HDCP is enabled on the HDMI link

Ob Not enabled
1b Enabled.

Indicates the connected device’s HDCP status (valid only when
connection_status is not equal to 00,)

00b Non HDCP device

01b Compliant HDCP device
10b Revoked HDCP device
11b Reserved

Indicates the current video format utilized on the HDMI port as defined in the
following fields:

Indicates the number of horizontal lines associated with the video format on the
HDMI link.

Indicates the number of vertical lines associated with the video format on the
HDMI link.

Indicates the frame rate associated with the video format on the HDMI link as
defined in the following table.

Table 9.16-28 - Frame Rate Associated With the Video Format On the HDMI Link

Frame Rate Code Frame Rate
01 23.976 Hz
02 24 Hz
04 29.97 Hz
05 30 Hz
07 59.94 Hz
08 60 Hz

aspect_ratio

Indicates the aspect ratio associated with the video format on the HDMI link as
defined in the following table:

Table 9.16-29 - Aspect Ratio Associated With the Video Format On the HDMI Link

Bit Value Video Format

00 4:3

180

CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Bit Value Video Format
01 16:9
10 Reserved
11 Reserved

prog_inter_type
0Ob
1b

audio_sample_size

Indicates if the video is progressive or interlaced on the HDMI link,

Interlaced
Progressive

Audio sample size (valid when connection_status is not equal to 0 AND

device_type is equal to Ob1 and audio_format = 0b000)

00b
01b
10b
11b

audio_format

Not valid (audio_format is not equal to 0b000)
16
20
24

Audio format (valid when connection_status is not equal to 0 AND device_type

is equal to Ob1)

000b
001b
010b
011b
100b
101b
110b
111b

audio_sample_freq

PCM

MPEG-1

MPEG-2

DTS

AAC

MP3

ATRAC

Other audio format

Audio sample frequency (valid when connection_status is not equal to 0 AND

device_type is equal to Ob1l)

000b
001b
010b
011b
100b
101b
110b
111b

9.16.3.12 RDC Status Report

32.0 KHz

44.1 KHz

48.0 KHz

88.2 KHz

96.0 KHz

176.4 KHz

192 KHz

Other sample frequency

In response to an RDC_status_report request in the diagnostic_req() APDU, the Host SHALL reply with an
RDC_status_report as defined in Table 9.16-30 in the diagnostic_cnf() APDU.

Table 9.16-30 - RDC_status_report

Syntax No. of Bits Mnemonic

RDC_report() {
RDC_center_freq 16 uimsbf
RDC_transmitter_power_level 8 tcimsbf
reserved 6 “111111°
RDC_data_rate 2 bslbf

b5

4/18/13 CableLabs® 181

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

RDC_center_freq

Indicates the frequency of the RDC center frequency, in MHz

(Frequency = value * 0.05 + 5 MHz).

Table 9.16-31 - RDC Center Frequency Value

Bt |15|14 (13 |12 |11 |10 |9 | 8|7 |6 |5 |4]3|2|1]0
Frequency (MS) Frequency (LS)
RDC_transmitter_power_level Indicates the RDC power level in dBmV.
RDC_data_rate Indicates the current RDC data rate.
00b 256kbps
01b 1544kbps
10b 3088kbps
11b Reserved
9.16.3.13 OCHD?2 Network Address
In response to a net_address_report request in a diagnostic_req() APDU, the Host SHALL respond with a
net_address_report as defined in Table 9.16-32 in the diagnostic_cnf() APDU.
Table 9.16-32 - net_address_report
Syntax No. of Bits Mnemonic
net_address_report() {
number_of addresses 8 uimsbf
for (i=0; i<number_of addresses; i++) {
net_address_type 8 uimsbf
number_of bytes net 8 uimsbf
for (J=0; j<number_of bytes net; j++) {
net_address_byte 8 uimsbf
number_of bytes subnet 8 uimsbf
for (J=0; j<number_of bytes subnet; j++) {
sub_net_address_byte 8 uimsbf
}
}
3}

number_of addresses Total number of network addresses contained in the report.

net_address_type Type of device associated with reported network address.

0x00 No addressable device available
0x01 Host

0x02 1394 port

0x03 Reserved

0x04 DOCSIS

0x05 Reserved

0x06 CableCARD

0x07-0xFF Reserved

The total number of bytes required for the network address. Note: 1Pv6 will be
reported as 16 bytes.

number_of bytes net

net_address_byte One of a number of bytes that constitute the Network addresses assigned to the
Host device. Each byte represents 2 hexadecimal values (xx) in the range of

0x00 to OxFF.

182 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

number_of bytes subnet The total number of bytes required for the subnet address. Note: IPv6 will be
reported as 16 bytes.

sub_net_address_byte One of a number of bytes that constitute the Network addresses assigned to the
Host device. Each byte represents 2 hexadecimal values (xx) in the range of
0x00 to OxFF.

9.16.3.14 home_network_report

In response to a home_network_report request in a diagnostic_req() APDU, if the Host supports the
home_network_report, the Host SHALL reply with a home_network_report as defined in Table 9.16-33 in the
diagnostic_cnf() APDU.

Table 9.16-33 - home_network_report

Syntax No. of Bits Mnemonic
home_network report() {
max_clients 8 uimsbf
host DRM_status 8 uimsbf
connected_clients 8 uimsbf
for (i=0; i<connected clients; i++) {
client_mac_address 48 uimsbf
number_of bytes net 8 uimsbf
for(J=0; j<number_of bytes net; j++) {
client_IP_address_byte 8 uimsbf
}
client_DRM_status 8 uimsbf
}
3}
max_clients Maximum number of clients the Host can support.

If the Host does not support home network clients, then it SHALL report 0x00 for max_clients in a diagnostic
home_network_report.

host DRM _status Host DRM (Digital Rights Management) capability.

0x00 Host has no DRM capability.

0x01 Host supports DRM but not for home networked clients.
0x02 Host supports DRM for itself and home networked clients.
0x03-0xFF - Reserved.

connected_clients Number of connected clients.

client_mac_address MAC address of client i.

number-of_bytes net Number of bytes in the network address. Note: IPv6 will be reported as 16 bytes.

client_IP_address_byte IP address of client i. Note: If no IP address is assigned for client i, then this
value will be returned as 0x00 for all bytes.

client. DRM_status ASD status of client i.

0x00 - No DRM support in client i.

0x01 - DRM trust not established in client i.

0x02 - DRM trust established in client i.host_information_report
0x03 - OXFF - Reserved

9.16.3.15 host_information_report

In response to a host_information_report request in the diagnostic_req() APDU, the Host SHALL reply with a
host_information_report in the diagnostic_cnf() APDU as defined in Table 9.16-34.

4/18/13 CablelLabs® 183

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Table 9.16-34 - host_information_report

Syntax No. of Bits Mnemonic
host_information_report() {
vendor_name_length 8 uimsbf
for (i=0; i<vendor_name_length; i++) {
vendor_name_character 8 uimsbf
model _name_length 8 uimsbf
for (i=0; model_name_length; I++) {
model _name_character 8 uimsbf
}
if(type==2 && version==2){
vendor_id 24 uimsbf
hardware_id 32 uimsbf
group_id 16 uimsbf
}
3}
vendor_name_length Length of the vendor name.
vendor_name_character Name of the vendor in ASCII.
model_name_length Length of the model name.
model_name_character Name of the model in ASCII.
vendor_id Vendor ID assigned to Host as defined in [CDL].
hardware_id Hardware ID assigned to Host as defined in [CDL].
group_id Group ID assigned to Host as defined in [CDL]. Note: If no group ID has been

assigned, then a value of 0x0000 is used.

9.17 Specific Application Support

The Specific Application Support resource is intended for use when a vendor-specific application, which resides in
either the Card or the Host, needs to communicate a private set of objects across the interface. Support for this
resource is required in the Host and Card. Private Host applications and a corresponding specific application in the
Card may use one of two possible modes of communication.

e Synchronous mode: where either the SAS_data_rqst(), SAS_data_av(), SAS_data_cnf(), SAS_server_query()
and SAS_server_reply() group of APDUs are used to communicate a private set of objects across the interface
where flow control is managed at the APDU level.

e Asynchronous mode: where only the SAS_async_msg() APDU is used to communicate a private set of objects
across the interface where flow control is managed at the vendor-specific application level between Host and
Card applications.

The CableCARD device may open more than one Specific Application Support (SAS) session for private
communications between vendor-specific Card applications and private Host applications. The Card, as the initiator
of the sessions, is responsible for associating each session (by session number) with the appropriate vendor-specific
Card application. When a private Host application is ready to establish a connection with the Card, an
SAS_connect_rgst() APDU is sent to the Card over any opened SAS session. The Card uses the private Host
application ID to identify the specific SAS session that should be used for communication between the identified
private Host application and the appropriate vendor-specific Card application. This private Host application ID is
returned to the Host via the SAS_connect_cnf() APDU. This operation establishes the communication path between
a specific pair of applications (vendor-specific Card application, private Host application).

184 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Card Host

Open_Session_Request

Open_Session_Response
SAS #1

Open_Session_Request

SAS #n Open_Session_Response

Sas_Connect_Rqst Private App ID #xx

App ID #xx, SAS #k Sas_Connect_Cnf

App ID #xx, SAS #k

Figure 9.17-1 - Specific Application Support Connection Sequence

In some instances, the Card may receive an SAS_connect_rgst() APDU before a session has been opened for the
associated vendor-specific application.

Host
Card
Open_Session_Request
Open_Session_Response
SAS #1
Sas_Connect_Rqst Private App ID #xx
Open_Session_Request
SAS #k Open_Session_Response

Sas_Connect_Cnf
App ID #xx, SAS #k

App ID #xx, SAS #k

Figure 9.17-2 - Specific Application Support Alternate Connection Sequence

4/18/13 CableLabs® 185

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

The Host SHALL support the Specific Application Support (SAS) Resource using the resource identifier as defined
in Table 9.17-1.

The Host SHALL support up to 32 sessions to the SAS resource.

The Card SHALL open at least one session to the SAS resource on the Host, using the resource identifier as defined
in Table 9.17-1.

If there is only one SAS resource session open, the Card SHALL NOT close the open session to the SAS resource.
If there is only one SAS resource session open, the Host SHALL NOT close the open session to the SAS resource.

Note: After a PCMCIA or Card Reset, all sessions need to be reopened by the Card, including SAS sessions. A
PCMCIA or Card Reset implicitly closes all sessions, resetting the session count to zero (0).

Table 9.17-1 - Specific Application Support Resource

Resource Mode Class Type Version | Identifier (hex)

Specific Application Support S-Mode/M-Mode 144 1 2 0x00900042

The Specific Application Support resource includes eight APDUs as described in the following table:

Table 9.17-2 - Specific Application Support APDUs

APDU Name Tag Value Resource Host grgZE?QCARD
SAS_connect_rgst() 0x9F9A00 Specific Application Support -
SAS_connect_cnf() 0x9F9A01 Specific Application Support «

SAS data_rgst() 0x9F9A02 Specific Application Support >
SAS_data_av() 0x9F9A03 Specific Application Support ©
SAS data_cnf() 0x9F9A04 Specific Application Support “
SAS_data_query() 0x9F9A05 Specific Application Support ©
SAS_data_reply() 0x9F9A06 Specific Application Support “
SAS_async_msg() 0x9F9AQ07 Specific Application Support ©

9.17.1 SAS_connect_rqst APDU

The Host SHALL send an SAS_connect_rqgst() APDU as defined in Table 9.17-3 to the Card to establish a
connection between a private Host application and the corresponding Card vendor-specific application.

Table 9.17-3 - SAS_connect_rqst APDU Syntax

Syntax No. of Bits Mnemonic
SAS connect_rqgst O {
SAS connect_rqgst_tag 24 uimsbf
length_field()
private_host _application_ID 64 uimsbf
b5
SAS_connect_rgst_tag 0x9F9A00

186 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

private_host_application_ID This is a unique identifier of the private Host application.

NOTE (Informative): There is no need to register private_host_application_id
used by different manufacturers. Applications that make use of this resource are
downloaded into the Host by the cable operator, and thus the application has
knowledge of valid ID values that are expected from operator-supplied Cards.

9.17.2 SAS connect_cnf APDU

After receiving the SAS_connect_rgst() APDU from the Host, the Card SHALL reply with an SAS_connect_cnf()
APDU as defined in Table 9.17-4 to inform the Host of which SAS session is to be used for this connection.

After receiving the SAS_connect_rgst() APDU from the Host, if a session is not available to the SAS Resource for
the application, the Card SHALL open a new session to the SAS Resource prior to responding with the
SAS_connect_cnf() APDU.

Table 9.17-4 - SAS_connect_cnf APDU Syntax

Syntax No. of Bits Mnemonic
SAS connect_cnf() {
SAS connect_cnf_tag 24 uimsbf
length_field()
private_host _application_ID 64 uimsbf
SAS session_status 8 uimsbf
3}
SAS_connect_cnf_tag 0x9F9A01

private_host_application_ID This is a unique identifier of the private Host application.

NOTE (Informative): There is no need to register private_host_application_id
used by different manufacturers. Applications that make use of this resource are
downloaded into the Host by the cable operator, and thus the application has
knowledge of valid ID values that are expected from operator-supplied Cards.

SAS _session_status The status of the requested connection.

0x00 Connection established

0x01 Connection denied - no associated vendor-specific Card application
found

0x02 Connection denied - no more connections available

0x03-0xFF Reserved

9.17.3 SAS_data rqst APDU

Once a communication path has been established between the application pair (vendor-specific Card application and
private Host application), via a SAS session, each of the applications can utilize the SAS_data_rgst() APDU to
inform the other application that it is ready to process incoming data as well as request data from the other
application. This APDU is bidirectional in that it can originate from either side of the CHI. A receipt of the
SAS_data_rgst() APDU is an indication that the sending application is ready to process incoming data for the
remainder of the SAS connection’s lifetime. Although an application needs to send only one SAS_data_rgst() for the
life of a connection, it may send more than one SAS_data_rgst() APDU over the lifetime of an SAS connection.

After an SAS connection has been established, the Host MAY send the SAS_data_rgst() APDU as defined in Table
9.17-5 to indicate to an application on the Card that the application on the Host is ready to process incoming data.

After an SAS connection has been established, the Card MAY send the SAS_data_rgst() APDU as defined in Table
9.17-5 to indicate to an application on the Host that the application on the Card is ready to process incoming data.

4/18/13 CablelLabs® 187

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Table 9.17-5 - SAS_data_rqgst APDU Syntax

Syntax No. of Bits Mnemonic
SAS data rgst() {
SAS data rqgst_tag 24 uimsbf
length_field()
b5
SAS _data_rgst_tag 0x9F9A02

9.17.4 SAS_data_av APDU

Once a communication path has been established between the application pair (vendor-specific Card application and
private Host application) via an SAS session, each of the applications can utilize the SAS_data_av()APDU to
indicate when the application has data to send across the CHI. A Host application MAY send an SAS_data_av()
APDU as defined in Table 9.17-6 to indicate that the Host application has data to send across the CHI, only after an
SAS_data_rgst() APDU has been received.

A Card application MAY send an SAS_data_av() APDU as defined in Table 9.17-6 to indicate that the Card
application has data to send across the CHI, only after an SAS_data_rgst() APDU has been received.

Note: The data itself is sent in the SAS_query() and SAS_reply() APDUs.

Table 9.17-6 - SAS_data_av APDU Syntax

Syntax No. of Bits Mnemonic
SAS data av(Q) {
SAS data av_tag 24 uimsbf
length_field()
SAS data status 8 uimsbf
transaction_nb 8 uimsbf
b5
SAS data_av_tag 0x9F9A03
SAS data_status Status of the available data.

0x00 Data available
0x01 Data not available
0x02-0xFF Reserved

transaction_nb The transaction number is issued from an 8-bit cyclic counter (1-255) and is used
to identify each data transaction and to gain access to the available data. When
data is not available, the transaction_nb is set to 0x00.

188 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

9.17.5 SAS_data_cnf APDU

After the Host application receives an SAS_data_av() APDU, it SHALL transmit the SAS_data_cnf() APDU as
defined in Table 9.17-7 to acknowledge that it is preparing to receive the available data.

After the Card application receives an SAS_data_av() APDU, it SHALL send the SAS_data_cnf() APDU as defined
in Table 9.17-7 to acknowledge that it is preparing to receive the available data, even if there is no data available.

Table 9.17-7 - SAS_data_cnf APDU Syntax

Syntax No. of Bits Mnemonic
SAS data_av_cnf() {
SAS _data_av_cnf_tag 24 uimsbf
length_field(
transaction_nb 8 uimsbf
}
SAS data_av_cnf_tag 0x9F9A04
transaction_nb The transaction_nb assigned in the SAS_data_av() APDU.

9.17.6 SAS_server_query APDU

After sending the SAS_data_cnf() APDU to the Card application, the Host application SHALL send an
SAS_server_query() APDU as defined in Table 9.17-8 to request the transfer of application specific data from the
Card application.

After sending the SAS_data_cnf() APDU to the Host application, the Card application SHALL send an
SAS_server_query() APDU as defined in Table 9.17-8 to request the transfer of application specific data from the
Host application.

Table 9.17-8 - SAS_server_query APDU Syntax

Syntax No. of Bits Mnemonic
SAS server_query O {
SAS server_query_tag 24 uimsbf
length_field()
transaction_nb 8 uimsbf
b5
SAS_server_query_tag 0x9F9A05
transaction_nb The transaction_nb assigned in the SAS_data_av() APDU.

9.17.7 SAS_server_reply APDU

After receiving the SAS_server_query() APDU, the Host application SHALL respond with the SAS_server_reply()
APDU as defined in Table 9.17-9 with the data to transfer.

After receiving the SAS_server_query() APDU, the Card application SHALL respond with the SAS_server_reply()
APDU as defined in Table 9.17-9 with the data to transfer.

4/18/13 CablelLabs® 189

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Table 9.17-9 - SAS_server_reply APDU Syntax

Syntax No. of Bits Mnemonic
SAS server_reply(Q {
SAS server_reply_tag 24 uimsbf
length_field()
transaction_nb 8 uimsbf
message_length 16 uimsbf
for (i=0; i<message length; i++) {
message_byte 8 uimsbf
}
b5

0x9F9A06
The transaction_nb assigned in the SAS_data_av() APDU.

SAS_server_reply_tag
transaction_nb

message_length The length of the message in the following for loop.

message_byte The data to transfer.

9.17.8 SAS Async APDU

The sas_async_msg() APDU may be used, instead of sas_data_rqst(), sas_data_av(), sas_data_cnf(),
sas_server_query() and sas_server_reply() group of APDUs in order to reduce the overhead and the time needed to
send a message to/from vendor-specific applications. Once a communication path has been established between the
application pair (vendor-specific Card application, Private Host application) via an SAS session, each of the
applications can utilized the sas_async_msg() APDU to communicate with the other. The sas_async_msg() APDU
is bi-directional and can originate from either side of the CHI. It is the responsibility of the applications to take care
of overflow prevention and ensure reliable delivery of messages.

After an SAS connection has been established, the Host MAY send the SAS_async_msg() APDU as defined in
Table 9.17-10 to send a message to a vendor-specific application on the Card.

After an SAS connection has been established, the Card MAY send the SAS_async_msg() APDU as defined in
Table 9.17-10 to send a message to a private application on the Host.

Table 9.17-10 - SAS_Async Message APDU Syntax

Syntax No. of Bits Mnemonic
SAS _async_msg() {
SAS_async_msg_tag 24 uimsbf
length_field()
message_nb 8 uimsbf
message_length 16 uimsbf
for (i =0; i< message length; i++)
message_byte 8 uimsbf
}
+

SAS_async_msg_tag 0x9F9A07

message_nb: The message number is issued from an 8-bit cyclic counter (0 - 255) and is used

to identify each message.

message_length: The number of bytes in a message.

message_bytes: The message payload in a format agreed between a private Host application and

corresponding specific Card application.

190 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

9.18 Card Firmware Upgrade

9.18.1 Introduction

The Card will require that its firmware be upgraded occasionally. The mechanism of upgrading this firmware is
unique to each Card manufacturer’s system. This operation may be facilitated by adding the interface outlined in this
section. New versions of the Homing and Host Control resources are utilized that encapsulate the previous
operations of the resources but add new operations for facilitating the firmware upgrade.

9.18.1.1 Summary

9.18.1.1.1 Firmware Upgrade

A Card may be designed to be capable of having its firmware reprogrammed. Generally, this is implemented with
flash memory or battery backed up RAM. Occasionally, this firmware will be upgraded. There are generally two
paths in which the firmware can be upgraded: 1) over the cable network using the QAM inband channel, and 2) over
the cable network using the QPSK OOB or DSG channel. Upgrade can be accomplished either by the methods
defined in this document or by other methods. Since different system implementations affect the method of Card
upgrade, two types of upgrade states are offered, a “delayed” and an “immediate”.

9.18.1.1.1.1 Delayed Upgrade

When the Card detects that a firmware upgrade is required and immediate upgrade has not been requested by the
headend, then if the Homing resource is not already open, and the Card requires utilizing the Homing resource, it
will open a session to the Homing resource if it is not already open. The Card will then wait until the open_homing()
APDU is received prior to beginning the upgrade. The Card will inform the Host through the firmware_upgrade()
APDU that it will be doing a firmware upgrade. After receiving the firmware_upgrade_reply() APDU, the Card can
use the Host Control resource to tune either the QAM or QPSK tuner in the Host to the appropriate frequency and
modulation type. The Host will not modify the selected tuner until the Card has indicated that the firmware upgrade
has finished by sending the firmware_upgrade_complete() APDU or a timeout condition occurs. The
firmware_upgrade_complete() APDU can also indicate to the Host whether a PCMCIA reset, Card reset, or no reset
is required by the Card. After receiving the firmware_upgrade_complete() APDU, the Host will be free to change
the QAM tuner.

The Host will send the open_homing() APDU when it is in standby mode (power applied but in the "non-viewing"
state).

9.18.1.1.1.2 Immediate Upgrade

There are conditions in which the Card will need to perform an immediate upgrade. When this is required, the Card
will have the option to use the interface upgrade mechanisms defined in this document. If using these mechanisms,
the Card will open the Homing resource, if it is not already open, and send a firmware_upgrade() APDU. The Host
will reply with a firmware_upgrade_reply() when it is ready. The Card will use the Host Control APDUs to tune
either the QAM or QPSK tuner in the Host to the appropriate frequency and modulation type. The Host will not
interrupt this process until it has either received a firmware_upgrade_complete() APDU or a timeout condition
occurs. An optional text message is included in the APDU to display to the user if the Host is not in standby.

Additionally, it is possible that an outside occurrence, such as a power failure, may cause the firmware to become
corrupted. If this occurs, then the Card is incapable of performing most of its functions. It is still able to perform
some functions if ROM code is included in the design. Generally, this ROM code is fairly small since it is not
upgradeable and is utilized only for verification of the firmware and loading the firmware in case of corruption.

The bootloader is called upon reset of the Card CPU. It first performs basic initialization operations, then tests the
main program memory to insure that it is valid, and if it is valid, starts executing out of the main firmware memory.
The problem occurs that if the main program memory is not valid, then a mechanism is needed to allow for recovery
of the main firmware.

4/18/13 CablelLabs® 191

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

For this rare condition, the bootloader will contain firmware, which will allow the Card to utilize the APDUs defined
in this document for an immediate upgrade.

9.18.1.1.2 Inband Upgrade Considerations

If the Card utilizes the QAM inband channel for upgrades, then for normal upgrades it should utilize the delayed
upgrade. The Host should then notify the Card that it can upgrade when the Host is placed in the standby state by the
user. If the Host has been in the on state for a long period of time or the Card bootloader has detected corrupted
memory, then an immediate upgrade is required in which case the Host will give control of the QAM tuner
immediately to the Card, independent of its state.

9.18.1.1.3 OOB Upgrade Considerations

If the Card utilizes the QPSK OOB or DSG channel for upgrades, then its operation will depend on whether
applications can still operate while performing an upgrade. If they cannot, a delayed firmware upgrade should be
used. The Card will have to open the Homing resource and wait until the open_homing() APDU is received prior to
beginning the upgrade. If applications can operate during an upgrade, then an immediate firmware upgrade can be
used.

9.18.1.1.4 Other Homing Operations

If desired, the Card can use the Homing resource for receiving other parameters over the inband channel when the
Host is in standby state. If this is utilized, then the upgrade option should not be used so as to allow the Host to
return to the on state at the users request.

9.18.2 Implementation

9.18.2.1 Introduction

In order to meet these operations, there is a need for a mechanism whereby the Card can inform the Host that a
firmware upgrade is required, an optional text message to the user, and the type of upgrade path.

Note that it is the responsibility of the Host to inform the user when an immediate upgrade occurs and to determine
when the recovery can occur for delayed upgrades.

9.18.2.2 Reset Implementation

After the Card has finished its firmware upgrade, it will either send the firmware_upgrade_complete() APDU with
the appropriate reset type or simply timeout based on the timeout type.

9.18.3 Host Operation

While the Card is performing its upgrade operation, its ability to support the normal Card interface may range from
severely limited to fully operational. To accommodate any case, some modifications to normal operation are
required. The following is a list of those modifications as well as requirements to the Host.

1. Ifthe 5-second timeout is specified in the firmware_upgrade() APDU, the Card SHALL still respond
to the transport layer polls with a 5-second timeout during a firmware upgrade. If the 5-second timeout
is specified in the firmware_upgrade() APDU, and the Card fails to respond to a transport layer poll
within 5 seconds, the Host SHALL perform a PCMCIA reset on the Card.

2. The Card may not be able to support session or application layer operations. The Host SHALL NOT
initiate any new sessions or any application layer operations after receiving a firmware_upgrade()
APDU until either the firmware_upgrade_complete() APDU is received or the Card times out. During

192 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

a firmware upgrade to the Card, the Host SHALL maintain all session connections so that if the Card
cancels the firmware upgrade, normal operation can continue.

3. The Card may be fully able to support session or application layer operations while performing a
firmware upgrade. During a firmware upgrade to the Card, the Host SHALL respond to any session or
application layer operation initiated by the Card and perform all related operations consistent with
normal Host-Card interface. This includes timeout and reset operation and the initiation of required
session and application layer operations.

4. If the download_timeout_period is specified in the firmware_upgrade() APDU, and the
download_timeout period expires, the Host SHALL perform a PCMCIA reset on the Card.

5. If the Card sends a firmware_upgrade_complete() APDU with No Reset Required, then the Host
SHALL resume normal operation with the Card in all respects, including timeout and reset operation.

9.18.3.1.1 Timeout Types

The firmware_upgrade() APDU includes a variable called timeout_type, which defines the type of timeout the Host
is to utilize during a firmware upgrade. This can include the normal 5-second transport timeout and/or a download
timeout timer, which starts from the last firmware_upgrade() APDU received or neither. It is highly recommended
that the Card not use the “No timeout” option.

9.18.3.1.2 Transport Layer Timeout

Since the Card may be incorporating flash memory which takes a longer time to program than the transport layer
timeout period (5 seconds), using option 02 or 03 on the timeout_type variable in the firmware_upgrade() APDU
will cause the Host to cease implementing this timeout until either a firmware_upgrade_complete() APDU is
received or the download_timeout_period from the last firmware_upgrade() APDU has passed, in which case the
Host will perform a PCMCIA reset.

9.18.3.2 Upgrade Cancellation

If the Card cancels its firmware upgrade, then it can send the firmware_upgrade_complete() APDU with the reset
type set to 0x02, “no reset required”.

9.18.3.3 Flowchart (Informative)

Figure 9.18-1 is a flowchart showing the Card/Host interface, which uses Card upgrade methods defined in this
document.

4/18/13 CablelLabs® 193

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Card to perform a
delayed upgrade

If not already open, Card
opens Homing resource

Received
open_homing from
Host

Card to perform an
immediate upgrade

If not already open, Card
opens Homing resource

9.18.4 Homing Resource

9.184.1

Homing Resource Definition

y

Card sends
firmware_upgrade APDU
and receives
firmware_upgrade_reply
APDU from Host

Card uses OOB

Card uses OOB Host
Control APDU's and
performs upgrade

y

Card uses inband Host
Control APDU's and
performs upgrade

Card times out?

Card sends
firmware_upgrade_
complete APDU

Card requests

PCMCIA reset

Card requests Card
reset

Normal operation
continues

Host performs Card reset
(sets RS flag)

Figure 9.18-1 - Firmware Upgrade Flowchart

Y

Host performs PCMCIA
reset (sets RESET
signal)

The Homing resource allows for the Card to upgrade its firmware using Host resources.

194

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Table 9.18-1 - Homing Resource

Resource Mode Class Type Version Identifier (hex)

Homing S-Mode/M-Mode 17 1 2 0x00110042

The Host SHALL support the Homing Resource using the resource identifier as specified in Table 9.18-1.

The Card SHALL open a maximum of one session to the Homing resource using the resource identifier as specified
in Table 9.18-1 when it requires a firmware upgrade.

The Homing resource includes the following APDUs:

Table 9.18-2 - Homing APDUs

Apdu_tag Tag value Resource H(I)Dsi'[eg[iggrd
open_homing 0x9F9990 Homing >
homing_cancelled 0x9F9991 Homing >
open_homing_reply 0x9F9992 Homing <
homing_active 0x9F9993 Homing >
homing_complete 0x9F9994 Homing <
firmware_upgrade 0x9F9995 Homing <
firmware_upgrade_reply 0x9F9996 Homing >
firmware_upgrade_complete 0x9F9997 Homing <

9.18.4.2 open_homing

The Host SHALL send the open_homing() APDU as defined in Table 9.18-3 to the Card when it enters the standby
state, either from power up or from user action, independent of whether the Host Control resource has a session
active.

Table 9.18-3 - Open Homing Object Syntax

Syntax No. of bits Mnemonic

open_homing() {
open_homing_tag 24 uimsbf
length_field()

3

open_homing_tag 0x9F9990

9.18.4.3 open_homing_reply ()

The Card SHALL respond with the open_homing_reply() APDU as defined in Table 9.18-4 to acknowledge receipt
of the open_homing() APDU.

4/18/13 CablelLabs® 195

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Table 9.18-4 - Open Homing Reply Object Syntax

Syntax No. of bits Mnemonic
open_homing_reply() {
open_homing_reply_tag 24 uimsbf
length_field()
bs
open_homing_reply tag 0x9F9992

9.18.4.4 homing_active

After receipt of the open_homing_reply() APDU, the Host SHALL send the homing_active() APDU as defined in
Table 9.18-5 to inform the Card that the homing request has been activated.

Table 9.18-5 - Homing Active Object Syntax

Syntax No. of bits Mnemonic

homing_active() {
homing_active_tag 24 uimsbf
length_field()

3

homing_active tag 0x9F9993

9.18.4.5 homing_cancelled

The Host SHALL close the homing state by sending a homing_cancelled() APDU as defined in Table 9.18-6 to the
Card.

Table 9.18-6 - Homing Cancelled Object Syntax

Syntax No. of bits Mnemonic

homing _cancelled() {
homing_cancelled_tag 24 uimsbf
length_field()

3

homing_canceled_tag 0x9F9991

9.18.4.6 homing_complete

When the Card no longer needs the homing function, it SHALL send a homing_complete() APDU as defined in
Table 9.18-7 to the Host.

Table 9.18-7 - Homing Complete Object Syntax

Syntax No. of bits Mnemonic

homing_complete() {
homing_complete_tag 24 uimsbf
length_field()

s

homing_complete_tag 0x9F9994

196 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

9.18.4.7 firmware_upgrade

The Card SHALL send the firmware_upgrade() APDU as defined in Table 9.18-8 to the Host to inform the Host
that the Card is commencing a firmware upgrade. If the upgrade_source in the firmware_upgrade() APDU is equal
to the QAM inband channel (01), the Host SHALL provide access to the inband tuner through the Host Control
resource APDUs. The Host SHALL NOT interrupt a firmware upgrade to the Card until it receives the
firmware_upgrade_complete() APDU from the Card. If the Host is not in the standby mode when a firmware
upgrade is requested, the Host SHALL display the user_notification_text field in the firmware_upgrade() APDU
formatted according to [ISO8859-1].

Table 9.18-8 - Firmware Upgrade Object Syntax

Syntax No. of bits Mnemonic
firmware_upgrade() {
firmware_upgrade_tag 24 uimsbf
length_field()
upgrade_source 8 uimsbf
download_time 16 uimsbf
timeout_type 8 uimsbf
download_timeout_period 16 uimsbf
text_length 8 uimsbf
for(i=0; i<text_length; i++) {
user_notification_text 8 uimsbf
}
bs
firmware_upgrade_tag 0x9F9995
upgrade_source Defines which path the Card will use for its firmware upgrade.

0x00 Unknown - Card is not informing Host of source

0x01 QAM Inband Channel - Host Control resource will be used
0x02 QPSK OOB Channel - Host Control resource will be used
0x03 - OXFF Reserved

download_time The amount of time, in seconds, that it estimated to take for the firmware
upgrade. If the value is 0000, then the value is unknown.

timeout_type The type of timeout requested.

0x00 Both timeouts - Use both 5 second and download_timeout_period
0x01 Transport timeout only - 5 second timeout on transport layer
0x02 Download timeout only - Value in download_timeout_period
0x03 No Timeout - Host will not timeout Card

0x04 - OXFF Reserved

download_timeout_period The amount of time, in seconds, after the Host has received the
firmware_upgrade() APDU that the Host should use to determine that the Card
has become unstable. After this time, the Host should perform a PCMCIA reset
on the Card. The Host’s timer should be reset every time a firmware_upgrade()
APDU is received. A value of 0000 is defined to be an infinite timeout period.

user_notification_text The text to be displayed to the user if the Host is not in standby mode.

9.18.4.8 firmware_upgrade_reply

The Host SHALL send the firmware_upgrade_reply() APDU as defined in Table 9.18-9 in response to the
firmware_upgrade() APDU. The Card SHALL NOT start a firmware download operation until it receives the
firmware_upgrade_reply() APDU.

4/18/13 CablelLabs® 197

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Table 9.18-9 - Firmware Upgrade Reply Object Syntax

Syntax No. of bits Mnemonic
firmware_upgrade_reply() {
firmware_upgrade_reply_tag 24 uimsbf

length_field()

3

firmware_upgrade_reply tag 0x9F9996

9.18.4.9 firmware_upgrade_complete

After the Card has completed its upgrade or cancels the firmware upgrade, it SHALL send the
firmware_upgrade_complete() APDU as defined in Table 9.18-10 to the Host. Included in this is whether the Card
needs a PCMCIA reset (RESET signal active), Card reset (RS flag active) (applies in S-Mode only), or no reset. If
there is no reset, then the Host may take control of the tuner if the source was inband.

Table 9.18-10 - Firmware Upgrade Complete Object Syntax

Syntax No. of bits Mnemonic
Firmware_upgrade_complete() {
firmware_upgrade_complete_tag 24 uimsbf
length_field()
reset_request_status 8 uimsbf
bs

firmware_upgrade_complete_tag 0x9F9997

reset_request_status This contains the status of the reset for the Card.

0x00 PCMCIA reset requested - The HOST will bring RESET signal active
then inactive.
0x01 Card reset requested - Host will set RS flag and begin interface
initialization (S-Mode only)
0x02 No reset required - Normal Operation continues
0x03 OxFF Reserved
Note that if the Card cancels the firmware upgrade, it can send the firmware_upgrade_complete() APDU with no
reset required. Normal operation should continue if the Host receives this APDU.

9.19 Support for Common Download
The Card SHALL support the common download protocol as defined in [CDL].

The [CDL] specification defines a protocol for Host devices to upgrade their operating software image.

9.20 DSG Resource

9.20.1 DSG Mode

In advanced_DSG_mode and advanced_DSG_one-way_mode, all SCTE 65 S| messages, SCTE 18 EAS messages,
and CVTs and OCAP XAITs are received either directly by the Host or are received over the extended channel. The
Host determines this based on the presence of DSG Broadcast Tunnel types defined in the Host Entries section of the
DSG_directory() APDU. If the Host Entries section indicates a Broadcast Tunnel of a particular type, then the data
is received directly by the Host via a DSG Broadcast Tunnel. If the Host Entries do not indicate a Broadcast Tunnel
of a particular type, then the data may be delivered over the extended channel. As an example: the Host Entries

198 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

indicates the presence of a Broadcast Tunnel of type SCTE 18 (dsg_client_id = Broadcast Client ID for SCTE 18 =
0x01 0x02 0x00 0x02) and no other types, thus indicating that the Host must consume SCTE 18 EAS messages via
the Broadcast Tunnel and request an extended channel MPEG flow for the SCTE 65, CVTs and OCAP XAIT
messages.

The following messages are used for DSG configuration and operation:
e inquire_DSG_mode () - The Host can inquire of the Card the preferred operational mode for the network.

e set DSG_mode () -The Card commands the Host to operate in the preferred operational mode for the
network; either SCTE 55_mode, advanced_DSG_mode, or advanced_DSG_one-way_mode.

e send_DCD info () - The Host uses the send_DCD_info() message to pass the TLVs contained in the DCD
message.

e DSG_directory () - The Card uses the DSG_directory() message to pass DSG Advanced mode
configuration parameters to the Host.

e DSG_message () - This message is used by the Host to pass the upstream channel ID (UCID) to the Card or
to indicate certain eCM operational states.

e DSG_error () - The Card can inform the Host of errors that occur while operating in DSG mode.
The Host SHALL support the DSG Resource using the resource identifier as defined in Table 9.20-1.
The Host SHALL default to SCTE 55 mode until the set DSG_mode() APDU is received.

The Card SHALL open a maximum of one session to the DSG Resource using the identifier as defined in Table
9.20-1.

Table 9.20-1 - DSG Resource

Resource Mode Class Type Version Identifier (hex)
DSG S-Mode/M-Mode 4 1 1 0x00040041
DSG S-Mode/M-Mode 4 1 2 0x00040042

NOTE: Type 1, Version 2 deprecates the use of DSG Basic mode.

The DSG resource as defined in Table 9.20-1 is optional for Card operating in S-Mode, mandatory for Card
operating in M-Mode, and mandatory for Host operating in either S or M mode.

The DSG Resource APDU messages are as follows:

Table 9.20-2 - DSG APDUs

Direction
APDU Name Tag Value Resource Host « Card
Host modem Card modem

inquire_DSG_mode() 0x9F9100 DSG — -

set DSG_mode() 0x9F9101 DSG «— «—
DSG_error() 0x9F9102 DSG “— N/A
DSG_message() 0x9F9103 DSG - N/A
DSG_directory() 0x9F9104 DSG “— N/A
send_DCD _info() 0x9F9105 DSG - N/A
4/18/13 CableLabs® 199

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

9.20.1.1 DSG Advanced Mode

The Host scans for a downstream DOCSIS channel containing a DCD message upon receipt of a
set_dsg_mode () APDU with an operational_mode value = 0x03 or 0x04.

The Host passes the contents (i.e., TLVS) of the first DCD message received on a downstream channel
(after reassembling any fragmentation) to the Card using the send_DCD _info () APDU, regardless of the
configuration count change field. After the initial send_DCD_info () message has been sent, the Host only
sends the DCD message when it detects a change in the configuration count change field in the DCD
message, detects eCM MAC layer reinitialization, or after the completion of the DCC operation. The DCD
message is defined in [DSG].

To inform the Host that the DSG channel is not valid, the Card will use the DSG_error() APDU with error
status = 0x01 - Invalid DSG Channel. The Host then searches for another DOCSIS Channel containing a
DCD message. How the Card determines that a DSG channel is not valid is outside the scope of this
specification.

If the Card determines that the DSG channel is valid, then the Host will stay on the downstream and forward
requested DSG data flows to the Card or terminate DSG data flows directly.

The Card passes the DSG Configuration information received in the DCD message to the Host using the
DSG_directory() APDU upon selection of a valid DSG channel or whenever the Card determines that it is
necessary.

The Host sends the DSG_message() to pass the UCID, when identified, to the Card. The Host sends the
DSG_message() whenever it detects a change in the UCID value.

The Card MAY use the Upstream Channel ID (UCID) passed by the Host in the DSG_message() to select
appropriate DSG filters when UCIDs are specified in the DSG rules.

After the Card parses the DCD message, the Card uses the DSG_directory() APDU to provide the Host
with a set of MAC Addresses and DSG classifiers as applicable for specific DSG data flows.

The Card MAY resend an updated DSG_directory() APDU at any time when operating in advanced DSG
mode.

Host specific DSG filters are indicated by the presence of the number_of host_entries > 0 in the
DSG_directory() APDU, where dir_entry_type = 0x01.

DSG filters requested by the Card are defined in the number_of card_entries loop in the DSG_directory()
APDU. All DSG filters defined in the number_of _card_entries loop are forwarded to the eCM.

The Host uses DSG classifiers provided to it in the Card section of the DSG_directory() APDU to filter
DSG data packets for transmission to the Card.

The Host uses DSG classifiers provided to it in the Host section of the DSG_directory() APDU to filter
DSG data packets for DSG Clients on the Host.

The DSG_directory() APDU may define identical filters in the Host Entries loop and Card Entries loop; in
this case the Host consumes the DSG data packets directly in addition to sending these packets to the Card.

The following figure is an example of the initial message exchange between the Card and the Host for Advanced
Mode Operation:

200

CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Host

CableCARD
Device

new_flow_req()

A

DSG

new_flow_cnf()

\J

0x00

inq_DSG_mode()

\j

A

set_DSG_mode()

advanced_DSG_mode or
advanced_DSG_one-way_mode

DSG_message()

\J

2-way ok, UCID

send_DCD_info()

\J

DCD_message

DSG_directory()

A

vct_id_included
directory_version
number_of_host_entries
dsg_client_id
dir_entry_type
ADSG_Filter() or
Ext Ch flow
number_of_card_entries
ADSG_Filter()
number_of_RXFrequency
RXFrequency
initialization_timeout
operational_timeout
two_way_retry_timeout
one_way_retry_timeout

vet_id

DSG_message()

\J

2-way ok, UCID
Ent_one-Way_mode
Dwnstr_Scan_Comp
Dynamic_Chan_Chg_Depart

DSG_directory()

A

As defined

Figure 9.20-1 - Sample Advanced Mode Message Flow

4/18/13

CablelLabs®

201

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

9.20.2 inquire_DSG_mode APDU

The Host SHALL send the inquire_DSG_mode () APDU as defined in Table 9.20-3 to determine the preferred
operational mode for the network, either QSPK mode or DSG mode.

Table 9.20-3 - inquire_DSG_mode APDU Syntax

Syntax No. of Bits Mnemonic
inquire_DSG _mode() {
inquire_DSG_mode_tag 24 uimsbf
length_field() /* always = 0x00 */
3}
inquire_DSG_mode_tag 0x9F9100

9.20.3 set DSG_mode APDU

Upon receipt of the inquire_DSG_mode() APDU, the Card SHALL send the set DSG_mode() APDU as defined in
Table 9.20-4 to inform the Host of the preferred operational mode for the network (either SCTE55_mode,
advanced_DSG_mode or advanced_DSG_one-way_mode). The Card MAY send the set DSG_mode() APDU as an
unsolicited message at any time to the Host after the DSG resource session has been established. The method by
which the Card determines the preferred operational mode is proprietary to the CA/Card system vendor.

In advanced_DSG_mode or advanced_DSG_one-way_mode the Host receives MPEG flows directly via DSG
packets or indirectly thru the Extended Channel.

A Card should support a fall-back operational mode for cases where the Card is unable to obtain the preferred
operational mode or the Host does not support the preferred operational mode. There are two potential default
conditions that should be addressed:

e The Card has not acquired the preferred operational mode from the network due to possible network errors.

e The Card has acquired the preferred operational mode from the network but the Host does not support the
preferred mode.

If the Card has not acquired the preferred operational mode from the network due to possible network errors, the
Card SHALL instruct the Host that the preferred operational mode is SCTE55_mode. If the Host does not support
the preferred DSG operational mode, the Card MAY select any alternative DSG operational mode supported by the
Host.

If the operational mode of the Host is any of the DSG modes, the Host SHALL deny any tune requests for any SCTE
55 operational mode tuners. In any DSG mode, the Host SHALL disable the reverse QPSK transmitter for the
QPSK RDC. Inany DSG one-way modes, the Host SHALL disable the reverse eCM transmitter for the DOCSIS
return channel.

Table 9.20-4 - set_ DSG_mode APDU Syntax

Syntax No. of Bits Mnemonic
set DSG_mode() {
set DSG_mode_tag 24 uimsbf
length_field()
operational_mode 8 uimsbf
3}
set_ DSG_mode_tag 0x9F9101
operational_mode Defines the preferred operational mode of the network.

202 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

0x00 SCTES55_mode - In this mode field, the reverse QPSK transmitter is
under control of the Card through the use of the OOB_TX tune_req()
APDU in the Host Control resource. The Host responds to
OOB_TX tune_req() APDU, operational_mode field set to 0x00, by
tuning the reverse QPSK transmitter to the requested frequency and
coding value (bit-rate and power level). The Card uses the QPSK-RDC
for returning data to the cable headend.

0x01 Reserved

0x02 Reserved

0x03 advanced DSG_mode - In this mode, the Host uses either the eCM as
the transmitter for the reverse path or, if operating as an SEB Client,
uses the home network interface for the reverse path. If the Card
attempts to command the reverse QPSK transmitter with the
OOB_TX tune_req() message while the Host is operating in the DSG
mode, the Host denies the tune request with a “Tuning Denied - RF
Transmitter busy” status. Also, in this mode, the receiver for the QPSK
FDC is not active. If the Card attempts to command this receiver with
the OOB_RX_tune_req() message while the Host is operating in the
DSG mode, the Host denies the tune request with a “Tuning Denied -
Other reasons” status. Setting this mode is equivalent to the state
Notification from the DSG Client Controller: enable upstream
transmitter defined in the DSG specification.
Note: In advanced_DSG_mode, broadcast messages (e.g., SCTE 65 SI
messages, SCTE 18 EAS messages, OC Signaling) MAY be received
by the Host directly via DSG Broadcast Tunnels or MAY be
transmitted to the Host over the Extended Channel, as indicated in the
DSG_directory() APDU.

0x04 advanced_DSG_one-way_mode - In this mode, the reverse QPSK
transmitter and eCM Transmitter are disabled for both the QPSK RDC
and the DOCSIS return channel. Also, in this mode, the receiver for the
QPSK FDC is not active. If the Card attempts to command this receiver
with the OOB_RX_tune_req() message while the Host is operating in
the DSG one-way mode, the Host denies the tune request with a
“Tuning Denied - Other reasons” status. If the Card attempts to
command the reverse QPSK transmitter with the OOB_TX_tune_req()
APDU while the Host is operating in DSG mode, the Host will deny the
tune request with a “Tuning Denied - Other Reasons”. This mode could
be used for network diagnosis in two-way cable systems. Setting this
mode is equivalent to the state: Notification from DSG Client
Controller: disable upstream transmitter defined in the DSG
specification.
Note: Operating the Host in this mode interrupts all two-way IP
connectivity until another mode is selected.
Note: In advanced DSG_one-way_mode, broadcast messages (e.g.,
SCTE 65 SI messages, SCTE 18 EAS messages, CVTs and OCAP
XAITs) may be received by the Host directly via DSG Broadcast
Tunnels or may be transmitted to the Host over the Extended Channel,
as indicated in the DSG_directory() APDU.

05-OxFF Reserved

9.20.4 send_DCD_info APDU

The Host SHALL send the send_DCD_info() APDU as defined in Table 9.20-5 to pass DCD message TLV
information to the Card. In DSG Advanced mode, the Host will reassemble DCD fragments, if necessary, and use
the send_DCD _info () APDU to pass the TLV-encoded data to the Card. If the Host receives the DCD message

4/18/13 CablelLabs® 203

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

from the eCM in 2 or more DCD fragments, the Host SHALL combine all DCD fragments, remove the DOCSIS
MAC management header and the three header bytes (Configuration Change Count, Number of Fragments and
Fragment Sequence Number) from each of the fragments, and send just the TLVs to the Card in the

send_DCD _info() APDU. The Host uses the send_DCD_Info() APDU when the initial DCD for the current
downstream channel is reassembled to send the information to the Card and subsequently when the Configuration
Change Count is modified, in the event of an eCM MAC layer re-initialization or after a change to the Primary
Downstream Channel. The Host SHALL send the send_DCD_Info() APDU to the Card when the initial DCD for a
new downstream channel is reassembled after the eCM acquires a new Primary Downstream Channel. Upon receipt
of the send_DCD _info () APDU, the DSG Client Controller SHALL parse the DCD information, and, if there is any
change to previously delivered filters, the Card SHALL send a new DSG_directory() APDU.

Table 9.20-5 - send_DCD_info APDU Syntax

Syntax No. of bits Mnemonic
send DCD_info O {
send_DCD_info _tag 24 uimsbf
length_field()
DCD_message (&)
b5
send_DCD_info_tag 0x9F9105
DCD_message The TLVs comprising the DCD message as defined in [DSG] in the Summary of
DCD TLV Parameters table.

9.20.5 DSG_directory APDU

The Card SHALL send the DSG_directory() APDU as defined in Table 9.20-6 to provide DSG filter parameters to
the eCM when operating in any Advanced DSG mode and the Host has reported resource DSG (0x00040041). The
DSG_directory() APDU is sent either in response to the send_DCD_info() APDU or a DSG_message() APDU or
may be an unsolicited APDU from the Card. The Card SHALL include in the DSG_directory() APDU all of the
client IDs and associated DSG filters that may be released to the Host as determined by the Card, in addition to DSG
filters associated with data flows to the Card.

The list of DSG filters provided in the DSG_directory() APDU overrides all previously defined DSG filters passed
by the Card.

o If a DSG filter designates any specific layer-3/layer-4 parameters, then the eCM in the Host SHALL use the
dsg_mac_address field and the specific layer-3/layer-4 parameters designated in the DSG filter to identify
matching packets.

e If a DSG filter designates the entire UDP port range, then the eCM in the Host SHALL ignore layer-4
characteristics when identifying matching packets.

e If a DSG filter does not designate specific layer-3/layer-4 parameters (i.e., the DSG filter sets all values of
Source IP address, Destination IP Address to 0, and sets the UDP ports to the entire range), then the eCM in
the Host SHALL use only the dsg_mac_address value to identify matching packets.

When UCID is used as a classifier in a DCD rule, it is passed as a parameter in the DSG_directory() APDU. The
Host uses the UCID acquired from the eCM as a match on the UCID contained in a directory entry to determine
which DSG Filters to forward to the eCM. When no UCID matches occur, it needs to use the entry containing the
default UCID = 0x00 in the DSG_directory() APDU. If the Host has not acquired a UCID in 2-way mode or is
running in one-way mode, it needs to use the entry containing the default UCID = 0x00 in the DSG_directory()
APDU. As noted in [DSG], it is expected that every DCD message that includes DSG Rules using UCID as a
classifier also includes an additional Rule, of lower priority, that does not use UCID as a classifier. If the DCD
message includes a DSG rule that does not use UCID as a classifier, the Card SHALL include this DSG Rule as the
directory entry containing the default UCID = 0x00. UCID operation is detailed in the following flow chart:

204 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Host connected to
RF plant

set_DSG_mode()
setting the mode to
advanced DSG.

v

Host acquires DSG
DOCSIS Channel

v

DSG_Message()
with UCID, If known

v

Send_DCD_info()

v

DSG_directory() ‘

One-way mode or
unknown UCID?

NGO

v
Host uses

DSG_directory() to find
_ 40 <

a tunnel(s) with UCID
acquired from eCM

Host uses

DSG_directory() to find Ye
: ——
a tunnel(s) with UCID

setto O

Opens all Broadcast
Tunnels with UCID set | NO
to 0 (default) '

Tunnel found with
assigned UCID

Yes

v

Opens all Broadcast
< NGO Tunnels with UCID set
to acquired UCID

Host connected and
acquiring Broadcast
Tunnels

Host Acquires or
Changes UCID
(changes from one-
way to two-way or new
UCID)

Figure 9.20-2 - UCID Flow Example from Host Perspective

If the vct_id_included field is set to 1, the Card SHALL provide a vct_id in the DSG_directory() APDU sent to the
Host. This vct_id overrides any previously sent vct_id unless the vct_id is sent by the feature_parameters() APDU.
When the Host is reinitialized it will revert to the default vct_id value of zero (0). The Card resends the
DSG_directory() APDU to set the vct_id after the Host is reset and the vct_id value is known. As detailed in the

following flow chart:

4/18/13 CablelLabs® 205

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

ost connected to RF
in Advanced DSG

Mode set to a default
VCT _ID of 0x00

Host begins
filtering SCTE65
Broadcast Tunnel

using VCT ID =
0x0000

|A
<

Host on plant filtering
VCT_ID of default
value

VCT_ID sent to
Card from Headend

No

DSG directory()
setting VCT_ID to
another value

Card uses vctid()
Generic Feature

feature_parameterg)
setting VCTID to
another value

Host on plant filtering

VCT_ID of assigned
value

Figure 9.20-3 - VCT_ID Flow from Host Perspective

In any Advanced DSG mode, the Host eCM SHALL forward IP packets whose MAC destination address and layer-
3/layer-4 parameters match any classifiers passed in the DSG_directory() APDU. The Host will determine which
DSG filters to forward to the eCM based on dsg_client_id specified in the Host Entries section of the
DSG_directory() APDU. The Host will forward to the eCM all DSG Filters specified in the Card Entries section of
the DSG_directory() APDU.

The dsg_client_id is used to designate the kind of DSG Client associated with the DSG filter in the
number_of host_entries loop if dir_entry_type = 0x01.

A dir_entry_type equal to 0x01 in the number_of _host_entries loop indicates DSG filters associated with a
DSG Client ID that is available to the Host directly.

The Host SHALL terminate all packets which match the ADSG _filter() settings sent in the DSG_directory()
APDU if the corresponding dir_entry_type is equal to 0x01.

The Host may not forward a particular DSG Filter to the eCM if the device does not recognize or is not
interested in the dsg_client_id associated with the ADSG filter().

206

CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

If dir_entry_type = 0x02, the data type associated with the dsg_client_id is a signal to the Host that this
Broadcast data type will be available over an Extended Channel MPEG flow and is not delivered directly in
a DSG Broadcast tunnel. Note that the DCD message delivered to the Card is not required to include a DSG
Broadcast Client ID (TLV 50.4.1) corresponding to the data type indicated by dir_entry type = 0x02 and
the associated dsg_client_id. It is the sole responsibility of the Card to determine whether the Host receives
Broadcast data types directly in DSG tunnels or over the Extended Channel.

The Host SHALL forward to the Card all packets which match the ADSG_filter() settings defined in the
number_of card_entries loop.

When operating in any Advanced DSG mode the Card MAY provide up to eight unique Ethernet MAC
addresses along with a set of DSG classifiers for its use.

The Host SHALL NOT re-establish DSG filters in the eCM when the list of DSG filters in the
DSG_directory() APDU has not changed. *

The Host may receive a DSG Directory message that defines Host Entries that contain multiple instances of SCTE-
65 Broadcast Tunnel ADSG Filters. The Host is not expected to consume all data from the multiple instances of
SCTE-65 Broadcast Tunnels, as there may be multiple instances of similar tables (e.g., a Network Text Table may be
present in each SCTE-65 Broadcast Tunnel, where each table is different). In such a case, the Host is required to
parse the multiple tunnels in search of the tunnel that contains the Virtual Channel Table as defined by the applicable
vct_id (i.e., Card provided vct_id or default as per Figure 9.20-3.

The Host SHALL open all SCTE-65 Broadcast Tunnels listed in the DSG_directory() APDU, if the

number_

of _host_entries loop defines multiple instances of dsg_client_id of 0x01 0x02 0x00 0x01.

The Host SHALL parse the multiple SCTE-65 Broadcast Tunnels for the presence of the Virtual Channel
Table with the applicable vct_id (either default or provided by the Card) and use this table for channel
navigation functions.

The Host SHALL close all SCTE-65 Broadcast Tunnels that do not contain the Virtual Channel Table with
the applicable vct_id.

! The directory_version number includes changes to the VCT_ID, so it is not an exclusive indicator of whether the DSG filters
have changed.

4/18/13

CablelLabs® 207

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Table 9.20-6 - DSG_directory APDU Syntax

Syntax No. of Mnemonic
Bits
DSG_directory() {
DSG_directory _tag 24 uimsbf
length_field()
reserved 7 bslbf
vct_id_included 1 bslibf
directory_version 8 uimsbf
number_of _host_entries 8 uimsbf
for (i=0; i< number_of _host _entries; i++) {

dsg_client_id 8*N uimsbf

dir_entry_type 8 uimsbf

if (dir_entry_type == 0x01){

/** Direct Termination DSG Flow **/

ADSG_Filter()
UCID 8 uimsbf

}

if (dir_entry_type == 0x02){

/** Extended Channel MPEG Flow **/
number_of card_entries 8 uimsbf

for (i=0; i< number_of _card entries; i++) {

ADSG_Filter()
number_of RXFrequency 8 uimsbf

for (i=0; i<number_of RXFrequency; i++) {

RXFrequency 32 uimsbf
initialization_timeout 16 uimsbf
operational_timeout 16 uimsbf
two_way retry timeout 16 uimsbf
one_way_retry_timeout 16 uimsbf
if (vet_id_included == 0x01) {

vct_id 16 uimsbf
}
3}
DSG_directory_tag 0x9F9104
vct id_included Indicates if the vct_id is included in this message. The vct_id is defined in

[SCTE®GS5].
Ob The vct_id is not included in this message (No change to last vct_id
sent to Host, if any).
1b The vet_id is included in this message.
directory_version A module 256 counter that changes anytime any of the parameters in the
directory are modified from a previous directory.
The Card SHALL change the directory _version in the DSG_directory() APDU anytime any of the parameters in the
directory are modified from a previous directory.

If a directory is received from the Card which has the same directory_version number as the previous directory
received from the Card in the DSG_directory() APDU, the Host MAY treat the new directory as identical to the
previous directory and not process it.

The Card MAY send a directory in the DSG_directory() APDU with a different directory_version even if the
contents are the same as the previous directory.

208 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

number_of host_entries

dsg_client_id

dir_entry_type

The number of directory entries for Host use provided in this message.

The TLV-encoded DSG Client ID value associated with the directory entry. The
TLV encoded values conform to Client ID values allowed by [DSG]. A DSG
Client ID type is always in the context of type 50.4.x, where X varies depending
on the type of Client ID (see [DSG]). The encoding of each instance of the
dsg_client_id field in this message has an implicit prefix type of 50.4, which is
not present in the message and explicitly begins with the appropriate value for X,
followed by the appropriate length and value. Example Client ID encodings for
the dsg_client_id field are:

Broadcast Client ID for [SCTE65] = 0x01 0x02 0x00 0x01
Broadcast Client ID for SCTE 18 = 0x01 0x02 0x00 0x02
Broadcast Client ID for XAIT = 0x01 0x02 0x00 0x05

Well-Known MAC Address Client ID
= 0x02 0x06 0xAA 0xBB 0xCC 0xDD OXEE OxFF
CAS Client ID 0x0A0B = 0x03 0x02 0x0A 0x0B

Application Client ID 16 = 0x04 0x02 0x00 0x10

Indicates the acquisition method for data associated with the client.

0x01 DSG Filter

0x02 Extended Channel MPEG Flow. The data flow associated with the
client ID is accessed via Extended Channel MPEG Flow. The use of
this type of entry is only defined for the Broadcast Client I1Ds for
SCTE-65, SCTE-18, CVT and OCAP XAIT.

0x03-0xFF Reserved

The Card SHALL NOT provide a directory with a Client ID value being associated with both a Host-terminated
DSG Filter and an Extended Channel MPEG Flow.

UcCib

number_of card_entries

number_of RXFrequency
RXFrequency

initialization_timeout

operational _timeout

two_way_retry_timeout

Upstream Channel ID - The UCID value contained in the DSG Rule, otherwise
set to 0x00. Note: When a Host is running in one-way mode or 2-way mode, but
has not acquired a UCID, the Host will use the default value of 0x00. When a
DCD rule is defined using UCID, a default rule not containing UCID should also
be defined as defined in [DSG].

The number of directory entries provided in this message describing DSG
packets to be forwarded to the Card.

The number of TLV channel list entries in this message.
The RXFrequency as defined in [DSG].

DSG Initialization Timeout (Tdsgl). The timeout period for the DSG packets
during initialization as defined in [DSG]. In the DSG_directory () APDU, a
value of zero in the initialization_timeout field indicates that the default value as
defined in [DSG] is used.

DSG Operational Timeout (Tdsg2). The timeout period for DSG packets during
normal operation as defined in [DSG]. In the DSG_directory () APDU, a value
of zero in the operational_timeout field indicates that the default value as defined
in [DSG] is used.

DSG Two-Way Retry Timer (Tdsg3). The retry timer that determines when the
DSG eCM attempts to reconnect with the CMTS as defined in [DSG]. The valid
range of values is 0 to 65535. A value of zero (0) indicates that the Host should
continuously retry two-way operation.

4/18/13

CablelLabs® 209

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

one_way_retry_timeout

vct_id

DSG One-Way Retry Timer (Tdsg4). The retry timer that determines when the
DSG eCM attempts to rescan for a downstream DOCSIS channel that contains
DSG packets as defined in [DSG]. The valid range of values is 0 to 65535. A
value of zero (0) indicates the Host should immediately begin downstream
scanning upon a Tdsg2 timeout.

The vct_id to be used by the host to filter on the correct virtual channel map.

Table 9.20-7 - ADSG_Filter Syntax

Syntax No. of Mnemonic
Bits
ADSG_Filter O {
tunnel _id 8 uimsbf
tunnel_priority 8 uimsbf
dsg_mac_address 48 uimsbf
source_ IP_address 32 uimsbf
source_IP_mask 32 uimsbf
destination_IP_address 32 uimsbf
destination_port_start 16 uimsbf
destination_port_end 16 uimsbf
}

tunnel_id

tunnel_priority
dsg_mac_address

source_IP_address

source_IP_mask

destination_IP_address

destination_port_start

destination_port_end

9.20.6 DSG_message APDU

An identifier for the tunnel. This field should match the DSG Rule ID received
in the DCD message for tunnel identifier. The tunnel_id is used by the eCM to
populate the dsglfStdTunnelFilterTunnelld MIB object.

Indicates the priority of the Tunnel.
The DSG MAC address associated with the DSG filter.

The IP source address of the DSG filter to be used in layer 3 filtering. A value of
all zeros implies all values of SourcelP Address, i.e., this parameter was not
specified in the DCD message.

The source IP mask of the DSG filter to be used in layer 3 filtering. A value of
all ones implies that all 32 bits of the Source IP Address are to be used for
filtering. When source_IP_address is present in the DCD message and
source_IP_mask is not present, a value of all ones is to be used for
source_IP_mask.

The IP destination address of the DSG filter to be used in layer 3 filtering. A
value of all zeros implies all values of the Destination IP Address, i.e., this
parameter was not specified in the DCD message.

The beginning of the range of UDP Destination Port numbers of the DSG filter.
The end of the range of UDP Destination Port numbers of the DSG filter.

If the operational mode is any advanced DSG mode, the Host SHALL use the DSG_message() APDU as defined in

Table 9.20-8 to indicate

e the eCM has established two-way communication and is passing the UCID of the upstream channel.

e the eCM cannot forward 2-way eSTB/Card traffic due to restrictions.

e the eCM has entered One-Way mode.

e the eCM has done a complete downstream scan without finding a DCD message.

210

CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

e the eCM has received a DCC-REQ message and is preparing to execute a Dynamic Channel Change.

e anevent has occurred that required an eCM MAC layer re-initialization.

Table 9.20-8 - DSG_message APDU Syntax

Syntax No. of bits Mnemonic
DSG_message() {
dsg_message_tag 24 uimsbf
length_field()
message_type 8 uimsbf
if (message_type == 0x01) {
ucib 8 uimsbf
if (message_type == 0x04) {
init_type 8 uimsbf
ifT (message_type == 0x07) {
disabled_forwarding _type 8 uimsbf
}
b5

dsg_message_tag

message_type
0x00
0x01

0x02

0x03

0x04

0x05

0x06
0x07

0x08-0xFF

0x9F9103

Indicates the purpose of the message:

Reserved

2-way OK, UCID - the Host has established two-way communication
and is providing the Card with the channel ID (UCID) of the upstream
channel.

Advanced Mode: The Card uses this value for filtering of various DSG
rules as applicable.

Entering_One-Way_mode - Sent from the Host to the Card as an
indicator that a timeout or other condition has forced the eCM into One-
Way operation.

Downstream Scan Completed - Sent from the Host to the Card after a
complete downstream scan as an indicator that the eCM,

Advanced Mode: Has been unable to identify a downstream channel
with a DCD message.

Dynamic Channel Change (Depart) - the eCM has transmitted a DCC-
RSP (Depart) on the existing upstream channel and is preparing to
switch to a new upstream or downstream channel. After channel
switching is complete, the eCM transmits a DCC - RSP (Arrive) to the
CMTS unless the MAC was reinitialized. In either case the eCM will
resend DSG_message() APDU with message_type 0x01 “2-way OK,
UCID” to indicate the upstream has been established.

eCM Reset - An event has occurred that requires an eCM MAC layer
re-initialization. The Card needs to re-establish DSG tunnel filtering by
sending the DSG_directory() APDU after it receives message_type
0x01 2-way OK, UCID. The DSG tunnel MAC addresses and DSG
classifiers are obtained by parsing the next received DCD message.
Reserved

eCM cannot forward 2-Way traffic -the eCM is in the Operational state,
but cannot forward 2-Way traffic because of provisioning limitations.
Reserved.

4/18/13

CablelLabs® 211

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

UCID the channel ID of the DOCSIS channel that the Host is using for upstream
communication.

init_type Specifies what level of reinitialization the eCM will perform, if any, before
communicating on the new channel(s), as directed by the CMTS.

0x00 Reinitialize the MAC.

0x01 Perform broadcast initial ranging on new channel before normal
operation.

0x02 Perform unicast initial ranging on new channel before normal operation.

0x03 Perform either broadcast initial ranging or unicast initial ranging on
new channel before normal operation.

0x04 Use the new channel(s) directly without re-initializing or initial ranging.

0x05 Reinitialization method not specified.

0x06-0xFF Reserved.

disabled_forwarding _type Specifies what type of eCM provisioning limitations impact eCM 2-Way
forwarding. Values below are bit fields that can be ORed to indicate multiple
conditions.

0x01 Network access disabled (NACO=0)
0x02 Max CPE limit exhausted
0x04 Forwarding interface administratively down

Informative Note: Dynamic Channel Change operations can cause a DSG eCM to move to a new upstream and/or
downstream channel(s) either through manual intervention at the CMTS or autonomously via a load-balancing
operation. message_type = 0x01 and 0x04 allow the DSG Client Controller to be made aware of the initiation and
progress of DCC operations. Acting upon these messages, the Client Controller can provide the proper reaction to
upstream and downstream channel changes; in particular, the Client Controller should take action to make sure it still
has a valid DSG channel after the DCC operation has completed.

9.20.7 DSG_error APDU

The Card SHALL use the DSG_error() APDU as defined in Table 9.20-9 to inform the Host of a byte count error or
an invalid DSG channel.

Table 9.20-9 - DSG_error APDU Syntax

Syntax No. of Bits Mnemonic
DSG_error() {
DSG_error_tag 24 uimsbf
length_field()
error_status 8 uimsbf
b5
DSG_error_tag 0x9F9102
error_status Indicates the type of error that occurred

0x00 Byte count error - The Card did not receive the same number of bytes in
the DSG packet as was signaled by the Host.

0x01 Invalid_DSG_channel -
Advanced Mode: The Current DCD message transmitted to the Card is
not valid or does not contain the requested DSG tunnel(s). The Host
then acquires a new DCD on a different downstream and passes this
DCD to the Card. Sent from the Card to the Host during initial tunnel
acquisition or when a DCD no longer contains a required tunnel.

212 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

0x02-0xFF Reserved

9.21 Headend Communication Resource

The Headend Communication Resource is intended for the transfer of specific control messages from the Headend to
the Host through the Card. Support for the Headend Communication Resource is mandatory by the Card in both M-
Mode and S-Mode. Support for the Headend Communication Resource is mandatory in the Host. The Card SHALL
establish at least one session for the Headend Communication Resource using the identifier defined in Table 9.21-1.

9.21.1 Headend Communication Resource Identifier

The Host SHALL support the Headend Communication Resource, using the resource identifier as defined in Table
9.21-1.

The Card SHALL support the Headend Communication Resource using the resource identifier as defined in Table
9.21-1.

Table 9.21-1 - Headend Communication Resource (Type 1 Version 1)

Resource Mode Class Type Version Identifier (hex)

Headend Communication S-Mode/M-Mode 44 1 1 0x002C0041

9.21.2 Headend Communication APDUs

The Headend Communication Resource APDU messages are as follows:

Table 9.21-2 - Homing Objects

Direction
APDU tag Tag value Resource Host < Card
host_reset_vector 0x9F9EQ0 Headend Communication <
host_reset_vector_ack 0x9F9E01 Headend Communication >

9.21.3 host_reset_vector

The Card SHALL send the host_reset_vector() APDU as defined in Table 9.21-3 to the Host to deliver a recovery
message. The Card generally obtains the host_reset_vector() in its entirety from the Cable Headend. When this is
not possible, the Card may choose to construct the vector by itself, however, only by using the information received
from the Headend through the various control messages.

4/18/13 CablelLabs® 213

OC-

SP-CCIF2.0-126-130418 OpenCable™ Specifications

Table 9.21-3 - host_reset_vector (Type 1, Version 1)

Syntax No. of Bits Mnemonic

host_reset_vector(){
host_reset vector_tag
length_field()
transaction_id
reset_vector(){

}
+

N
D

uimsbf
uimsbf

reserved

delay

reset_field(){
reserved
reset_embedded _cable_modem
reset_security_element
reset_host
reset_external_devices
reserved
reset_all

0x00...
uimsbf

0x00

0x0

PwrkrRrPro 0o o

}
restart_field({
reserved
restart_ocap_stack
restart_all

0x00

PR o

ks
reload_application_field(){
reserved
reload_all _ocap_apps
reload_ocap_stack

0x00

PR o

reload firmware_field(){
reserved 7 0x00
reload_host_firmware

}

storage_clearing_field(){
reserved
clear_persistant_gen_feature_params
clear_org.dvb.persistant fs
clear_cached_unbound_ocap_apps
clear_registered_libraries
clear_persistant_host_memory
clear_security _element _passed values
clear_non_asd_dvr_content
clear_asd _dvr_content
clear_network dvr_content
clear_media volumes_int_hdd
clear_media volumes_ext_hdd
clear_GPFS_internal_hdd
clear_GPFS_external _hdd
clear_all_storage

}

=

0x000

PRRPRPRRRRPRRPRRPRRPRRRRE

host_reset_vector_tag 0x9F9E00

transaction_id An 8-bit value, generated by the Card, to be returned in the corresponding

host_reset_vector_ack() from the Host. The transaction_id allows the Card to
match the Host’s acknowledgement with a specific host_reset_vector() that it
transferred. The Card should increment the value, modulo 255, with every
host_reset_vector() it sends.

214

CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

delay An 8-bit unsigned integer representing the number of seconds the Host waits
before processing and acting on the received Reset Vector.

host_reset_vector() A 128-bit field used to transfer a reset vector from the Card to the Host. The
definitions for the various fields are provided in the CableLabs Host Reset
Vector Recommended Practice document.

The Host SHALL wait the amount of time indicated in the delay field in the host_reset_vector() APDU before
processing and acting upon the message. The only field in the host_reset vector() APDU that the Host is required to
act upon SHALL be the reset_host bit in the reset_field() group.

If the Host receives another host_reset_vector() APDU before the delay expires, it SHALL disregard the current
message and restart the delay according to the new message.

9.21.4 host_reset_vector_ack

The Host SHALL reply to the host_reset_vector() APDU using the host_reset_vector_ack() APDU as defined in
Table 9.21-4 before performing any other operation.

Table 9.21-4 - host_reset_vector_ack (Type 1, Version 1)

Syntax No. of Bits Mnemonic

host_reset_vector_ack(){

host_reset_vector_ack_tag 24 uimsbf

length_field()

transaction_id 8 uimsbf
3}
host_reset_vector_ack_tag 0x9F9E01
transaction_id The transaction_id value received in the corresponding host_reset_vector()

APDU from the Card.

9.22 Host Addressable Properties

The Host Addressable Properties resource is intended to be used to coordinate values known by the Card operating
in M-Mode associated with a Host device with values associated with an addressable XAIT or AIT, in order to target
an application to a specific Host or group of Hosts.

An XAIT or AIT may include one or more addressable attributes that are signaled as security system attributes in a
host attribute comparison object contained in the addressing descriptor. Support for the Host Addressable Properties
resource is optional for the Card operating in M-Mode. The Card MAY support Host Addressable Properties
resource as defined in Table 9.22-1. The Host device will send a host_properties_req() APDU after it receives an
XAIT or AIT addressable attribute that is marked as a security attribute. The Host SHALL support the Host
Addressable Properties resource as defined in Table 9.22-1. The Host SHALL disregard XAIT or AIT addressable
attributes that are marked as security system attributes if the Card has not opened a session for the Host Addressable
Properties resource.

4/18/13 CablelLabs® 215

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Headend Card Host

host_properties_req

Il

host_properties_reply

Figure 9.22-1 - Host Addressable Properties APDU Exchange

Table 9.22-1 - Host Addressable Properties Resource

Resource Mode Class Type Version Identifier (hex)

Host Addressable Properties M-Mode 256 1 1 0x01000041

9.22.1 Host Addressable Properties APDUs

The Host Addressable Properties Resource consists of the following two APDUSs.

Table 9.22-2 - Host Addressable Properties APDUs

Direction
APDU Name Tag Value Resource Host < Card
host_properties_req 0x9F9F01 Host Addressable Properties -
host_properties_reply 0x9F9F02 Host Addressable Properties <«

9.22.1.1 host_properties_req() APDU

The Host SHALL send host_properties_req() APDU as defined in Table 9.22-3 if a session to the Host Addressable
Properties resource session was opened and it determines an XAIT or AIT contains one or more addressable
attributes that are marked as a security attribute. See [OCAP] chapter 11 Application Signaling for XAIT definition.

216 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Table 9.22-3 - host_properties_req APDU syntax

Syntax No. of Bits Mnemonic
host_properties_req() {
host_properties_req_tag 24 uimsbf
length_field()
number_of properties 8 uimsbf
for (i=0; i<number_of properties; i++) {
property key length 8 uimsbf
for (J=0; j<property_key length; j++) {
property key byte 8 uimsbf
}
}
3}
host_properties_req_tag 0x9F9F01
number_of properties The number of properties queried by the Host device.
property_key length Length of the property key char field.
property key byte The property_key field of the addressable property.

9.22.1.2 host_properties_reply() APDU

The Card SHALL send the host_properties_reply() APDU as defined in Table 9.22-4 in response to a
host_properties_req() APDU. The Card SHALL compare the property key fields in the host_properties_req()
APDU to determine if it supports any of the requested properties. For each property key entry in a
host_properties_req() APDU, the Card SHALL include an identical property key entry in the
host_properties_reply() APDU. If a match is found for a property key entry in the host_properties_req() APDU, the
Card SHALL include an entry in the host_properties_reply() APDU with the property value corresponding to the
property key. If a match is not found for a property key entry in the host_properties_req() APDU, the Card SHALL
include an entry in the corresponding host_properties_reply() APDU with the property_value_length set to 0.

Table 9.22-4 - host_properties_reply APDU syntax

Syntax No. of Bits Mnemonic
host_properties_reply() {
host_properties_reply_tag 24 uimsbf
length_field()
number_of properties 8 uimsbf
for (i=0; i<number_of properties; i++) {
property key length 8 uimsbf
for (J=0; j<property key length; j++) {
property_ key byte 8 uimsbf
}
property_value_length 8 uimbsf
for (J=0; j<property_ value_length; j++) {
property value byte 8 uimbsT
}
}
3}
host_properties_reply_tag 0x9F9F02

4/18/13 CablelLabs® 217

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

number_of properties The number of properties queried by the Host device.

property _key length Length of the property _key_byte field.

property key byte The property_key field of the addressable property in UTF-8 format.
property_value_length Length of the property_value_byte field.

property value_byte The property_value field of the addressable property in UTF-8 format.

9.23 Card MIB Access

The Card MIB Access resource allows the Host to access private MIB objects on the Card. Support for this Resource
is mandatory for a Host device and optional for Cards.

The Host SHALL provide the Card MIB Access Resource using identifier(s) as defined in Table 9.23-1.
The Host SHALL keep the Card MIB Access Resource session open at all times during normal operation.

The Card MAY open a single session of the Card MIB Access Resource using identifier(s) defined in Table 9.23-1
after the CA Support Resource session initialization has completed.

If the Card opens the Card MIB Access Resource, it SHALL keep the session open at all times during normal
operation.

When the SNMP agent on the Host receives an SNMP message from the DSG or FDC interface containing one or
more OIDs that reside under the subtree defined by the response in get_rootOid_req(), it checks the value of the
Host MIB Card MIB Access Control Object (ocStbHostCardSnmpAccessControl). If the Control Object is set to
TRUE, the SNMP agent generates an SNMPv2 message for each OID under the CableCARD subtree as shown in
Table 9.23-3 and sends the request(s) to the Card via the snmp_req() APDU. The SNMP messages in the
snmp_req() APDU must be in SNMPv2c format as specified in [RFC1901] and [RFC1902],

If the Card MIB Access Control Object is set to FALSE, the Host SNMP Agent SHALL ignore the Card OID
subtree defined in the get_rootOid_req() APDU and reject any request for OIDs under this subtree with the SNMP
exception response equivalent to the SNMPv2 "noSuchObject".

The Host will only send snmp_req() APDUs to the Card containing SetRequest, GetRequest, and GetNextRequest
PDUs.

The Host may receive SNMP messages containing mixed OID requests, which are defined as messages specifying
some OIDs destined for the Host and other OIDs destined for the Card.

The Host will parse mixed OID requests and generate individual SetRequest, GetRequest or GetNextRequest
snmp_req() APDUs containing only those OIDs in the Card subtree, when the Card MIB Access Control Object is
set to TRUE.

The Host will convert a GetBulkRequests into a series of one or more GetNextRequests snmp_req() APDUs
containing only those OIDs in the Card subtree when the Card MIB Access Control Object is set to TRUE.

The Host SHALL parse the snmp_reply() APDU for the OID values and error indications to use in the SNMP
Agent's response to the initial request.

218 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Headend

SetRequest,
GetRequest,
GetNextRequest or
GetBulkRequest

Host Card

Response PDU

snmp_req() »

L snmp_reply()

Figure 9.23-1 - Card MIB Access APDU Exchange

Table 9.23-1 - Card MIB Access Resource

Resource Mode Class Type Version Identifier (hex)
Card MIB Access M-Mode 90 1 1 0x005A0041
9.23.1 Card MIB Access APDUs
The Card MIB Access Resource consists of the following APDUs.
Table 9.23-2 - Card MIB Access APDUs
APDU Name Tag Value Resource Direction
g Host «» Card
snmp_req() 0x9FA000 Card MIB Access -
snmp_reply() 0x9FA001 Card MIB Access <«
get_rootOid_req() 0x9FA002 Card MIB Access -
get_rootOid_reply() 0x9FA003 Card MIB Access <«

9.23.1.1

snmp_req() APDU

The Host SHALL send the snmp_req() APDU as defined in Table 9.23-3 with an OID that falls within the Card’s
subtree, as determined from the get_rootOid_req() APDU, to obtain MIB information from the Card. The Host
SHALL wait for snmp_reply() APDU from the Card before sending another snmp_req() APDU.

4/18/13

CablelLabs®

219

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Table 9.23-3 - snmp_req APDU syntax

Syntax No. of Bits Mnemonic

snmp_req() { .
snmp_req_tag 24 uimsbf

length_field(Q
for (i=0; i< N; i++) {

snmp_message 8 uimsbf
}
3}
snmp_req_tag 0x9FA000
snmp_message An SNMP message with an OID that falls within the subtree belonging to the Card.

SetRequest, GetRequest, and GetNextRequest are the only allowable messages.

9.23.1.2 snmp_reply() APDU
The Card SHALL send the snmp_reply() APDU as defined in Table 9.23-4 in response to a snmp_req() APDU.

Table 9.23-4 - snmp_reply APDU syntax

Syntax No. of Bits Mnemonic

snmp_reply() {
snmp_reply_tag 24 uimsbf

length_field()
for (i=0; i< N; i++) {

snmp_response 8 uimsbf
}
3}
snmp_reply_tag 0x9FA001
snmp_response The Response PDU to the snmp_message contained in the snmp_req() APDU.

9.23.1.3 get_rootOid_req()

If the Card has opened a session to the Card MIB Access resource, the Host sends a get_rootOid_req() APDU as
defined in Table 9.23-5 to the Card.

Table 9.23-5 - get_rootOid_req() APDU Syntax

Syntax No. of Bits Mnemonic
get _rootOid_req() {
get _rootOid_req_tag 24 uimsbf

length_field() /* always = 0x00 */
b5

get_rootOid_req_tag 0x9FA002

9.23.1.4 get_rootOid_reply()

The Card SHALL send the get_rootOid_reply() APDU, as defined in Table 9.23-6, in response to the
get_rootOid_req () APDU from the Host.

220 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

The Card SHALL provide the root OID that provides a top level OID for all supported MIB objects in the
get_rootOid_reply() APDU.

It is expected that the root OID will be in the vendor's SNMP private enterprise subtree.

Table 9.23-6 - get_rootOid_reply() APDU Syntax

Syntax No. of Bits Mnemonic
get_rootOid_reply(Q {
get_rootOid_reply_tag 24 uimsbf

length_field()

for (1=0; i< N; i++) {
oid_byte 8 uimsbf

}

bs

get_rootOid_reply tag O0x9FA003
oid_byte Each oid_byte is an octet of ASCII characters that define the root OID of the Card.

4/18/13 CablelLabs®

221

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

10 EXTENDED CHANNEL OPERATION

The extended channel provides a data path between the Card and the Host used for network data. There are two
possible states: SCTE 55 Mode (Card contains cable modem); and Advanced Mode DSG (Host device contains an
eCM and processes network data directly or uses the extended channel for network data).

10.1 Internet Protocol Flows

The Extended Channel supports delivery of IP packets across the Card interface. Both unicast (point-to-point) and
multicast (point-to-multipoint) addressing are supported by this protocol. If the Host is in OOB mode, then the Card
is expected to service the IP flow via utilization of the Host’s RDC and supply the Host with an IP address. On
request of a “new flow request” from the Host, the Card will respond to the request to open the flow by obtaining an
IP address for use by the Host. That IP address is returned in the “new flow confirmation” message.

Note (Informative): The Card is not required to grant a request for service type IP Unicast when requested by the
Host.

In DSG mode, the Card resides at the Network Layer and the Host will utilize its eCM or home network interface, if
operating as an SEB Client, to provide the Data Link Layer to the underlying DOCSIS network. When the Card
wishes to utilize the DOCSIS network to transfer IP datagrams upstream via an IP_flow, it must first submit a “new
flow request” to the Host to establish an IP flow to transfer datagrams between the Card and the Host’s eCM
interface (or home network interface, if the Host is operating as an SEB Client). The Card will submit its MAC
address in its request to the Host for an IP flow.

If the Host grants the new IP flow request, then the Host utilizes DHCP to acquire an IP address for the Card, and
sends this information, along with the DOCSIS maximum transmission unit (MTU) (1500 bytes for IP datagrams) to
the Card in a new flow confirmation. The Host now opens an IP flow to the Card over the Extended Data Channel.

The Host utilizes the MAC address provided in the Card’s IP flow request to filter Ethernet frames from the eCM
that are intended for the Card. The Host extracts all unicast IP datagrams from Ethernet frames addressed to the
Card’s MAC address and forwards them over the Extended Channel to the Card.

The Host utilizes the Extended Channel’s IP flow to forward IP datagrams it receives over the eCM interface or
home network interface, if the Host is operating as an SEB Client, on behalf of the Card. The Host does not forward
to the Card any datagrams received over other interfaces. When the Host is operating as an SEB Client, it only
forwards to the Card datagrams received over that particular home network interface; all other packets from any
other interface are to be discarded (e.g., if the Host is using the Ethernet port for SEB, then all packets addressed to
the Card received from the USB port would be discarded).

The Host forwards all IP datagrams received from the Card to the eCM interface or home network interface, if
operating as an SEB Client. The Host does not forward any IP datagrams received from the Card to any other
interface, including but not limited to: IEEE-1394, Ethernet, USB, 802.11a/b/g/n/x, Multimedia Over Coax Alliance
(MoCA), etc. when it is not operating as an SEB Client. When the Host is operating as an SEB Client, it only
forwards IP datagrams received from the Card to the interface being used for SEB (e.g., if the Host is using the
Ethernet port for SEB, then all packets received from the Card are only forwarded to the Ethernet port), The Host
resolves the destination MAC address of the IP datagrams that it receives from the Card and applies the appropriate
MAC addresses to the Ethernet frames it sends upstream.

If an established IP type of flow becomes unavailable for any reason, the device that has granted the flow is required
to report that fact to the one that has requested the flow. The “lost flow indication” transaction is used to report this
type of event. One example case where a flow may become unavailable is due to a change in the state of the eCM
that may have resulted from a change via SNMP to the eCM’s operational state. Another example case where the
flow may become unavailable is due to the SEB Server dropping from the home network, which is only applicable
when the Host is operating as an SEB Client.

222 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

10.2 Socket Flows

When operating in DSG mode, an application on the Card has the ability to ask the Host to open a socket connection
to communicate with a remote host. The socket connection can be either TCP or UDP. The Card has the option of
requesting a specific local port on the Host or allowing the Host to choose an appropriate port for the local socket.
The Card can open a socket connection instead of an IP flow; therefore, the Card does not need to obtain an IP
address.

The Card resides at the Application Layer and the Host will utilize its eCM or home network interface, when
operating as an SEB Client, to provide the Data Link Layer to the underlying DOCSIS network. The Host will use its
IP stack to provide network layer services for the application on the Card. When the Card wishes to utilize the
DOCSIS network to transfer IP datagrams upstream via a socket connection, it SHALL first submit a “new flow
request” to the Host with a service type of 0x04 - socket.

The Host utilizes the socket opened in the socket flow request to transfer data between the remote destination and the
Card. The Host extracts data from the IP datagrams bound for the Card’s socket and forwards that data across the
Extended Channel to the Card.

The Host forwards all data received from the Card over a socket flow to the eCM interface or home network
interface, when operating as an SEB Client. The Host does not forward any IP datagrams received from the Card to
any other interface, including but not limited to: IEEE-1394, Ethernet, USB, 802.11a/b/g/n/x, Multimedia Over Coax
Alliance (MoCA), etc., when it is not operating as an SEB Client. When the Host is operating as an SEB Client, it
does not forward any IP datagrams received from the Card to any interface other than the home network interface
(e.g., if the Host is using the Ethernet port for SEB, then all IP datagrams received from the Card are only forwarded
to the Ethernet port).

If an established socket flow becomes unavailable for any reason, the Host SHALL report this to the Card using the
lost_flow_ind() APDU. One example is when the remote Host in a TCP connection closes its socket.

10.3 Flow Examples—QPSK Modem Case

Figure 10.3-1 diagrams a CHI in which four flows have been set up. In this example case, the Card provides a full-
duplex modem function for the benefit of the Host (as well as itself).

In the figure, the rectangles with rounded corners represent applications. In this example, the Host has a Navigation
application that receives Service Information data on the Extended Channel via the Card interface (#1). The Host has
opened up three flows to receive MPEG data from the Card, and has supplied different PID values for filtering for
each. The navigation function (#1) uses two Sl flows in the example, and another application (#2) uses the third
flow. The Host may have a Video On Demand (VOD) application (#3).

As shown in Figure 10.3-1, three flows delivering MPEG table sections are required. Flows that may be available at
the option of the supplier of the Card are shaded gray. Both the Card and the Host are required to support at least one
IP_U flow, but it is up to the applications in the Card and the Host as to whether an IP_U flow is opened.

4/18/13 CablelLabs® 223

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Host
VOD l
< > QPSK Rx Nav. sh -
) 4
QPSK Tx IP/Port Routing
A
| = | =
S S
© ©
8I %l >,
)) a
L L
o o
= =
Card
CA RPT l
A A
) 4 v A
-

Transport Processing, Filtering and Routing

Figure 10.3-1 - Flow Examples - QPSK Modem Case

The Card includes two applications of its own. The Conditional Access process (#4) receives data via downstream

QPSK. The Card includes a pay-per-view report back function (#5).

Note that none of these Card applications use flows that travel across the Card interface.

10.4 Flow Examples—Embedded Cable Modem Case DSG Mode

In the next example case, the Host incorporates an eCM that supports Advanced DSG mode, but the Host does not
directly terminate DSG Broadcast Tunnels. Figure 10.4-1 diagrams a CHI in which five flows have been set up.
When a Host includes an eCM, it is required to support at least eight flows of service type Socket and one flow of

service type DSG. In this example, the Card supports three MPEG section flows if the Host requests them.

224

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Host
- »| eCM | q—p IP/Port Routing
/
MC Nav
®)"
Socket DSG MPEG_section
Card

IP/Port Routing

A A
/ /
(ca RPT

Transport Processing, Filtering, and Routing

Figure 10.4-1 - Flow Examples - eCM Case Advanced Indirect Mode

In this example, the Host has some application that uses multicast addressed packets (#1) and a Navigation
application (#2) that receives Service Information data on the Extended Channel via the Card interface via three
separate flows.

The Navigation application can open three different simultaneous flows, specifying different PID values for each.
For example, it might set one to the base PID that carries SI network data including the Master Guide Table, Virtual
Channel Table and System Time. It can set a second one to point to a PID value where Event Information Tables for
a specific time slot may be found, and another to collect associated Extended Text Tables (ETTS).

The Card includes three applications of its own. The Host delivers TCP/UDP packet payload data to the Card
applications based on the port number specified in the Socket flow.

The Card includes a pay-per-view reportback function (#4) that uses standard TCP/UDP sockets for data transport.

In the following example, the Host incorporates an eCM that supports Advanced DSG mode, and the Host directly
terminates DSG Broadcast Tunnels. Figure 10.4-2 diagrams a CHI in which 3 flows have been set up. In Advanced
DSG mode, the Host may receive certain DSG Tunnels directly, without going through the Card.

4/18/13 CablelLabs® 225

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Host
- »| eCM | q—p IP/Port Routing
/ /
MC Nav
®)"
Socket DSG
Card

IP/Port Routing

A A
/ /
(ca RPT

Transport Processing, Filtering, and Routing

Figure 10.4-2 - Flow Examples - eCM Case Advanced Direct Mode

In this example, the Host has some application that uses multicast addressed packets (#1) and a Navigation
application (#2) that receives Service Information directly data from the eCM.

The Host sets DSG filter(s) to the values associated with SCTE 65 Broadcast ID (see [DSG]) and the Navigation
application would receive the tuning tables, Source Name Subtable, Virtual Channel Tables, and System Time.
Additional Broadcast ID values are for SCTE 18, OC Signaling. The Card will also inform the Host of any other
DSG Tunnels that it needs to receive.

If the Card includes applications that require TCP/UDP socket payload data, after opening a Socket flow, the Host
will supply the payloads to the Card based on the port number.

In this example, the Card includes a pay-per-view reportback function (#4) that uses TCP/UDP sockets on the Host.

10.5 Flow Examples—SEB Client Case DSG Mode

In the next example case, the Host incorporates an eCM that supports Advanced DSG mode as well as SEB, as
defined in [DSG], but the Host does not directly terminate DSG Broadcast Tunnels, and sends all DSG traffic across
the CHI. Figure 10.5-1 diagrams a CHI in which five flows have been set up. The Host includes an eCM, which in
this case continues to receive DSG Tunnels, but all IP data is acquired by the home network interface. The Host also

226 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

includes a home network interface (e.g., Ethernet port, MOCA, etc.) that is utilized to support SEB functionality, in
this case to support SEB Client. The Host is required to support at least one flow of service type IP Unicast (IP_U)
and one flow of service type DSG. In this example, the Card supports three MPEG section flows if the Host requests
them.

Host DSG Tunnels
Only
> eCM > IP/Port Routing
A
\ 4
Home
P | Network MC Nav
< > e @ @(5')
IP Packets

P U IP_M DSG MPEG_section

Card

IP/Port Routing

Transport Processing, Filtering, and Routing

Figure 10.5-1 - Flow Examples - SEB Case Advanced Indirect Mode

In this example, the Host has some application that uses multicast addressed packets (#1) and a Navigation
application (#2) that receives Service Information data on the Extended Channel via the Card interface via three
separate flows.

The Navigation application can open three different simultaneous flows, specifying different PID values for each.
For example, it might set one to the base PID that carries SI network data including the Master Guide Table, Virtual
Channel Table, and System Time. It can set a second one to point to a PID value where Event Information Tables
for a specific time slot may be found, and another to collect associated Extended Text Tables (ETTSs).

The Card includes three applications of its own. The Host routes IP packets to the Card applications based on IP
address. For unicast packets, those that match the IP address assigned to the Card will be routed across the interface.
For multicast packets, those matching the multicast group address associated with a particular flow will be delivered.

4/18/13 CablelLabs® 227

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

The Card includes a pay-per-view reportback function (#4) that uses standard IP packets for data transport. Finally,
the Card includes some application (#5) that has registered with the Host to receive multicast-addressed IP packets
through the Host modem, which is serviced via proxy through the Host’s home network interface.

In the following example, the Host incorporates an eCM that supports Advanced DSG mode as well as SEB, as
defined in [DSG], and the Host directly terminates DSG Broadcast Tunnels. Figure 10.5-2 diagrams a CHI in which
three flows have been set up. In Advanced DSG mode, the Host may receive certain DSG Tunnels directly, without
going through the Card. The Host includes an eCM, which in this case continues to receive DSG Tunnels, but all IP
data is acquired by the home network interface. The Host also includes a home network interface (e.g., Ethernet port,
MOCA, etc.) that is utilized to support SEB functionality, in this case to support SEB Client.

Host DSG Tunnels
Only
> eCM > IP/Port Routing
A
\ 4
Home
P o | Network MC Nav
< > e @ @(5')
IP Packets

P U IP_M DSG MPEG_section

Card

IP/Port Routing

A

I
) o) o)

Transport Processing, Filtering, and Routing

Figure 10.5-2 - Flow Examples - SEB Case Advanced Direct Mode

In this example, the Host has some application that uses multicast addressed packets (#1) and a Navigation
application (#2) that receives Service Information directly data from the eCM.

The Host sets DSG filter(s) to the values associated with SCTE 65 Broadcast ID (see [DSG]) and the Navigation
application would receive the tuning tables, Source Name Subtable, Virtual Channel Tables, and System Time.
Additional Broadcast ID values are for SCTE 18, OC Signaling. The Card will also inform the Host of any other
DSG Tunnels that it needs to receive.

228 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

If the Card includes applications that require IP, after opening an IP flow, the Host will supply the IP packets to the
Card based on IP address. For unicast packets, those that match the IP address assigned to the Card will be routed
across the interface. For multicast packets, those matching the multicast group address associated with a particular
flow will be delivered.

In this example, the Card includes a pay-per-view reportback function (#4) that uses standard IP packets. Finally, the
Card includes some application (#5) that has registered with the Host to receive multicast-addressed IP packets
through the home network interface via SEB from the SEB Server.

10.6 Summary of Extended Channel Flow Requirement

Compliance with this standard requires Host and Card to support certain flows. Other types of flows may be
supported at the discretion of the Host or Card. The following table summarizes the requirements.

Table 10.6-1 - Flow Requirements

Operational | Service | Requestor | Minimum Number of Possible Data Direction
Mode Type Concurrent Flows Supported
SCTES5 MPEG Host 6 Card — Host
IP_U Host 1 Host «» Card
IP_M Host 1 (Optional) Card — Host
DSG N/A 0 N/A (Error)
Socket N/A 0 N/A (Error)
Advanced DSG | MPEG Host 6 Card — Host
(Indirect) IP_U Card 0 N/A (error)
IP_M Card 0 N/A (error)
DSG Card 1 Host — Card
Socket Card 8 Host <> Card
Advanced DSG | MPEG N/A 0 (if all Client I1Ds direct) N/A (Error if all
(Direct) Client 1Ds direct)
IP_U Card 0 N/A (error)
IP_M Card 0 N/A (error)
DSG Card 1 Host — Card
Socket Card 8 Host <> Card

10.7 System/Service Information Requirements

When the operational_mode in the set_ DSG_mode() APDU is <0x02, the Card supplies System and Service
Information across the HOST- Card interface, using Extended Channel flow of service_type = MPEG_section, as
defined in Section 9.14.1 and [SCTE®65]. The set of MPEG-2 tables provided to support the navigation function in
the Host device conforms to one or more of the profiles specified in [SCTE®65].

When the operational_mode in the set DSG_mode() APDU is 0x03 or 0x04, the Card supplies the DSG MAC
address and filter parameters to allow the Host to receive the System and Service Information directly via DSG or
across the Host/Card interface, using an Extended Channel flow of service_type = MPEG_section. The set of

4/18/13 CablelLabs® 229

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

MPEG-2 tables provided to support the navigation function of the Host device conform to one or more of the
profiles specified in [SCTE65].

Sl data is transmitted either from the Card to the Host using the protocols defined in [SCTE65], or is directly
received by the Host using the protocols defined in [SCTE65]and [DSG]. The Card MAY be the source of all Sl data
to the Host. The Card MAY reformat the SI data received over the network to meet the requirements of [SCTE65] if
such data will be sent to the Host via the Extended Channel, as there is no requirement for the cable system to
transmit the SCTE 55 Sl data in that format.

Informative Note: Profiles 1 through 5 are compatible with Host devices deployed as of Jan 1, 2000. Host devices
that are intended to be portable across the United States will need to function with any of the six profiles of
[SCTEG65]. For operational considerations of various profiles, see section A.3 in [SCTE65].

10.8 Link Layer

The link layer of the Extended Channel fragments the datagram PDU, if necessary, over the limited buffer size of the
physical layer, and reassembles the received fragments.

10.8.1 S-Mode

The link header includes two control bits and the flow_id value that has been negotiated by the link device for the
application (see Section 9.14), to identify the end-to-end communication flow.

Table 10.8-1 - S-Mode Extended Channel Link Layer Packet

Bit
7 6 s | 4 | 3 | 2 | 1] o
L F 0x00
flow_id (MSB)
flow _id
flow_id (LSB)
datagram PDU fragment

L Last indicator: if this bit is set to ‘0, then at least one more datagram fragment follows. If
this bit is set to '1', this fragment is the last in the datagram.

F First fragment indicator: if this bit is set to '1', then this fragment is the first of the
datagram. If this bit is set to '0", this fragment is not the first.

flow_id The 3-byte flow identifier associates the data with a registered flow. The flow_id is
assigned as defined in Section 9.14. The flow_id value of zero is reserved and is not to be
assigned.

10.8.2 M-Mode

The link layer of the Extended Channel fragments the datagram PDU, if necessary, over the limited buffer size of the
physical layer, and reassembles the received fragments.

The link header contains the flow_id value that has been negotiated by the link device for the application, see
Section 9.14 to identify the end-to-end communication flow.

230 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Table 10.8-2 - M-Mode Extended Channel Link Layer Packet

Bit

0x00
flow_id (MSB)

flow_id

flow_id (LSB)

datagram PDU fragment

flow_id The 3-byte flow identifier associates the data with a registered flow. The flow_id is
assigned as defined in Section 9.14. The flow_id value of zero is reserved and is not to be
assigned.

For data flows made available to the Host by the Card, the Card is responsible for link layer processing of messages
to be transferred across the Extended Channel. It is the Host's responsibility to reassemble the received datagram
PDU fragments, and to segment PDUs for delivery across the interface. For data flows made available to the Card by
the Host, the roles are reversed.

Received datagram PDU fragments are reassembled into IP packets, or MPEG-2 table sections, or DSG messages,
depending upon the service_type associated with the flow given by flow_id. The maximum size of the reassembled
PDU (IP packet or MPEG-2 table section or DSG message) is 4,096 for any Service Type.

10.9 Modem Models

There are 4 different network connection models that a Host may have:
e Unidirectional (no modem)

e Bidirectional, modem function in the Card

e Bidirectional, modem function in the Host

e Bidirectional, SEB function in the Host

10.9.1 Unidirectional Host Model

For the unidirectional Host model, there are no upstream transmitters; thus, there is no IP connectivity. The extended
channel will be utilized solely for receiving the OOB Sl data.

For this model, the Card will be the link device for the OOB SI MPEG data flow.

10.9.2 Bidirectional With Modem in Card

For the bidirectional Host model with the modem functionality in the Card, the [SCTE55-2] and the [SCTE55-1]
PHY (RF processing, QPSK demodulation and modulation) layer is implemented in the Host, and the Data-link and
MAC protocols are implemented in the Card. The details of the OOB hardware implementation are covered in
Section 5.11.1 of this specification.

For this model, the Card will be the link device for all flows.

4/18/13 CablelLabs® 231

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

10.9.3 Bidirectional With Modem in Host

When the Host implements the DSG functionality, all of the DOCSIS cable modem functionality is implemented in
the Host. The OOB data flows are transmitted, utilizing DSG tunneling [DSG]. The Host SHALL be capable of
receiving the DSG OOB data flows even if it is unable to connect in two-way mode.

For this model, the Card will be the link device for the OOB MPEG SI data flow, and the Host will be link device for
IP data flows and for the DSG flow to the Card/DSGCC.

10.9.4 Bidirectional With SEB in Host

When the Host implements the SEB functionality, all of the DSG cable modem functionality and non-DSG related IP
data functionality are implemented in the Host via SEB. The OOB data flows are transmitted, utilizing DSG
tunneling [DSG] SEB that continues to be terminated by the eCM in the Host. The Host SHALL be capable of
receiving the DSG OOB data flows even if it is unable to connect in two-way mode.

For this model, the Card will be the link device for the OOB MPEG SI data flow, and the Host will be link device for
IP data flows and for the DSG flow to the Card/DSGCC.

10.10 Section removed (duplication with section 10.7)

10.11 EAS Requirements

The Card will receive Emergency Alert messaging on either the FAT channels, the QPSK Forward Data channel
(QPSK FDC), or over a DSG tunnel. The EAS message syntax is compatible with MPEG-2 transport and is defined
in [J042].

For FAT channel transmission, the EAS message appears in transport packets with the same PID as those used for
Service/System Information (Sl1), and the Card SHALL NOT interfere when delivering the EAS message to the Host.
The table ID for the EAS message is 0xD8 as defined in [J042].

For SCTE 55 mode, the Card SHALL process EAS messages and transmit the EAS messages over the Extended
Channel according to [J042].

In Advanced DSG Mode, the Host SHALL process EAS messages directly with no assistance by the Card if this
tunnel is defined by a DSG Filter in the host section (dir_entry type = 0x01) of the DSG_directory() APDU.

In Advanced DSG Mode, the Host SHALL receive EAS messages over the Extended Channel when indicated by
dir_entry_type = 0x02 in the host section of the DSG_directory() APDU.

EAS messages can be transmitted over the DSG tunnel defined by Broadcast ID 0x02 (see [DSG]) using the protocol
defined in [J042]. When a Card is installed in the Host and the operational_mode is SCTE 55 Mode, the Host
SHALL only respond to EAS messages delivered from the Card over the Extended Channel. The Card may reformat
the EAS message to meet the requirements of [J042], as there is no requirement for the cable system to transmit the
EAS message in that format.

Note: EAS operation for when a Host does not have a Card installed is outside the scope of this specification.

10.12 XAIT Requirements

When operating in SCTE55_Mode, the Card SHALL forward all received XAIT messaging across the extended
channel as defined in the OpenCable Application Platform Specification [OCAP]. When operating in Advanced
DSG mode, the Host SHALL receive XAIT messages over the DSG Broadcast tunnel defined for XAITs if this
tunnel is defined by a DSG Filter in the host section (dir_entry_type = 0x01) of the DSG_directory() APDU. When
operating in Advanced DSG mode, the Host SHALL receive XAITs over the Extended Channel when indicated by
dir_entry_type = 0x02 in the host section of the DSG_directory() APDU.

232 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

10.13 OCAP OOB Object Carousel Requirements

When the Host is in Advanced DSG Mode, it SHALL NOT open any flows over the Extended Channel for the
OCAP object carousel.

When the operational mode is SCTE 55 Mode, the Host MAY open a flow over the extended channel for the OCAP
object carousel. If the Host does open a flow over the Extended Channel for an OCAP object carousel, it SHALL
first open an MPEG flow to PID 0x0000 to retrieve the PAT and then open an MPEG flow to the PMT PID defined
in the PAT. If the PMT defines the OCAP object carousel to be on the same PID as the PMT, the Host SHALL
NOT open a new flow to that PID (as the flow is already open). If the PMT defines the OCAP object carousel to be
on a different PID, then the Host SHALL open an MPEG flow to that PID to receive the object carousel. While
receiving the object carousel, the Host SHALL keep the MPEG flows for the PAT and PMT open and accept any
changes in those tables and act upon those changes.

4/18/13 CablelLabs® 233

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Annex A Baseline HTML Profile Support

This annex describes HTML keywords that SHALL be supported by the Baseline HTML Profile and gives
requirements for each keyword foreseen on the Host.

The Baseline HTML Profile only supports formatted text messages, in the form of HTML pages, with one hyperlink.

The Application Information resource MAY identify Hosts that support more elaborate HTML pages with multiple
hyperlinks and multiple levels of text rendering and graphic support. In such a case, the Card can supply HTML
pages that take advantage of these enhanced features.

Note: This extended mode of operation is not described in this annex.

A.l Format

A.1.1 Display

The Baseline HTML Profile pages SHALL be designed to fit in a 4/3 and 16/9 NTSC display size using the smallest
common screen (640 x 480) without vertical and horizontal scrolling.

MMI messages from the Card will be limited to a maximum of 16 lines of 32 characters each. If the MMI message is
longer than 16 lines, the message will include up to 16 lines of text plus a hyperlink pointing to an additional page.

All text on every page must be visible on the screen.

The Host device may use screen space below the MMI message for navigation buttons such as “Press MENU to
Exit” and/or status information. Host-added navigation buttons and status information, if added, must not obscure
any MMI text.

If the HTML from the Card contains a hyperlink, the Host MUST provide instructions on how to navigate to any
links contained in the Card’s HTML message. Host-added navigation buttons, if added, must not obscure any MMI
text.

The Baseline HTML Profile requires that MMI windows be opaque.

A.l1.2 Font

The Baseline HTML Profile font SHALL support a minimum of 32 characters per line, and a minimum of 16 lines of
characters.

A.1.3 Text and Background Color

Under the Baseline HTML Profile, the Host MAY render text color as requested in the HTML data from the Card.

Under the Baseline HTML Profile, the Host MAY render the background color as requested in the HTML data from
the Card.

If the HTML data does not include a background and/or text color command, or the Host does not support the
background and/or color command, the Host SHALL use either

e Dblack (#000000) text on a light gray (#C0CO0CO0) background or
e white (#FFFFFF) text on a black (#000000) background.

If the Host device supports either the background color or text color command then it SHALL support both of the
commands. It should not support only one of the commands. (Footnote: Supporting only one of the commands could
lead to unreadable messages, for example if the Card requests blue text on a white background and the Host supports
the text color command but uses the default background color, the result would be blue text on a blue background).

234 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

A.l4 Unvisited Link Color

Under the Baseline HTML Profile, the Host MAY render the unvisited link color as requested in the HTML data
from the Card. If the HTML data does not include an unvisited link color command, or the Host does not support
the unvisited link color command, the Host SHALL use blue (#0000FF).

A.1.5 Paragraph

Under the Baseline HTML Profile, the Host MAY align paragraphs as requested by the HTML data from the Card.
If the HTML data does not include a paragraph alignment command, or the Host does not support the paragraph
alignment command, the Host SHALL use a LEFT paragraph alignment.

A.1.6 Image

The Baseline HTML Profile does not include support for images.

Al17 Table
The Baseline HTML Profile does not include support for tables.

A.1.8 Forms

The Baseline HTML Profile doesn’t include support for forms.

A.2 Supported User Interactions

A.2.1 Navigation and Links

The Baseline HTML Profile does not define how a hyperlink is navigated and selected. It is up to the Host
manufacturer to provide some navigation/selection mechanism to identify the user intention and forward the selected
link to the Card using the server_query() APDU. It is up to the Card manufacturer to determine how results are
returned to the Card through the URL of the server_query() APDU. The Host SHALL provide a method of user
navigation to the hyperlink in the MMI message if one is present.

A.2.2 HTML Keywords

Table A-1 lists HTML keywords used in the Baseline HTML Profile (R=Required, O=Optional).

A keyword or a parameter marked as optional MAY be inserted in an HTML page, but MAY not be used by the
Host. It SHALL NOT change what is displayed on the screen but only the way of displaying it (basically, it applies
to the style).

Table A-1 - HTML Keyword List

Required or
Optional
Structure
<HTML>..</HTML> R
Begin and end HTML document.
<BODY>...</BODY> R
Begin and end of the body of the document, optional attributes of the document
bgcolor: background color, default = light gray (#C0COCOQ) @)
text: color of text, default = black (#000000) 0
link: color of unvisited links, default = blue (#0000FF) @)
 ... R
Begin and end an anchor.
href: URL targeted by this anchor. R

4/18/13 CablelLabs® 235

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Required or
Optional
Style Element
<p> R
Change of paragraph
align: CENTER, LEFT, or RIGHT (default = LEFT) @)

 R
Force new line.
..<I>.. </I><U> ... </U>)
Character style: bold, italic, and underlined

A.3 Characters

An HTML page can refer to all Latin-1 characters by their numeric value by enclosing them between the & and ;
symbols. For example, the quotation mark “ can be expressed as " in an HTML page. The characters specified
in the Added Latin-1 entity set also have mnemonic names. Thus, the following 3 expressions are interpreted as the

character “.

"
",

Note: Mnemonic expressions are case sensitive.

Table A-2 defines characters, their numeric and mnemonic expressions that the Baseline HTML viewer SHALL
support. Any OpenCable baseline HTML page SHALL NOT use the characters, numeric or mnemonic expressions,

which are not defined in Table A-2; the Host MAY ignore the characters which are not defined in Table A-2.

This list is taken from the HTML 4 Character entity references found at:
http://www.w3.0rg/TR/REC-html40/sgml/entities.html

Table A-2 - Characters

Numeric Mnemonic
Character Name . .
Expression Expression
Horizontal tab 	
Line feed

Space
! Exclamation mark !
" Quotation mark " "
Number sign
$ Dollar sign $
% Percent sign %,
& Ampersand & &
' Apostrophe '
(Left parenthesis (
) Right parenthesis),
* Asterisk *
+ Plus sign +
, Comma ,,
- Hyphen -
. Period .
/ Solidus (slash) T,
0 0

236

CablelLabs®

4/18/13

http://www.w3.org/TR/REC-html40/sgml/entities.html

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Character

Name

Numeric
Expression

Mnemonic
Expression

O©CoO~NOUILDE WN P

>‘—'/'_'N-<><E<C—|U);U,O'UOZ§I_X‘—'_IG)TIITIUOWJ>@\)V || A

4

o 0O oo

Colon
Semicolon
Less than
Equals sign
Greater than
Question mark
Commercial at

Left square bracket
Reverse solidus
Right square bracket
Circumflex
Horizontal bar
Grave accent

1
2
3
4
5
6
7
8
9
:
;
<
=
>
?
@
A
B
&H#67,;
D
E
F
&#T71;
&#T2;
I
&#t74;
&H#HT5;
L
&HT7;
&H#78;
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_
`
a
b
c
d

<

&at;

4/18/13

CablelLabs®

237

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Numeric Mnemonic
Character Name . .
Expression Expression

e e
f f
g g
h h
| i
j j
k k
| l
m m
n n
0 o
p p
q q
r r
S s
t t
u u,;
\Y v
W w
X x
y y
z z
{ Left curly brace {,;
| Vertical bar |
} Right curly brace }
~ Tilde ~

Non-breaking space
i Inverted exclamation ¡ ¡
¢ Cent ¢ ¢
£ Pound £ £
a Currency ¤ ¤
¥ Yen ¥ ¥
: Broken vertical ¦ ¦
§ Section sign §, §
" Umlaut/diaeresis ¨ ¨
© Copyright © ©
a Feminine ª ª
« Left angle quote « «
- No sign ¬ ¬
- Hyphen ­ ­
® Reg. trade mark &H#174; ®
- Macron ¯ ¯
° Degrees ° °
+ Plus/Minus &H#1TT,; ±
2 Superscript 2 ² ²
3 Superscript 3 &H#179; ³
! Acute accent ´ ´
V] Micron µ µ
1 Paragraph sign ¶ ¶
. Middle dot · ·
. Cedilla ¸ ¸
! Superscript 1 ¹ ¹,

238

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Numeric Mnemonic
Character Name . .
Expression Expression
0 Masculine º º
» Right angle quote », »
Ya One quarter ¼ &fracl4;
Y% One half ½ &fracl2;
Ya Three quarters ¾ ¾
¢ Inverted question mark ¿ ¿
A A Grave À À
A A Acute Á Á
A A Circumflex Â Â
A A Tilde Ã Ã
A A Diaeresis Ä Ä
A ARing Å, Å
/E AE Diphthong Æ Æ
c C Cedilla Ç Ç
E E Grave È È
E E Acute É É
E E Circumflex Ê Ê
E E Diaeresis Ë Ë
i | Grave Ì &lgrave;
i | Acute Í ĺ
) | Circumflex Î &lcirc;
[} | Diaeresis Ï &luml;
b Icelandic eth Ð Ð
N N Tilde Ñ &Nitilde;
¢} O Grave Ò Ò
o} O Acute Ó: Ó
o) O Circumflex Ô Ô
0 O Tilde Õ Õ
0 O Diaeresis Ö &Oouml;
X Multiplication × ×
@ O Slash Ø Ø
U U Grave Ù Ù
U U Acute Ú: Ú
0 U Circumflex Û:; Û
U U Diaeresis Ü Ü
Y Y Acute Ý Ý
p Icelandic Thorn Þ Þ
B Small sharp S ß ß
a a Grave &#t224; à
a a Acute á á
a a Circumflex â â
a aTilde ã ã
a a Diaeresis ä ä
a a Ring å å
® ae Diphthong æ æ
c ¢ Cedilla ç ç
e e Grave è è
é e Acute é é
é e Circumflex ê ê
é e Diaeresis ë ë,;
i i Grave ì ì
i i Acute í í

4/18/13

CablelLabs®

239

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Numeric Mnemonic
Character Name . .
Expression Expression
1 i Circumflex î î
T i Diaeresis ï ï
o} Icenlandic eth ð ð
fi n Tilde ñ ñ
0 o Grave &i#242; ò
0 0 Acute ó ó
0 o Circumflex ô ô
0 o Tilde õ õ
0 o Diaeresis ö ö
+ Division ÷, ÷
) o Slash ø ø
u u Grave ù ù
a u Acute ú ú
a u Circumflex û û
1] u Diaeresis ü ü
y y Acute ý,; ý
b Icenlandic thorn þ þ
y y Diaeresis ÿ ÿ

240

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Annex B Error Handling
Interface errors SHALL be handled as described in Table B-1 below:

Table B-1 - Error Handling

Error Condition Failure Host Action ,\cﬂ:g:jde SCTE Card Action Comments

1 |card READY signal Card Minimum - Perform 1 PCMCIA reset, |S-Mode [None Host reports
does not go active Report Error if not successful error to user.

Optional - Retry PCMCIA resets up to
two times and report error.

Preferred - Perform at least 1
PCMCIA reset. Report Error if not
successful and continue to perform
PCMCIA resets.

2 Host reads incorrect Card Host reports error using screen in S-Mode |[None Host reports
CIS values Figure B-1 - Error Display. error to user.

3 Host writes incorrect Host None S-Mode [Card cannot perform any |Host detects as
TPCE_INDX value to action. failure #4 and
POD configuration reports error to
register user.!

4 |Host sets command Card Minimum - Perform 1 PCMCIA reset, |S-Mode [None Host reports
channel RS bit but Card Report Error if not successful, error to user.
f5a|Is to s(;:‘tt_FR b'ttw'thm Optional - Retry PCMCIA resets up to

-Second imeou two times and report error.
Preferred - Perform at least 1
PCMCIA reset. Report Error if not
successful and continue to perform
PCMCIA resets.

5 Host sets command Card Minimum - Perform 1 PCMCIA reset, |S-Mode [None Host reports
channel RS bit and Report Error if not successful error to user.
gi);tggggifdh?aﬁrsetloiset Optional - Retry PCMCIA resets up to
FR bit within 5-second two times and report error.
timeout Preferred - Perform at least 1

PCMCIA reset. Report Error if not
successful and continue to perform
PCMCIA resets.

6 Invalid buffer Card Host either S-Mode |[None Host reports .
nﬁgotlalnobn }fCart_JI da(ta 1) reports error using screen in Figure error to user.
cieimne (buffer size B-1 - Error Display

2) retry PCMCIA resets up to two
times and then report error using
screen in Figure B-1 - Error Display,
or

3) operate with smaller size

7 Invalid buffer Host None S-Mode [Minimum - Card sets IR [Host reports
negotiation - Host data flag and stops responding |error to user.!
channel (buffer size < to polls.

256 bytes or greater Preferred - Card works
than Card data channel with Host buffer size
buffer size)

4/18/13

CablelLabs®

241

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Error Condition Failure Host Action I\c/igl:ji SCTE Card Action Comments

8 |Invalid buffer Card Host either S-Mode [None Host reports .
negotiation - Card 1) reports error using screen in Figure error to user.
extended channel B-1 - Error Display
(buffer size < 16)

2) retry PCMCIA resets up to two
times and then report error using
screen in Figure B-1 - Error Display,
or

3) operate with smaller size

9 |invalid buffer Host None S-Mode [Minimum - Card sets IR |Host reports
negotiation - Host flag and stops responding |error to user.!
extended channel to polls.

(butfer tsm:h< 25((::3 bé/tes Preferred - Card works
or greater than tar with Host buffer size
data channel buffer

size)

10 |card does not respond |Card Minimum - Perform 1 PCMCIA reset, |S-Mode [None Host reports
to Hosts open transport Report Error if not successful error to user.
requesc,lt within 5 Optional - Retry PCMCIA resets up to
seconds two times and report error.

Preferred - Perform at least 1
PCMCIA reset. Report Error if not
successful and continue to perform
PCMCIA resets.

11 |Host does not respond |Host None S-Mode [Minimum - Card, S-Mode [Host reports
to Card request to open M-Mode |sets IIR flag and stops error to user.
resource manager responding to polls. M-
session within 5 Mode, sets the ER bit in
seconds the IQB.

12 |Host response to open [Host None S-Mode [Minimum - Card, S-Mode, [Host reports
resource manager M-Mode |[sets IIR flag and stops error to user.
session response - responding to polls. M-
resource manager non- Mode, sets the ER bit in
existent the IQB.

13 |Host response to open |Host None S-Mode [Minimum - Card, S-Mode, [Host reports
resource manager M-Mode |[sets IIR flag and stops error to user.
session response - responding to polls. M-
resource manager Mode, sets the ER bit in
unavailable the IQB.

14 |Host response to open [Host None S-Mode [Minimum - Card, S-Mode, [Host reports
resource manager M-Mode |[sets IIR flag and stops error to user.
session response - responding to polls. M-
incorrect version of Mode, sets the ER bit in
resource manager the 1QB.

15 |Host response to open |Host None S-Mode [Minimum - Card, S-Mode, [Host reports
resource manager M-Mode |[sets IIR flag and stops error to user.
session response - responding to polls. M-
resource manager busy Mode, sets the ER bit in

the IQB.

16 [Host response to open [Host None S-Mode [Minimum - Card, S-Mode, [Host reports
resource manager M-Mode |[sets IIR flag and stops error to user.
session response - responding to polls. M-
invalid status byte Mode, sets the ER bit in

the 1QB.

242

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Error Condition Failure Host Action I\c/igl:ji SCTE Card Action Comments

17 |card fails to respond to |Card Minimum - Perform 1 PCMCIA reset, |S-Mode |None Host reports
profile_inq within 5 Report Error if not successful. M-Mode error to user.
seconds Optional - Retry PCMCIA resets up to

two times and report error.
Preferred - Perform at least 1
PCMCIA reset. Report Error if not
successful and continue to perform
PCMCIA resets.

18 |Host resource response |Host None S-Mode [Minimum - Card, S-Mode, [Minimum - Host
- ho application M-Mode |[sets IIR flag and stops reports error to
information resource responding to polls. M- user. Preferred -

Mode, sets the ER bitin [Applications on
the IQB. the Card may
Preferred - Card continues not opgrate
operation and will not porlre(;:_ Y, MM 2
open a session to the including :
application info resource.

19 |Host resource response |Host None S-Mode [Minimum - Card, S-Mode, [Card may not be
- no Host control M-Mode |[sets IIR flag and stops able to do
resource responding to polls. M- conditional

Mode, sets the ER bitin |access properly.
the 1QB.
20 |Host resource response |Host None S-Mode [Minimum - Card continues [Card operations
- ho system time M-Mode |operation and will not which require
resource open a session to the system time will
system time resource. not operate.*
Preferred - Same as
minimum but also reports
this in its MMI diagnostics
application.
21 |Host resource response |Host None S-Mode [Minimum - Card continues [Card cannot
- ho MMI resource M-Mode |operation and will not utilize MMI for
open a session to the MMI|applications or
resource. to report error

conditions.*

22 |Host resource response |Host None S-Mode [Minimum - Card continues [If OOB reverse
- no low speed M-Mode |operation and will not path not
communications open a session to the low [available, then

speed communication some
resource. applications will
Preferred - Same as be dutnr;avallgtble,
minimum but also reports ?n i € unit may
this in its MMI diagnostic uunrilcdli?:Cg(S)naal
application. o

PP device.!

23 |Host resource response |Host None S-Mode [Minimum - Card continues [Card may have

- no homing resource’ M-Mode |operation and will not some

open a session to the operational
homing resource. problems (i.e.,
Preferred - Same as do]:/tvnloradTg
minimum but also reports software).
this in its MMI diagnostic
application.

4/18/13 CableLabs® 243

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Error Condition Failure Host Action ﬁizji SCTE Card Action Comments

24 |Host resource response |Host None S-Mode [Minimum - Card continues [All CA channels
- o copy protection M-Mode |operation, it SHALL NOT |will not be
resource enable descrambling of |descrambled,

any conditional access only clear
encrypted channels, it will |channels may
not open a session to the |be viewed.
copy protection resource,

reports to headend if

possible, reports error to

user, and reports this in its

MMI diagnostic

application.

25 |Host resource response |Host None S-Mode [Minimum - Card continues [Not a failure
- unknown resource M-Mode [operation. condition
identifier

26 |Host fails to respond to [Host None S-Mode [Minimum - Card, S-Mode, [Host reports
open session request M-Mode |sets IIR flag and stops error to user.
within 5 seconds responding to polls. M-

Mode, sets the ER bit in
the 1QB.

27 |Host response to open |Host None S-Mode [Minimum - Card, S-Mode, [Minimum - Host
application info resource M-Mode |[sets IIR flag and stops reports error to
session - application responding to polls. M- user. Preferred -
info non-existent Mode, sets the ER bitin [Applications on

the 1QB. the Card may
Preferred - Card continues not operate
operation and will not porrec_tly, 1
open a session to the including MMI.
application info resource.

28 |Host response to open |Host None S-Mode [Minimum - Card, S-Mode, [Minimum - Host
application info resource M-Mode |sets IIR flag and stops reports error to
session - application responding to polls. M- user. Preferred -
info unavailable Mode, sets the ER bitin [Applications on

the 1QB. the Card may
Preferred - Card continues| "t OPerate
operation and will not _correc_tly, 1
open a session to the including MMI.
application info resource.

29 |Host response to open |Host None S-Mode [Minimum - Card, S-Mode, [Minimum - Host
application info resource M-Mode |[sets IIR flag and stops reports error to
session - incorrect responding to polls. M- user. Preferred -
version of application Mode, sets the ER bitin [Applications on
info the 1QB. the Card may

Preferred - Card continues not operate
operation and will not porrec_tly, 1
open a session to the including MMI.
application info resource.

30 |Host response to open |Host None S-Mode [Minimum - Card, S-Mode, [Minimum - Host
application info resource M-Mode |sets IIR flag and stops reports error to
session - application responding to polls. M- user. Preferred -
info busy Mode, sets the ER bitin [Applications on

the 1QB. the Card may
Preferred - Card continues|N0t OPerate
operation and will not _correc_tly, 1
open a session to the including MMI.
application info resource.

244 CableLabs” 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Error Condition Failure Host Action ﬁizji SCTE Card Action Comments

31 |Host response to open |Host None S-Mode [Minimum - Card, S-Mode [Minimum - Host
application info resource M-Mode |[sets IIR flag and stops reports error to
session - invalid status responding to polls. M- user. Preferred -
byte Mode, sets the ER bitin [Applications on

the 1QB. the Card may
Preferred - Card continues not operate
operation and will not porrec_tly, 1
open a session to the including MMI.
application info resource.

32 |card requests to open [Host None S-Mode [Minimum - Card, S-Mode [Host reports
conditional access M-Mode |[sets IIR flag and stops error to user.
session to the Host responding to polls. M-
times out after 5 Mode, sets the ER bit in
seconds the 1QB.

33 |card response to Host None S-Mode [Minimum - Card, S-Mode, [Minimum - Host
conditional access M-Mode |[sets IIR flag and stops reports error to
resource session - responding to polls. M- user. Preferred -
conditional access non- Mode, sets the ER bitin [Scrambled
existent the IQB. channells are not

Preferred - Card will not viewed.
descramble but will

continue other operation

and reports this in its MMI
diagnostic application.

34 |card response to Host None S-Mode [Minimum - Card, S-Mode, [Minimum - Host
conditional access M-Mode |[sets IIR flag and stops reports error to
resource session - responding to polls. M- user. Preferred -
conditional access Mode, sets the ER bitin [Scrambled
unavailable the IQB. channells are not

Preferred - Card will not viewed.
descramble but will

continue other operation

and reports this in its MMI
diagnostic application.

35 |card response to Host None S-Mode [Minimum - Card, S-Mode, [Minimum - Host
conditional access M-Mode |[sets IIR flag and stops reports error to
resource session - responding to polls. M- user. Preferred -
incorrect version of Mode, sets the ER bitin [Scrambled
conditional access the IQB. channels are not

. viewed.
Preferred - Card will not
descramble but will
continue other operation
and reports this in its MMI
diagnostic application.

36 |card response to Host None S-Mode [Minimum - Card, S-Mode, [Minimum - Host
conditional access M-Mode |[sets IIR flag and stops reports error to
resource session - responding to polls. M- user. Preferred -
conditional access busy Mode, sets the ER bitin [Scrambled

the IQB. channells are not
Preferred - Card will not |V/€Wed-
descramble but will
continue other operation
and reports this in its MMI
diagnostic application.

4/18/13 CableLabs® 245

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Error Condition Failure Host Action I\c/igl:ji SCTE Card Action Comments

37 |card response to Host None S-Mode [Minimum - Card, S-Mode, [Minimum - Host
conditional access M-Mode |[sets IIR flag and stops reports error to
resource session - responding to polls. M- user. Preferred -
invalid status byte Mode, sets the ER bitin [Scrambled

the IQB. channells are not
Preferred - Card will not viewed.
descramble but will

continue other operation

and reports this in its MMI

diagnostic application.

38 |card fails to respond to |Card Minimum - Perform 1 PCMCIA reset, [S-Mode |None Host reports
ca_info_ing within 5 Report Error if not successful. M-Mode error to user.
seconds Optional - Retry PCMCIA resets up to

two times and report error.
Preferred - Perform at least 1
PCMCIA reset. Report Error if not
successful and continue to perform
PCMCIA resets.

39 |card requests to open |Host None S-Mode [Minimum - Card continues [All CA channels
copy protection M-Mode |operation, disables will not be
resource session to the descrambling of all descrambled,
Host times out after 5 conditional access only clear
seconds channels, reports to channels may

headend if possible, be viewed.
reports this to user, and

reports this in its MMI

diagnostic application.

40 |Host response to open |Host None S-Mode [Minimum - Card continues [All CA channels
copy protection M-Mode |operation, it SHALL NOT |will not be
resource session - copy enable descrambling of |descrambled,
protection non-existent any conditional access only clear

encrypted channels, channels may
reports to headend if be viewed.
possible, reports this to

user, and reports this in its

MMI diagnostic

application.

41 |Host response to open |Host None S-Mode [Minimum - Card continues [All CA channels
copy protection M-Mode |operation, it SHALL NOT |will not be
resource session - copy enable descrambling of |descrambled,
protection unavailable any conditional access only clear

encrypted channels, channels may
reports to headend if be viewed.
possible, reports this to

user, and reports this in its

MMI diagnostic

application.

42 |Host response to open |Host None S-Mode [Minimum - Card continues [All CA channels
copy protection M-Mode |operation, it SHALL NOT |will not be
resource session - copy enable descrambling of |descrambled,
protection busy any conditional access only clear

encrypted channels, channels may
reports to headend if be viewed.!
possible, reports this to
user, and reports this in its
MMI diagnostic
application.

246 CableLabs” 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Error Condition Failure Host Action l\cjg‘gl SCTE Card Action Comments

43 |Host response to open |Host None S-Mode [Minimum - Card continues [All CA channels
copy protection M-Mode |operation, it SHALL NOT |will not be
resource session - enable descrambling of |descrambled,
invalid status byte any conditional access only clear

encrypted channels, channels may
reports to headend if be viewed.
possible, reports this to

user, and reports this in its

MMI diagnostic

application.

44 |Host does not support |Host/ None S-Mode [Minimum - Card continues [All CA channels
the Card’s copy Card M-Mode |operation, it SHALL NOT |will not be
protection system incom- enable descrambling of |descrambled,

patibility any conditional access only clear
encrypted channels, channels may
reports to headend if be viewed.
possible, reports this to
user, and reports this in its
MMI diagnostic
application.

45 |Host and Card do not |Host/ None S-Mode [Minimum - Card continues [All CA channels

mate Card M-Mode |operation, it SHALL NOT |will not be
incom- enable descrambling of |descrambled,
patibility any conditional access only clear
encrypted channels, channels may
reports to headend if be viewed.
possible, reports this to
user, and reports this in its
MMI diagnostic
application.

46 |Host response to Host None S-Mode [Minimum - Card will cease|A copy protected

CP_sync - Host busy M-Mode |descrambling of copy channel will stop
protected channels. being
descrambled.

47 |Host response to Host None S-Mode [Minimum - Card will cease|A copy protected
CP_sync - no CP M-Mode |descrambling of copy channel will stop
support protected channels. being

descrambled.

48 |Host response to Host None S-Mode [Minimum - Card will cease|A copy protected
CP_sync - invalid status M-Mode |descrambling of copy channel will stop

protected channels. being
descrambled.

49 |Host fails to respond to |Host None S-Mode [Minimum - Card will cease|A copy protected
cp_open_req. M-Mode |descrambling of copy channel will stop

protected channels and, |being
S-Mode, set the IIR flag. |descrambled.
M-Mode, sets the ER bit
in the 1QB.

50 |Invalid Host certificate |Host None S-Mode [Minimum - Card continues [All CA channels

M-Mode |operation, it SHALL NOT |will not be

enable descrambling of |descrambled,
any conditional access only clear
encrypted channels, channels may
reports to headend if be viewed.
possible, reports this to
user, and reports this in its
MMI diagnostic
application.

4/18/13 CableLabs® 247

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Error Condition Failure Host Action ﬁizji SCTE Card Action Comments

51 [write Error (WE) occurs [Card or |Host performs Card reset. S-Mode |[None User may see
after completion of any [Host frozen picture on
transfer from Host to scrambled
Card channels.

52 |Read Error (RE) occurs |Card or [Host performs Card reset. S-Mode |[None User may see
after completion of any |Host frozen picture on
transfer from Card to scrambled
Host channels.

53 |Card fails to respond to |Card Minimum - Perform 1 PCMCIA reset, [S-Mode [None User MAY see
any request within 5 Report Error if not successful. M-Mode frozen picture on
seconds Optional - Retry PCMCIA resets up to scr:]ramblled

two times and report error. channels.
Preferred - Perform at least 1

PCMCIA reset. Report Error if not

successful and continue to perform

PCMCIA resets.

54 |invalid session APDU |Host |None S-Mode |No action Not a failure
from Host M-Mode condition

55 [Invalid session APDU |Card Host ignores invalid sessions. S-Mode |[None Not a failure
from Card M-Mode condition

56 [Invalid SPDU tag from [Host |None S-Mode [No action Not a failure
Host M-Mode condition

57 [invalid SPDU tag from |Card Host ignores invalid SPDU tags. S-Mode |[None Not a failure
Card M-Mode condition

58 [invalid APDU tag from [Host |None S-Mode [No action Not a failure
Host M-Mode condition

59 [invalid APDU tag from |Card Host ignores invalid APDU tags. S-Mode |[None Not a failure
Card M-Mode condition

60 |Transport ID from Host |Host None S-Mode ([No action Not a failure
that has not been M-Mode condition
created and confirmed
by Card

61 Transport ID from Card |Card Host ignores transport IDs that have |S-Mode [None Not a failure
that has not been not been created M-Mode condition
created by Host

62 |Session ID from Host Host None S-Mode [No action Not a failure
that has not been M-Mode condition
created and confirmed
by Card

63 |Session ID from the Card Host ignores session IDs that have |S-Mode [None Not a failure
Card that has not been not been created M-Mode condition
created by Host

64 Incompatible Host Reports error using screen in Figure |M-Mode [None Used when an

CableCARD device
Inserted

B-2 - Error Code 161-64 Display

S-CARD in
inserted into an
M-Host.

248

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Error Condition Failure Host Action I\c/igl:ji SCTE Card Action Comments

65 |Card Resource Limit Card Reports error using screen in Figure [M-Mode |None Used when the
Reached B-1 - Error Display stream, program

and/or PID limit
has been
reached by a
user initiated
action.

66 |When the Card is in M- |Card Minimum - Perform 1 PCMCIA rest, |M-Mode [None Host reports
Mode and the Host sets Report Error if not successful, Error to user
IEZiTsEtS sbelztt ?ﬁé tg; (l;ﬁridrl Optional - Retry PCMCIA resets up to
the IOB within 5 two times and report error.
seconds of RESET Preferred - Perform at least 1
going inactive PCMCIA reset. Report Error if not

successful and continue to perform
PCMCIA resets.

67 |Host resource response |Host None S-Mode/ [Minimum - Card, S-Mode, [Minimum - Host
- no Extended Channel M-Mode |[sets IIR flag and stops reports error to
resource responding to polls. M- user. Preferred -

Mode, sets the ER bitin [Applications on
the I1QB. the Card and/ or
Preferred - Card continues |95t Tay not
operation and will not op:zrrat(?

open a session to the correctly.
Extended Channel

resource.

68 |Host resource response |Host None S-Mode/ [Minimum - Card continues [Minimum - Host
- no System Control M-Mode |operation and will not reports error to
Resource open a session to the user.! Preferred

System Control resource. |- Common
Preferred - Same as tEr)‘ow;Ioetlds to
minimum but also reports Gif ost'may
this in its MMI diagnostics no unlc 1on
application. properly.

69 |Host resource response |Host None M-Mode |Minimum - Card continues |Minimum - Host
- no CARD RES operation and will not reports error to
Resource open a session to the user. Preferred

CARD RES resource. - Interface limits
Preferred - Same as me:jytlr)]e r:acthed
minimum but also reports an etfos "
this in its MMI diagnostics may n? unc(:j;on
application properly, and; or
may also display
error code 65.
70 |Host resource response |Host None M-Mode |Minimum - Card continues |Host reports

- no DSG Resource

operation and will not
open a session to the
DSG resource.

Preferred - Same as
minimum but also reports
this in its MMI diagnostics
application.

error to user.
Preferred - DSG
operations/
messaging to
the Card/Host
may not function
properly.

4/18/13

CablelLabs®

249

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Error Condition Failure Host Action l\cjg‘gl SCTE Card Action Comments
712 |The M-CARD in M- Card If the Host supports this optional M-Mode [None Optional: Host
Mode failed to open a feature, it performs a PCMCIA reset |Only reports error to
Resource Manager upon detection of the error condition. user when the
session within 10 Retry one additional PCMCIA reset if two PCMCIA
seconds after the still not successful. If the two resets and the
RESET went inactive PCMCIA resets do not clear the two power
problem, power cycle the Card by cycles do not
powering down the V¢c pin. During clear the
power down, Vi must be less than problem.
Vce + 0.5V. After a 5-second wait
time, re-apply power to the Vcc pin as
defined in Section 7.4.1.2. Retry one
additional power cycle if still not
successful.
72% |Host fails to send Host None S-Mode [Card, S-Mode, sets IIR None
profile_inq() APDU M-Mode |[flag and stops responding
within 5 seconds of to polls.
sR:sssoig;Cge'\i/rI]Znager M-Mode, sets the ER bit
established in the 1QB.
73 |Host resource response |Host None S-Mode [Minimum - Card continues [Host reports
- ho Headend M-Mode [operation. error to user.
Communication
Resource

L. |f the error is caused by an issue with the design of the Host or Card, this should be detected during certification.

2 _ Errors #71 and #72 are optional.

NOTE: A Card reset is defined as the Host's setting the RS bit in the command interface control register. A PCMCIA reset is defined
as the Host's setting the RESET signal active on the PCMCIA interface.

In the event that an error occurs in which the Host must display an error message, the following message, or its

equivalent, SHALL be displayed:

this time.

A technical problem is preventing you
from receiving all cable services at

Please call your cable operator and
report error code 161-xx to have this
problem resolved.

Figure B-1 - Error Display

The “xx” after the error code 161 SHALL be the item number of the above table which has failed.

For error code 161-64, which occurs when an S-Card or PCMCIA module is inserted into a Host supporting M-
Mode only, the following message, or its equivalent, SHALL be displayed: "An incompatible Module has been
inserted (error code 161-64). Please call your cable operator and request an M-CARD."

250

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

An incompatible Module
has been inserted
(error code 161-64).

Please call your cable operator and
request an M-CARD.

Figure B-2 - Error Code 161-64 Display

4/18/13 CablelLabs® 251

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Annex C CRC-8 Reference Model
The 8-bit CRC generator/checker for the Card Operating in M-Mode is specified in Figure C-1.

11-Byte Header,
LTSID first, RES2 Last,
Most Significant Bit First

A

A

A

Z(7) Z(6) Z(5) Z(4) Z(3) 2(2) Z(1) Z(0)

v . v v v . v v

CRCJ[7] CRCI6] CRC[5] CRC[4] CRCJ[3] CRC[2] CRC[1] CRC[0]

Figure C-1 - 8 bit CRC generator/checker model

The model shown above implements the CRC-8 value used in the MPEG Transport Stream Pre-Header, utilizing the
generator Polynomial:

X+ x"+x%+xt +x%+1

The CRC-8 generator/checker operates on the first 11 bytes of the MPEG Transport Stream Pre-Header, starting
with the LTSID field and ending with the RES2 field. Each byte is operated on Most Significant Bit first, and the
model is initialized with all ones before the first byte is sent through the model. After the 11 bytes are processed, the
CRC-8 value (CRC[7:0]) is taken from the 8 delay elements of the model. This value is placed in the 12" byte of the
MPEG Transport Stream Pre-Header (for the generator) or compared with the 12" byte of the MPEG Transport
Stream Pre-Header (for the checker).

An example stream and associated CRC-8 is:
0x01, 0x00, 0x55, 0xAA, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
Produces a CRC of 0x8A.

252 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Annex D S-CARD Attribute and Configuration Registers

D.1 General

The following sections are a detailed map of the attribute registers and configuration option register of the Card, also
known as, SCTE Point of Deployment (POD) module. It is assumed that the reader is familiar with the PC Card tuple
arrangement for the attribute registers.

D.2 Attribute Tuples
The following is a list of the attribute tuples which SHALL be implemented in the Card/POD module.

CISTPL_LINKTARGET
CISTPL_DEVICE_OA
CISTPL_DEVICE_OC
CISTPL_VERS_1
CISTPL_MANFID
CISTPL_CONFIG
CCST_CIF
CISTPL_CFTABLE_ENTRY
STCE_EV

STCE_PD
CISTPL_NO_LINK
CISTPL_END

D.2.1 CISTPL_LINKTARGET

Defined in section 3.1.4 of [PCMCIA4], this is recommended by the PC Card standard for low voltage PC Cards for
robustness. This would be in addition to the tuples defined in EIA 679-B Part B and would be the first tuple.

Table D.2-1 - CISTPL_LINKTARGET

Byte | Addressgpex 7 6 5 4 3 2 1 0
0 00 TPL_CODE = CISTPL_LINKTARGET (0x13)
1 02 TPL_LINK =0x03
2 04 TPL_TAG (3 bytes) = 0x43 (C)
3 06 0x49 (1)
4 08 0x53 (S)

D.2.2 CISTPL_DEVICE_0OA
Defined in section 3.2.3 of [PCMCIAA4], this tuple is used to define the attribute memory operation.

4/18/13 CablelLabs® 253

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Table D.2-2 - CISTPL_DEVICE_0OA

Byte | Addressex 7 6 5 4 3 2 1 0
0 00 TPL_CODE = CISTPL_DEVICE_0A (0x1D)
1 02 TPL_LINK = 0x04
2 04 Other_Conditions_Info = 0x02
3 06 Device ID_1 =0x08
4 08 Device_Size = 0x00
5 0A OxFF

D.2.3 CISTPL_DEVICE_OC

Defined in section 3.2.3 of [PCMCIA4], this tuple is used to define the common memory operation.

Table D.2-3 - CISTPL_DEVICE_0C

Byte | Addressgpex 7 6 5 4 3 2 1 0
0 00 TPL_CODE = CISTPL_DEVICE_0C (0x1C)
1 02 TPL_LINK = 0x04
2 04 Other_Conditions_Info = 0x02
3 06 Device ID_1 = 0x08
4 08 Device_Size = 0x00
5 0A TPL_END = 0xFF

D.2.4 CISTPL_VERS_1

Defined in section 3.2.10 of [PCMCIA4] with the exception that TPLLV1 _MAJOR be 0x05 and that
TPLLV1_MINOR = 0x00. The field name of the product SHALL be “OPENCABLE POD Module”.

254 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Table D.2-4 - CISTPL_VERS_1

Byte Address e 7 6 5 4 3 2 1 0
0 00 TPL_CODE = CISTPL_VERS_1 (0x15)
1 02 TPL_LINK =26+n+m
2 04 TPLLV1_MAJOR = 0x05
3 06 TPLLV1_MINOR = 0x00
4 08 TPPLV1_INFO = {Name of manufacturer (n bytes)

4+n 08+(2*n) TPLLV1_INFO (multiple bytes) ox00 (Null)

5+n 0A+(2*n) | 0x4F (O)

6+n 0C+(2*n) | 0x50 (P)

7+n O0E+(2*n) | 0x45 (E)

8+n 10+(2*n) | Ox4E (N)

9+n 12+(2*n) | 0x43 (C)

10+n 14+(2*n) | 0x41 (A)

11+n 16+(2*n) | 0x42 (B)

12+n 18+(2*n) | 0Ox4C (L)

13+n 1A+(2*n) | 0x45 (E)

14+n 1C+(2*n) | 0x20 ()

15+n 1E+(2*n) | 0x50 (P)

16+n 20+(2*n) | Ox4F (O)

17+n 22+(2*n) |0x44 (D)

18+n 24+(2*n) |0x20 ()

19+n 26+(2*n) | 0x4D (M)

20+n 28+(2*n) 0x6F (0)

21+n 2A+(2*n) | 0x64 (d)

22+n 2C+(2*n) | 0x75 (u)

23+n 2E+(2*n) | Ox6C (1)

24+n 30+(2*n) 0x65 (e)

25+n 32+(2*n) 0x00 (Null)

26+n 34+(2*n) | Additional Product Information (m bytes)

27+n 36+(2*n) 0x00 (Null)}

27+n+m | 36+(2*n)+m |TPL_END = OxFF

D.25 CISTPL_MANFID

Defined in section 3.2.9 of [PCMCIA4].

4/18/13

CablelLabs®

255

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Table D.2-5 - CISTPL_MANFID

Byte | Addressex 7 6 5 4 3 2 1 0
0 00 TPL_CODE = CISTPL_MANFID (0x20)
1 02 TPL_LINK = Link to next tuple (at least 4)
2 04 TPLMID_MANF = PC Card manufacturer code
3 06 TPLMID_CARD = manufacturer information (Part Number and/or Revision)

D.2.6 CISTPL_CONFIG
Defined in section 3.3.4 of [PCMCIA4].

Table D.2-6 - CISTPL_CONFIG

Byte Address ey 7 6 5 4 3 2 1 0
0 00 TPL_CODE = CISTPL_CONFIG (0x1A)
1 02 TPL_LINK = 5+n+m+p
2 04 0 TPCC_RMSZ TPCC_RASZ
3 06 0 TPCC_LAST
4 08 n bytes of TPCC_RADR
5+n 0A+(2*n) m bytes of TPCC_RMSK
6+n+m 0C+(2* (n+m)) |19 bytes of TPCC_SBTPL
25+n+m | 32+(2* (n+m+p)) | TPL_END = OxFF

TPCC_RMSZ

TPCC_RASZ

TPCC_LAST

TPCC_RADR

TPCC_RMSK

TPCC_SBTPL

D.2.7 CCST-CIF

The number of bytes in the configuration registers Base Address in Attribute Memory
Space field (TPCC_RMSK) of this tuple is the value of this field plus 1. For the Card, this
value will depend on the manufacturer.

The number of bytes in the Configuration Register presence mask field (TPCC_RADR
field) of the tuple is this value plus 1. For the Card, this value will depend on the
manufacturer.

One byte field which contains the Configuration Index Number of the last configuration
described in the Card Configuration Table. Once the Host encounters this configuration,
when scanning for valid configurations, it SHALL have processed all valid
configurations. For the Card, this value will depend on the manufacturer.

The Base Address of the Configuration Registers, in an even byte of Attribute Memory
(address of Configuration Register 0), is given in this field. This Address SHALL NOT
be greater than OXFFE.

The presence mask for the Configuration Registers is given in this field. Each bit
represents the presence (1) or absence (0) of the corresponding Configuration Register.

The sub-tuple allows for additional configuration sub-tuples. The CCST_CIF sub-tuple
SHALL be implemented.

Defined in section 3.3.4.5.1 of [PCMCIA4]. The interface ID number (STCI_IFN) is 0x41. STCI_STR is defined to
be ‘OpenCable_POD_V1.00.

256

CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Table D.2-7 - CCST-CIF

Byte | Addressex 7 6 5 4 3 2 1 0
0 00 ST_CODE = CCST_CIF (0xC0)
1 02 ST_LINK = 0x0B
2 04 STCI_IFN = 0x41
3 06 STCI_IFN_1 = 0x03
4 08 STCI_STR (multiple bytes) 0x50 (P)
5 0A 0x4F (O)
6 ocC 0x44 (D)
7 OE Ox5F ()
8 10 0x56 (V)
9 12 0x31 (1)
10 14 O0x2E (.)
11 16 0x30 (0)
12 18 0x30 (0)
13 1A 0x00 (Null)
14 1C TPL_END OxFF
D.2.8 CISTABLE_ENTRY

Defined in section 3.3.2 of [PCMCIAA4]. For the first entry TPCE_INDX has both bits 6 (Default) and 7 (Intface) set.
The Configuration Entry Number is selected by the manufacturer. TPCE_IF = 0x04 - indicating Custom Interface 0.
TPCE_FS SHALL indicate the presence of both 1/0 and power configuration entries. TPCE_IO is a 1-byte field with
the value 0x22. The information means: 2 address lines are decoded by the Card and it uses only 8-bit accesses. The
power configuration entry - required by this specification, SHALL follow the PC Card Specification. Additionally,
two sub-tuples, STCE_EV and STCE_PD, SHALL be included.

The power descriptor for Vcc is modified to 1 A.

Table D.2-8 - CISTPL_CFTABLE_ENTRY

Byte |Address pex 7 6 5 4 3 2 1 0
0 00 TPL_CODE = CISTPL_CFTABLE_ENTRY (0x1B)
1 02 TPL_LINK == 0x33
2 04 TPCE_INDX = 0xC0 LOGICAL OR Config. Entry Numbery
3 06 TPCE_IF = 0x04
4 08 TPCE_FS = 0x0A
5 0A TPCE_PD Vcc Parameter Selection Byte = 0x38
6 0C TPCE_PD Vcc Static Current = Manufacturer value
7 OE TPCE_PD Vcc Average Current = 0x07
8 10 TPCE_PD Vcc Peak Current = 0x07
9 12 TPCE_PD Vpp Parameter Selection Byte = 0x78
10 14 TPCE_PD Vpp Static Current = Manufacturer value
11 16 TPCE_PD Vpp Average Current = 0x26
12 18 TPCE_PD Vpp Peak Current = 0x26

4/18/13

CablelLabs®

257

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Byte |Address pex 7 6 5 4 3 2
13 1A TPCE_PD Vpp Power Down Current = Manufacturer value
14 1C TPCE_IO = 0x22
15 1E ST_CODE = STCE_EV (0xC0)
16 20 ST_LINK =0x10
17 22 STEV_STRS = “NRSS_HOST” 0x4F (O)
18 24 0x50 (P)

19 26 0x45 (E)
20 28 Ox4E (N)
21 2A 0x43 (C)
22 2C 0x41 (A)
23 2E 0x42 (B)
24 30 0x4C (L)
25 32 0x45 (E)
26 34 Ox5F ()

27 36 0x48 (H)
28 38 0x4F (O)
29 3A 0x53 (S)
30 3C 0x54 (T)
31 3E 0x00 (Null)
32 40 OxFF

33 42 ST_CODE = STCE_PD (0xC1)
34 44 ST_LINK =0x12
35 46 STPD_STRS = “NRSS_CI_MODULE” 0x45 (O)
36 48 0x50 (P)
37 4A 0x45 (E)
38 4C Ox4E (N)
39 4E 0x43 (C)
40 50 0x41 (A)
41 52 0x42 (B)
42 54 0x4C (L)
43 56 0x45 (E)
44 58 0x5F()

45 5A 0x4D (M)
46 5C 0x4F (O)
47 5E 0x44 (D)
48 60 0x55 (V)
49 62 0x4C (L)
50 64 0x45 (E)
51 66 0x00 (Null)
52 68 OxFF

53 6A OxFF

258

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

D.29 STCE_EV
Defined in section 3.3.2.10.1 of [PCMCIA4]. Only the system name is ‘OPENCABLE_HOST’.

Table D.2-9 - STCE_EV

Byte | Addressgpex 7 6 5 4 3 2 1 0
0 00 ST_CODE = STCE_EV (0xC0)
1 02 ST_LINK = Link to next tuple (at least m-1)
2 04 STPD_STRS = A list of strings, the first being ISO 646 coded, and the rest

being coded as ISO alternate language strings, with the initial
escape character suppressed. Each string is terminated by a 0
byte, and the last string, if it does not extend to the end of the
subtuple, is followed by a Oxff byte.

D.2.10 STCE_PD
Defined in section 3.3.2.10.2 of [PCMCIA4]. Only the physical device name is ‘OPENCABLE_POD_MODULE’.

Table D.2-10 - STCE_PD

Byte | Addressex 7 6 5 4 3 2 1 0
0 00 ST_CODE = STCE_PD (0xC1)
1 02 ST_LINK = Link to next tuple (at least m-1)
2 04 STPD_STRS = A list of strings, the first being ISO 646 coded, and the rest

being coded as ISO alternate language strings, with the initial
escape character suppressed. Each string is terminated by a 0
byte, and the last string, if it does not extend to the end of the
subtuple, is followed by a Oxff byte.

D.2.11 CISTPL_END

Defined in section 3.1.2 of [PCMCIAA4]. If the CA Card contains other tuples in addition to those defined above then
these will come before CISTPL_END.

Table D.2-11 - CISTPL_END

Byte |Address pex 7 6 5 4 3 2 1 0

0 00 TPL_CODE = CISTPL_END(0XFF)

D.3 Configuration Option Register
Defined in section 4.15.1 of [PCMCIAZ2].

4/18/13 CablelLabs® 259

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Table D.3-1 - Configuration Option Register

Byte | Address ey 7 6 5 4 3 2 1 0

0 00 SRESET |LevIREQ |Function Configuration Index

D.4 Values to Enable CableCARD Personality Change
SRESET - 0 (Do not soft reset (POD reset) the Card)

LevIREQ - 1 (Card generates Level Mode interrupts).

Function Configuration Index - Lower 6 bits of TPCE_INDX.

D.5 Operation After Invoking CableCARD Personality Change

After the correct value is written into the configuration register, the Card SHALL wait a minimum of 10 usec before
switching from the PCMCIA to the Card interface.

260 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Annex E Previous Resource Versions and Associated APDUs

To ensure backwards compatibility when the Card and the Host negotiate a resource version and either the Host or
the Card only supports the lower version of the resource, the other device is expected to use the lowest common
version of that resource. The following section is a detail of the previous versions of the specific resources identified
in Table 9.3-2 as well as their associated APDUS.

Table E-1 - Deprecated Resource Identifier Values

Resource Class Type Version Resource identifier
Application Information 2 1 1 0x00020041
Conditional Access Support 3 1 1 0x00030041
Host Control 32 1 1 0x00200041
Host Control 32 1 2 0x00200042
MMI 64 1 1 0x00400041
Homing 17 1 1 0x00110041
Low Speed Communication 96 50 3 0x00605043
Low Speed Communication 96 80 3 0x00608043
Copy Protection 176 1 1 0x00B00041
Copy Protection* 176 2 1 0x00B00102
Generic IPPV Support 128 1 1 0x00800041
System Control 43 1 2 0x002B0042
System Control 43 1 3 0x002B0043

E.1 Low Speed Communication Resource - Version 2

The Low Speed Communication resource, originally defined in [NRSSB], was modified to support the identification
of the Forward Data Channel, the Reverse Data Channel and any type of Host’s cable modem implementations. The
modified Low Speed Communication resource was not a means for passing upstream/downstream OOB data to/from
the Card via the CHI. All upstream/downstream OOB data SHALL be passed directly to/from the Card via the CHI,
as defined in Section 5.3. Support of version 1 in [NRSSB] is optional.

Table E.1-1 - Low Speed Communication Resource (Version 2)

Resource Mode Class| Type |Version | Identifier (hex)

Low_Speed_Communication (Cable Return) [S-Mode/M-Mode | 96 * 2 0x006xxx2

The Low_Speed_Communication Identifier can be any value between 0060002 and 0060FFF2. A Low Speed
Communication resource instance is declared with a new specific identifier for each active Host communication
device.

The Low_Speed_Communication resource type (*) is updated to describe different and multiple Cable return
channels.

4/18/13 CablelLabs® 261

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Table E.1-2 - Device Type Values

Device Type Field Value
Telco modem 00-3F
Serial Ports 40-4F
Cable Return Channel 50-57
Reserved 60-7F
Host Modem (e.g. DOCSIS) 80-9F
Reserved AO-FF

The 10-bit resource type field for the Cable Return Channel is coded into two fields—an 8-bit Device Type field and
a 2-bit Device Number field.

Table E.1-3 - Cable Return Resource Type

Bit 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 Channel type Device no.
«— Device Type -
«— Resource Type -

The Device Type field consists of a set of five hard-coded bits, as defined in the following table, and a Channel Type
field. The Channel type field consists of three bits, each designating a separate channel as follows:

Channel Type Bit 4-2
FDC and RDC 000
FDC Only 001
Reserved 010-111

FDC and RDC: Identifies that the Host is equipped with a Forward Data Channel (FDC) and a Reverse Data Channel

(RDC).

FDC Only: Identifies that the Host is only equipped with a Forward Data Channel (FDC).

Low Speed Communication Resource Version 1 does not apply.

E.2 Copy Protection

E.2.1 Copy Protection - Type 2 Version 1 (Deprecated)

Table E.2-1 - Copy Protection Resource (Type 2 Version 1)

Resource Mode Class Type Version Identifier (hex)
Copy Protection S-Mode 176 2 1 0x00B00081
262 CableLabs” 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

E.2.1.1 CP_open_req()
The Type 2 Version 1 CP_open_req() APDU is the same as defined in section 11.3.1.1 of [CCCP].

E.2.1.2 CP_open_cnf()
The Type 2 Version 1 CP_open_cnf() APDU is the same as defined in section 11.3.1.2 of [CCCP].

E.2.1.3 CP_data_req() Card’s Authentication Data Message

This APDU object is issued by the Card to send its ID and random nonce to the Host to generate a new CP content
key.

Table E.2-2 - Card’s Authentication Data Message Syntax (Type 2 Version 1)

Message Syntax bits bytes Description
CP_data_req O {
CP_data_req_tag 24 3 Has the value: 0x9F 9002
Length_field) 8 1 | length_field () is defined in CEA-679-C (Part B) section
7. Since there is no other field followed, length_field()
shall have the following values set:
size_indicator = 0, length_value = 27
CP_system_id 8 1 Has the value: 2 (CableCARD-CP System)
Send_datatype_nbr 8 1 Has the value: 2
For(i=0; (32) (2*3)
i<Send_datatype_nbr; i++) {
Datatype_ID 8 1 When i = 0, Datatype 1D value = 6 (POD_ID)
8 1 When i = 1, Datatype_ID value = 12 (N_module)
Datatype_length 16 2 When i = 0, Datatype_length value = 8
16 2 When i = 1, Datatype_length value = 8
For (J=0; (128) (16)
Jj<Datatype_length; j++) {
Data_type 64 8 When i = 0, Data_type = POD_ID (6) and
64 8 When i = 1, Data_type = N_module
}
Request_datatype nbr 8 1 Has the value: 2
For(i=0; (16) 2*1D)
i<Request_datatype_nbr; i++)
{
Datatype_ID 8 1 When i = 0, Datatype_ID value =5 (Host_ID)
8 1 When i = 1, Datatype_ID value =11 (N_Host)
}
bs

4/18/13 CablelLabs® 263

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Table E.2-3 - CP_system_id Values

CP_system_id ID Value (Binary)

No compatible CP system supported XXX0 0000

System 1 XXX0 0001

System 2 XXX0 0010

Systems 3 to 30 XXX0 0011 to XXX1 1110
System 31 XXX11111

Message is Encrypted IXXX XXXX

Message is Not Encrypted OXXX XXXX

E.2.1.4 CP_data_cnf() Host’s Authentication Data Message

This object also contains Host’s ID and nonce so the Card can derive its CP content encryption key.

Table E.2-4 - Host’s Authentication Data Message Syntax (Type 2 Version 1)

Message Syntax bits bytes Description
CP_data_cnf O {
CP_data_cnf_tag 24 3 Has the value: 0x9F 9003
Length_field() 8 3 | length_field () is defined in CEA-679-C (Part B)
section 7. The length_field() shall have the following
values set:
size_indicator = 0, length_value = 20
CP_system_id 8 1 Values are listed in CP_system_id Table above.
Send_datatype_nbr 8 1 Has the value: 2
For(i=0; “48) | (2*3)
i<Send_datatype_nbr; i++) {
Datatype_ID 8 1 When i =0, Datatype_ID =5 (Host_ID); and
8 1 When i = 1, Datatype_ID = 11 (N_Host)
Datatype_length 16 2 When i = 0, Datatype_length = 6
16 2 When i = 1, Datatype_length = 8
For (J=0; (104) 13)
Jj<Datatype_length; j++) {
Data_type 40 5 When i =0, Data_type = Host_ID (5)
64 8 When i = 1, Data_type = N_Host;and
}
}
}

E.2.1.5 CP_sync_req() and CP_sync_cnf()
The Type 2 Version 1 CP_sync_req() and CP_sync_cnf() APDU is the same as defined in section 11.6 of [CCCP].

E.2.1.6 CP_data_req() Card’s Request for Host's AuthKey Message

The Type 2 Version 1 CP_datareq()Card’s Request for Host’s AuthKey Message APDU is the same as defined in
section 11.4.2.1 of [CCCP].

E.2.1.7 CP_data_cnf() Reply Message with Host's AuthKey

This APDU obiject is issued by the Host to send its authentication key (AuthKeyy) to the Card.

264 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Table E.2-5 - Host's Reply with AuthKey Message Syntax (Type 2 Version 1)

Message Syntax bits bytes Description
CP_data cnf O {
CP_data_cnf_tag 24 3 Has the value: 0x9F 9003
length _fieldO 8 1 length_field () is defined in CEA-679-C (Part B)
section 7. The length_field() in this message shall have
the following values set:
size_indicator = 0, length_value = 25
CP_system_id 8 1 Has the value: 2
Send_datatype_nbr 8 1 Has the value: 1
For(i=0; (16) @
i<Send_datatype_nbr; i++) {
Datatype_ID 8 1 Has the value: 22 (AuthKeyy,)
Datatype_length 16 2 Has the value: 20
For (J=0;
Jj<Datatype_length; j++)
{ Data_type 160 20 Data_type = AuthKeyy,
}
}
}
E.2.1.8 CP_data_req() SATP Key Generation
The Type 2 Version 1 CP_data_req() SATO Key Generation APDU is the same as defined in section 11.7 of
[CCCP].
E.2.1.9 CP_data_cnf() CCI SATP Key Generation

The Type 2 Version 1 CP_data_cnf() CCl SATP Key Generation APDU is the same as defined in section 11.7 of

[CCCP).

4/18/13

CablelLabs® 265

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

E.2.1.10 CP_data_req() CCI SATP Transmission

Table E.2-6 - CD_data_req() CCI SATP Transmission (Type 2 Version 1)

Message Syntax bits |bytes Description
CP_data_req({
CP_data_req_tag 24 3 Has the value: 0x9F 9002
length_field() 8 1 Has the value of 0x23 size_indicator = 0,
length_value = 35
CP_system_id 8 1 Has the value of 2
Send_datatype_nbr 8 1 Has the value of 3
for(i=0; i<Send_datatype_nbr;
i++)
{ Datatype_id 8 1 For i = 0, Datatype_id = 25 (CCI_data)
8 1 For i = 1, Datatype_id = 26 (program_number)
8 1 For i = 2, Datatype_id = 27 (CCl_auth)
Datatype_length 16 2 For i = 0, Datatype_length = 0x0001
16 2 For i = 1, Datatype_length = 0x0002
16 2 For i = 2, Datatype_length = 0x0014
for (J=0; j<Datatype_length;
i+t
{ Data_type 8 1 For i = 0, Data_type = CCI_data.
16 2 For i =1, Data_type = program_number.
160 20 For i = 2, Data_type = CCI_auth.
}
}
Request_datatype_nbr 8 1 Has the value of 2
for(i=0; i<Request_datatype_nbr;
i++)
{ Datatype_id 8 1 For i=0, Datatype_id = 28 (CCl_ack)
8 1 For i=1, Datatype_id =26 (program_number)
}
+

E.2.1.11 CP_data_cnf() CCI SATP Transmission
The Type 2 Version 1 CP_data_cnf() CCI Transmission APDU is the same as defined in section 11.7 of [CCCP].

E.2.2 Copy Protection Type 4 Version 1

Table E.2-7 - Copy Protection Resource (Type 4 Version 1)

Resource Mode Class Type Version Identifier (hex)

Copy Protection M-Mode 176 4 1 0x00B00101

E.2.3 CP_open_req()
The Type 4 Version 1 CP_open_req() APDU is the same as defined in section 11.3.1.1 of [CCCP].

E.2.4 CP_open_cnf()
The Type 4 Version 1 CP_open_cnf() APDU is the same as defined in section 11.3.1.2 of [CCCP].

266 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

E.2.5 CP_data req() Card’s Authentication Data Message

The Type 4 Version 1 CP_data_req() APDU is the same as defined in section 11.4.1.1 of [CCCP].

E.2.6 CP_data_cnf() Host’'s Authentication Data Message

The Type 4 Version 1 CP_data_cnf() APDU is the same as defined in section 11.4.1.2 of [CCCP].

E.2.7 CP_data_req() Card’s Request for Auth Key

The Type 4 Version 1 CP_data_req() APDU is the same as defined in section 11.4.2.1 of [CCCP].

E.2.8 CP_data_cnf() Reply Message with Host’s AuthKey

The Type 4 Version 1 CP_data_cnf() APDU is the same as defined in section 11.4.2.2 of [CCCP].

E.2.9 CP_data req() Card’'s CPKey Generation Message
The Type 4 Version 1 CP_data_req() APDU is the same as defined in section 11.5 of [CCCP].

E.2.10 CP_data_cnf() Host's CPKey Generation Message
The Type 4 Version 1 CP_data_cnf() APDU is the same as defined in section 11.5 of [CCCP].

E.2.11 CP_sync_req() Card’'s CPKey Ready Message

The Type 4 Version 1 CP_sync_req() APDU is the same as defined in section 11.6 of [CCCP].

E.2.12 CP_sync_cnf() Host's CPKey Ready Message

The Type 4 Version 1 CP_sync_cnf() APDU is the same as defined in section 11.6 of [CCCP].

E.2.13 CP_data_req() Card’s CCI Challenge Message
The Type 4 Version 1 CP_data_req() APDU is the same as defined in section 11.7 of [CCCP].

E.2.14 CP_data_cnf() Host's CCl Response Message
The Type 4 Version 1 CP_data_cnf() APDU is the same as defined in section 11.7 of [CCCP].

E.2.15 CP_data req() CCl Delivery Message
The Type 4 Version 1 CP_data_req() APDU is the same as defined in section 11.7 of [CCCP].

E.2.16 CP_data_cnf() CCl Acknowledgement Message
The Type 4 Version 1 CP_data_cnf() APDU is the same as defined in section 11.7 of [CCCP].

E.3 Specific Application Support - Type 1 Version 1

Table E.3-1 - Specific Application Support Resource

Resource Mode Class Type Version

Identifier (hex)

Specific Application Support S-Mode 144 1 1

0x00900041

E.3.1 SAS connect_reqgst()
The Type 1 Version 1 SAS_connect_rgst() APDU is the same as defined in Section 9.17.1.

4/18/13 CablelLabs®

267

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

E.3.2 SAS connect_cnf()
The Type 1 Version 1 SAS_connect_cnf() APDU is the same as defined in Section 9.17.2.

E.3.3 SAS data_reqgst()
The Type 1 Version 1 SAS_data_reqgst() APDU is the same as defined in Section 9.17.3.

E.3.4 SAS data_av()
The Type 1 Version 1 SAS_data_av() APDU is the same as defined in Section 9.17.4.

E.3.5 SAS data_av_cnf()
The Type 1 Version 1 SAS_data_av_cnf() APDU is the same as defined in Section 9.17.5.

E.3.6 SASserver_query()
The Type 1 Version 1 SAS_server_query() APDU is the same as defined in Section 9.17.6.

E.3.7 SAS server_reply()

The Type 1 Version 1 SAS_server_replyquery() APDU is the same as defined in Section 9.17.7.

E.4 Generic IPPV Support - Type 2 Version 1 (Deprecated)

Table E.4-1 -Generic IPPV Resource

Resource Mode Class Type Version Identifier (hex)

Generic IPPV Support S-Mode 128 2 1 0x00800081

This resource includes the following objects:

Table E.4-2 - Generic IPPV Support

APDU Name Tag Value Resource Host grgzz?enCARD
Program_req() 0x9F8F00 Generic IPPV Support -
Program_cnf() 0x9F8F01 Generic IPPV Support «
Purchase_req() 0x9F8F02 Generic IPPV Support -
Purchase_cnf() 0x9F8F03 Generic IPPV Support «
Cancel_req() 0x9F8F04 Generic IPPV Support -
Cancel_cnf() 0x9F8F05 Generic IPPV Support «
History_req() 0x9F8F06 Generic IPPV Support -
History_cnf() 0x9F8F07 Generic IPPV Support «

E.4.1 Program_req() & Program_cnf()

The Host’s navigation application SHALL use the Program_req() object to request the Card’s CA information on a
particular program.

The Card SHALL respond with the Program_cnf() object to the Program_req() request.

268 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Table E.4-3 - Program Request Object Syntax

Syntax No. of bits Mnemonic
program_req() {
program_req_tag 24 uimsbf
length_field()
transaction_id 8 uimsbf
transport_stream_id 16 uimsbf
program_number 16 uimsbf
source id 16 uimsbf
event_id 16 uimsbf
current_next indicator 8 uimsbf
reserved 7
current_next 1 uimsbf
program_info_length 8
for (i=0; i1 < program_info_length; i++) {
ca_descriptor()
/* ca descriptor at program level*/
}
b5

program_req_tag

transaction_id

transport_stream_id

program_number

source_id

event_id

current_next

program_info_length

ca_descriptor

0x9F8F00

This field is a unique number generated by the Host to uniquely identify this transaction.
The associated program_cnf() message will include this transaction_ID value. Hosts
SHALL maintain a transaction_ID counter and increment it by 1 (mod 256) for each new
transaction.

A 16-bit unsigned integer field, in the range 0x0000 to OXFFFF, that represents the
MPEG-2 Transport Stream ID associated with the program being requested.

A 16-bit unsigned integer number indicating the program that is being requested.

A 16-bit unsigned integer number indicating the source_id of the program that is being
requested. (This text should be inserted after the program_number field description.)

A 16-bit unsigned integer number specifying the event requested on the specified
program_number. If the Event_ID is unknown, this field SHALL be set to all Os.

Used to specify the current or next event on the specified program_number. Only relevant
when Event_ID is set to 0. When not set, indicates that the current event is being
requested. When set, indicates that the next event is requested.

These fields SHALL be used by the Host to provide the Card with every program level
ca_ descriptor of this MPEG program.

The CA descriptor SHALL be extracted from the PMT table by the Host navigation
application.

4/18/13

CablelLabs® 269

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Table E.4-4 - Program Confirm Object Syntax

Syntax No. of Mnemonic
bits
program_cnf() {
program_cnf_tag 24 uimsbf
length_field()
transaction_id 8 uimsbf
status_field 8 uimsbf
if (status_field == 0) {
option_nb 8 uimsbf
for (option_id=1; 1 <= option_nb;
option_id++) {
purchase_type 8 uimsbf
purchase_price 16 uimsbf
purchase_validation 8 uimsbf
expiration_date 32 uimsbf
program_start_time 32 uimsbf
initial_Free preview_duration 16 uimsbf
anytime_free_preview_duration 16 uimsbf
title_length 8 uimsbf
for (J=0; J < title_length; J++) {
title_txt 8 uimsbf
}
text_length 8 uimsbf
for (J=0; J < text_length; J++) {
text_txt 8 uimsbf
by
descriptor_Jlength 16 uimsbf
for (k=0; k < desc_length; k++) {
descriptor() var uimsbf
}
}
+

program_cnf_tag 0x9F8F01

transaction_id

status_field

option_nb

purchase_type

This field is the transaction_id number sent to the Card from the Host in the
transaction_id field from the program_request().

This field returns the status of the program_req(). If the Card can provide the
requested information on the pointed event, then Status_field SHALL be set to
0x00. Otherwise it will be set to one of the following values.

0x00 Request Granted

0x01 Request Denied - Card busy

0x02 Request Denied - Unknown Event
0x03-0xFF Reserved

This field defines the number of options under which a particular event can be
purchased.

This field characterizes how the event may be purchased.

0x00 Viewing Only

0x01 Viewing and Right to Copy Once
0x02 Viewing and Right to Copy Unlimited
0x03 Subscription

0x04 Purchased for Viewing Only

270

CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

0x05 Purchased with Viewing and Right to Copy Once
0x06 Purchased with Viewing and Right to Copy Unlimited
0x07 Un-Purchasable

0x08-0xFF Reserved

Viewing only This program may be purchased for viewing only, without the right to make any
copies, as defined by the operator.
Note: Through private agreements between a cable operator and content
providers, the cable operator determines the pricing and right to copy options
appropriate for its market.

Viewing and Right to Tape Copy Once This program may be purchased for viewing and with the right to copy
the analog video output and make one copy as defined by the operator.

Viewing and Right to Copy Unlimited This program may be purchased for viewing and with the right to make
unlimited copies as defined by the operator.

Subscription This program is a subscription event, and is not purchasable as an IPPV event.

Purchased for Viewing Only This program has already been purchased with viewing rights only, and without
the right to make any copies as defined by the operator.

Purchased with Viewing and Right to Tape Copy Once This program has already been purchased for viewing
with the right to tape and right to make one copy as defined by the operator.

Purchased with Viewing and Right to Copy Unlimited This program has already been purchased for viewing
with the right to make unlimited copies as defined by the operator.

Un-purchasable This is not a purchasable program.
Reserved These values are reserved.
purchase_price This 2-byte field provides event pricing information. The event price is given by

the Denomination unit multiplied by the Value. For example, if the
Denomination unit is 5 cents, and the Value is 79, the price would be $3.95. The
format is further defined in Table E.4-5.

Table E.4-5 - Purchase Price for Program Confirm

Bit 7 6 5 4 3 2 1 0
Denomination unit in cents (MS)
Value (LS)
purchase_validation This parameter defines the level of validation the Card expects to validate the

purchase. The values are as follows:

0x00 No CA validation required

0x01 PIN code required for Purchase transaction

0x02 PIN code required for Cancel transaction

0x03 PIN code required for History transaction

0x04 PIN code required for Purchase and Cancel transactions
0x05 PIN code required for Purchase and History transaction
0x06 PIN code required for Purchase, Cancel, History transactions
0x07-0xFF Reserved

expiration_date This field contains the expiration time of the event. It is a 32-bit unsigned integer
quantity representing the expiration time as the number of seconds since 12 AM,
January 6, 1980.

4/18/13 CablelLabs® 271

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

program_start_time A 32-bit unsigned integer, defining the start time of the program, in GPS seconds
since 12 AM January 6, 1980.

initial_free_preview_duration A 16-bit unsigned integer, defining the duration of the free preview period. The
duration is measured from the program_start_time.

anytime_free_preview duration A 16-bit unsigned integer, defining the duration of the Anytime_free_preview.

title_length, title_txt These fields allow the Card to provide a purchase option title.

text_length_txt These fields allow the Card to provide a purchase option text.

desc_length A 16-bit unsigned integer that indicates the length of the block of optional
descriptors to follow. If no descriptors are present, the length SHALL indicate
zero.

descriptor() A data structure of the form type-length-data, where type is an 8-bit descriptor

type identifier, length is an 8-bit field indicating the number of bytes to follow in
the descriptor, and data is arbitrary data. The syntax and semantics of the data
are as defined for the particular type of descriptor. The
content_advisory_descriptor() (as defined in section 6.7.4 of ATSC A/65) may
be used to indicate the rating of the program. The program rating SHALL be
coded according to the MPAA and V-Chip Rating and Content Advisories to be
used for parental restrictions on program purchases.

E.4.2 Purchase_req() & Purchase_cnf()

The Host’s navigation application SHALL use the purchase_req() object to request a purchase of a particular
program offer.

The Card SHALL respond with the purchase_cnf() object to the purchase_req() request.

Table E.4-6 - Purchase Request Object Syntax

Syntax No. of bits Mnemonic

purchase_req() {
purchase_req_tag 24 uimsbf
length_field(

transaction_id 8 uimsbf
option_id 8 uimsbf
PINcode_length 8 uimsbf
for (1=0; I<=PINcode_length; I++) {
PINcode_ byte 8 uimsbf
}
}
purchase_req_tag 0x9F8F02
transaction_id A number supplied by the Host issued from an 8-bit cyclic counter that identifies
each purchase_req() APDU and allows the Host to identify each purchase_cnf()
received from the Card.
option_id The possible ways to purchase an event, up to the maximum value.

PINcode_length, PINcode_byte These fields allow the Host navigation application to pass the requested PIN
code to the Card. In case no PIN code was requested, the PINcode_length is set
to “0’.

272 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Table E.4-7 - Purchase Confirm Object Syntax

Syntax No. of bits Mnemonic
p_enfQO { _
purchase_cnf_tag 24 uimsbf
length_field(Q
transaction_id 8 uimsbf
option_id 8 uimsbf
status_Tfield 8 uimsbf
IPPVslot _id 8 uimsbf
status_register 8 uimsbf
comment_length 8 uimsbf
for (1=0; I<= comment_length; I1++) {
comment_txt 8 uimsbf
}
3}

purchase_cnf_tag

transaction_id

option_id

status_field

0x9F8F03

A number supplied by the Host issued from an 8-bit cyclic counter that identifies
each purchase_req() APDU and allows the Host to identify each purchase_cnf()
received from the Card.

The possible ways to purchase an event, up to the maximum value.

This field returns the status of the purchase_req(). If the Card has validated the
purchase, then status_field shall be set to 0x00. Otherwise it will be set to one of
the following values. When there is more than one reason to deny the purchase,
status_field is set to the lowest applicable value. These values are as follows:

0x00 Purchase Granted

0x01 Purchase Denied - Card busy

0x02 Purchase Denied - Unknown Transaction ID or Option ID
0x03 Purchase Denied - Invalid PIN code

0x04 Purchase Denied - Event already purchased
0x05 Purchase Denied - Blackout is active

0x06 Purchase Denied - Credit Limit exceeded

0x07 Purchase Denied - IPPV Slot Limit is exceeded
0x08 Purchase Denied - Spending Limit is exceeded
0x09 Purchase Denied - Rating Limit is exceeded
Ox0A Purchase Denied - Check Comments
0x0B-0xFF Reserved

Purchase Denied IPPV_slot_limit is exceeded The Card is unable to make additional IPPV purchases until it

IPPVslot_id

Comment_length, Comment_txt

Status_register

has reported all of its unreported purchases to the headend.

If status_field is 0x00 (Purchase Granted) then IPPVslot_id will contain the
unique slot identifier that will later identify the purchasing transaction. If
status_field is any other value, IPPVslot_ID is reset to 0.

These fields allow the Card to explain, using plain text, why the purchase request
has been granted or denied.

This field identifies the CA status of the program event. The designation of each
bit is summarized in the following table.

4/18/13

CablelLabs® 273

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Table E.4-8 - Status Register for Purchase Confirm

Bit 7 6 5 4 3 2 1 0
VPU OPU UPU AUT FRE REP | CAN VIE

VPU issetto 1 when the program event has been purchased for viewing once.
OPU s set to 1 when the program event has been purchased for taping once.
UPU issetto 1 when the program event has been purchased for unlimited taping.
AUT issetto 1 when the program event has been authorized.

FRE issetto 1 when the free preview (initial or anytime) of the program event has been
viewed.

REP issetto 1 when the program event has been reported.
CAN s set to 1 when the program event has been cancelled.

VIE is set to 1 when the program event has been viewed.

E.4.3 Cancel_req() & Cancel_cnf()

The Host’s navigation application SHALL use the cancel_req() object to request a cancellation of a particular
purchased program offer.

The Card SHALL respond with the cancel_cnf() object to the cancel_req() request.

Table E.4-9 - Cancel Request Object Syntax

Syntax No. of bits Mnemonic
cancel_req(Q) {
cancel_reqg_tag 24 uimsbf
length_field()
IPPVslot_ID 8 uimsbf
PINcode_length 8 uimsbf
for (1=0; I<=PINcode_length; I++) {
PINcode_ byte 8 uimsbf
}
}
cancel_req_tag 0x9F8F04
IPPVslot_id If status_field is 0x00 (Purchase Granted) then IPPVslot_id will contain the

unique slot identifier that will later identify the purchasing transaction. If
status_field is any other value, IPPVslot_ID is reset to 0.

PINcode_length, PINcode_byte These fields allow the Host navigation application to pass the requested PIN
code to the Card. In case no PIN code was requested, the PINcode_length is set
to “0’.

274 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Table E.4-10 - Cancel Confirm Object Syntax

Syntax No. of bits Mnemonic
cancel _cnf(Q {
cancel_cnf_tag 24 uimsbf
length_field()
IPPVslot_id 8 uimsbf
status_Tfield 8 uimsbf
status_register 8 uimsbf
comment_length 8 uimsbf
for (1=0; I<= comment_length; I++) {
comment_txt 8 uimsbf
}
b5

cancel_cnf _tag

0x9F8F05

If status_field is 0x00 (Purchase Granted) then IPPVslot_id will contain the

unique slot identifier that will later identify the purchasing transaction. If

This field returns the status of the cancel_req(). If the Card has validated the

cancellation, then status_field SHALL be set to 0x00. Otherwise it will be set to
one of the following values. When there is more than one reason to deny the
cancellation, status_field is set to the lowest applicable value. These values are

IPPVslot_id
status_field is any other value, IPPVslot_ID is reset to 0.
status_field
defined as follows:
0x00 Cancellation Granted
0x01 Cancellation Denied - Card busy
0x02 Cancellation Denied - Unknown IPPV slot id
0x03 Cancellation Denied - Invalid PIN code
0x05-0x09 Reserved
0x0A Cancellation Denied - Check Comments
0x0B-0xFF Reserved
E.4.4 History req() & History_cnf()

The Host’s navigation application SHALL use the history_req() object to request the history of all purchased and

0x04 Cancellation Denied - Program already viewed or in progress

cancelled program events held in the Card’s memory.

The Card SHALL respond with the history_cnf() object to the history_req() request.

Table E.4-11 - History Request Object Syntax

Syntax No. of bits Mnemonic
history_req(Q {
history req_tag 24 uimsbf
length_field() uimsbf
PINcode_ length 8 uimsbf
for (1=0; I<=PINcode_length; I++) {
PINcode_byte 8 uimsbf
}
b5
history_req_tag 0x9F8F06
4/18/13 CableLabs® 275

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

PINcode_length, PINcode_byte These fields allow the Host navigation application to pass the requested PIN
code to get IPPV history on events that required a PIN Code validation for
History. In case no PIN code or a wrong PIN code is supplied, only history on
events that do not require PIN Code validation for History will be provided.

Table E.4-12 - History Confirm Object Syntax

Syntax No. of bits Mnemonic
history cnf() {
history cnf_tag 24 uimsbf
length_field()
status_Tfield 8 uimsbf
comment_length 8 uimsbf
for (i=0; i<= comment_length; i++) {
comment_txt 8 uimsbf
}
ippvslot_nb 8 uimsbf
for (i=0; i<= ippvslot_nb; i++) {
ippvslot_id 8 uimsbf
purchase_type 8 uimsbf
purchase_price 16 uimsbf
status_register 8 uimsbf
purchase_date 32 uimsbf
cancel _date 32 uimsbf
event_date 32 uimsbf
title_length 8 uimsbf
for (J=0; j < title_length; j++) {
title_txt 8 uimsbf
+
text_length 8 uimsbf
for (J=0; j < text_length; j++) {
text_txt 8 uimsbf
s
descriptor_length 16 uimsbf
for (k=0; k < desc_length; k++) {
descriptor() var
}
}
b5
history_cnf_tag 0x9F8F07
Status_field This field returns the status of the history_req(). If the Card has validated the

History request, then status_field SHALL be set to 0x00. Otherwise it will be set

to one of the following values.
0x00 History Granted

0x01 History Denied - Card busy

0x02 Reserved

0x03 History Denied - Invalid PIN code

0x04-0x09 Reserved

Ox0A History Denied - Check Comments

0x0B-0xFF Reserved

Purchase_date, Cancel_date, Event_date These fields contain respectively the purchase time, the cancel time and
the starting time of the event. They are 32-bit unsigned integer quantities
representing the time as the number of seconds since 12 AM, January 6, 1980.

276 CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

If the Cancel_date field contains all FFFFs, this indicates that no appropriate
value is available for this field.

E.5 Generic Diagnostics Type 1 Version 1

Table E.5-1 - Generic Diagnostics Support Resource

Resource Mode Class Type Version Identifier (hex)

Generic Diagnostic Support S-Mode 260 1 1 0x01040041

The following values SHALL be used as the diagnostic_id for Type 1 Version 1 of the Generic Diagnostic Support
resource.

Table E.5-2 - Diagnostic Ids

Diagnostic Value
Set-top memory allocation 0x00
Application version number 0x01
Firmware version 0x02
MAC address 0x03
FAT status 0x04
FDC status 0x05
Current Channel Report 0x06
1394 Port 0x07
Reserved 0x08 - FF

4/18/13 CablelLabs® 277

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Table E.5-3 - diagnostic_cnf APDU Syntax (Type 1, Version 1)

Syntax No. of Bits Mnemonic
diagnostic _cnf() {
diagnostic_cnf_tag 24 uimsbf
length_field()
number_of _diag 8 uimsbf
for (i=o0; i<number_of diag; i++) {
diagnostic_id 8 uimsbf
status_Tfield 8 uimsbf
if (status_field == 0x00) {
if (diagnostic_id == 0x00) {
memory_report()
}
if (diagnostic_id == 0x01) {
software_ver_report()
}
if (diagnostic_id == 0x02) {
firmware_ver_report()
}
if (diagnostic_id == 0x03) {
MAC_address_report()
}
if (diagnostic_id == 0x04) {
FAT _status_report()
}
if (diagnostic_id == 0x05) {
FDC_status_report()
}
if (diagnostic_id == 0x06) {
current_channel_report(Q)
}
if (diagnostic_id == 0x07) {
1394 port_report()
}
if (diagnostic_id == 0x08) {
DVI_status report()
}
}
b5
For field descriptions of diagnostic_cnf() APDU, see Section 9.16.2.
E.5.1 memory_report
Memory reports SHALL contain the memory parameters associated with the Host.
Table E.5-4 - memory_report (Type 1 Version 1)
Syntax No. of Bits Mnemonic
memory_report() {
number_of_memory 8 uimsbf
if (i=0; i<number_of memory; i++) {
memory_type 8 uimsbf
memory_size 32 uimsbf
}
bs
278 CableLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

number_of _memory The number of memory types being reported in this message.

memory_type Designates the type of memory that is being reported.

0x00 ROM

0x01 DRAM

0x02 SRAM

0x03 Flash

0x04 NVM

0x05 Internal Hard drive, no DRM (Digital Rights Management) support
0x06 Video memory

0x07 Other memory

0x08 - FF Reserved

memory_size Designates the physical size of the specified memory type. The units are
kilobytes, defined to be 1,024 bytes.

E.5.2 software_ver_report

The Type 1 Version 1 software_ver_report() APDU is the same as defined in Section 9.16.3.2.

E.5.3 firmware_ver_report

The Type 1 Version 1 firmware_ver_report() APDU is the same as defined in Section 9.16.3.3.

E.5.4 MAC_address_report
The MAC address report SHALL contain the MAC address parameters associated with the Host.

Table E.5-5 - MAC_address_report (Type 1 Version 1)

Syntax No. of Bits Mnemonic
MAC_address_report() {
number_of addresses 8 uimsbf
for (i=0; i<number_of addresses; i++) {
MAC_address_type 8 uimsbf
number_of _bytes 8 uimsbf
for (J=0; j<number_of bytes; j++) {
MAC_address_byte 8 uimsbf
}
}
}
number_of addresses Total number of MAC addresses contained in the report.
MAC _address_type Type of device associated with reported MAC address.
0x00 No addressable device available
0x01 Host
0x02 1394 port
0x03 USB
0x04 DOCSIS
0x05 Ethernet
0x06-0xFF Reserved
number_of bytes The total number of bytes required for the MAC address.
MAC _address_byte One of a number of bytes that constitute the Media Access Control (MAC)

address of the Host device. Each byte represents two hexadecimal values (xx) in

the range of 0x00 to OXFF.

4/18/13 CablelLabs®

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

E.5.5 FAT_status_report
The Type 1 Version 1 FAT _status_report() APDU is the same as defined in section 9.16.3.5.

E.5.6 FDC_Status_report

In response to a FDC status report request, the Host SHALL reply with an FDC status report, unless an error has
occurred.

Table E.5-6 - FDC_status_report (Type 1 Version 1)

Syntax No. of Bits Mnemonic
FDC_report() {
FDC_center_freq 16 uimsbf
reserved 6 “111111°
carrier_lock status 1 bslbf
packet_sync_status 1 bslbf
b5
FDC_center_freq Indicates the frequency of the FDC center frequency, in MHz (Frequency = value * 0.05
+ 50 MHz).
Table E.5-7 - FDC Center Frequency Value
Bit |15|14 |13 |12 |11 |10 |9 | 8|7 |6 |5 |4]3|2|1]0
Frequency (MS) Frequency (LS)
carrier_lock_status Indicates if the current carrier is locked or not locked.
Ob Not locked
1b Locked
packet_sync_status Indicates if the current FDC packets are in sync

Ob Not in sync
1b In sync

E.5.7 current_channel_report

The Type 1 Version 1 current_channel_report() APDU is the same as defined in Section 9.16.3.7.

E.5.8 1394 port_report

In response to a 1394 Port report request, the Host SHALL reply with a 1394 port_report, unless an error has
occurred.

280 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Table E.5-8 - 1394_port_report (Type 1 Version 1)

Syntax No. of Bits Mnemonic
1394 port_report() {
reserved 3 “111°
loop_status 1 bslbf
root_status 1 bslbf
cycle_master_status 1 bslbf
port_1 connection_status 1 bslbf
port_2 connection_status 1 bslbf
total _number_of nodes 16 uimsbf
3}
loop_status Indicates if a loop exists on the 1394 bus.

Ob No loop exists
1b Loop exists

Indicates if the Host device is the root node on the 1394 bus.

Ob Not root
1b Is root

Indicates if the Host device is the cycle master node on the 1394 bus.

Ob Not cycle master
1b Is cycle master

Indicates if port 1 of the 1394 PHY is connected to a 1394 bus.
Ob Not connected
1b Connected

Indicates if port 2 of the 1394 PHY is connected to a 1394 bus.
Ob Not connected
1b Connected

Indicates the total number of nodes connected to the 1394 bus. A maximum of
65,535 nodes MAY exist, excluding the Host (a maximum of 64 nodes with a
maximum of 1,024).

root_status

cycle_master_status

port_1_connection_status

port_2_connection_status

total_number_of nodes

E.6 System Control
Table E.6-1 - System Control Resource
Resource Mode Class Type Version Identifier (hex)
System Control S-Mode/ M-Mode 43 1 1 0x002B0041
System Control S-Mode/ M-Mode 43 1 2 0x002B0042
System Control S-Mode/ M-Mode 43 1 3 0x002B0043
4/18/13 CableLabs® 281

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

E.6.1 host_info_request()

Table E.6-2 - host_info_request (Type 1 Version 1)

Syntax No. of bits Mnemonic
host_info_request() {
host_info_request_tag 24 uimsbf
length_field()
supported_download_type 8 uimsbf
host_info_request_tag Value = 0x9F9C00
supported_download_type Defines the type of Common Download method utilized by the Headend.

0x00 OOB Forward Data Channel method
0x01 Reserved

0x02 DOCSIS only

0x03 - Ox FF Reserved

The Type 1 Version 2 and Type 1 Version 3 of the host_info_request() APDU is the same as defined in section
6.2.1 of [CDL].

E.6.2 host_info_response()

The Type 1 Version 1, Type 1 Version 2 and Type 1 Version 3 of the host_info_response() APDU is the same as
defined in section 6.2.2 of [CDL].

E.6.3 code_version_table()
The Type 1 Version 1 code_version_table() APDU is the same as defined in section 6.2.3 of [CDL].

Table E.6-3 - code version table (Type 1 Version 2)

Syntax No. of bits Mnemonic
code_version_table() {
code_version_table_ tag 24 uimsbf
length_field(Q
configuration_count_change 8 uimsbf
number of descriptors 8 uimsbf
for(i=0;i<number of descriptors;i++){
descriptor_tag 8 uimsbf
descriptor_len 8 uimsbf
descriptor_data()
}
download_type 4 uimsbf
download_command 4 uimsbf
if (download_type == 00) {
frequency_vector 16 uimsbf
modulation_type 8 uimsbf
reserved 3 uimsbf
PID 13 uimsbf
}

282 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Syntax No. of bits Mnemonic
if (download_type == 01) {
DSG_BT_address 48 uimsbf
source_ip_address 64 uimsbf
destination_ip_address 64 uimsbf
source_port_number 16 uimsbf
destination_port_number 16 uimsbf
application_id 16 uimsbf
PID 13 uimsbf
}
if (download_type == 02) {
tftp_server_address 64 uimsbf
)
code_file_name_length 8 uimsbf
for(i=0;i<software_filename_length;i++){
code_file_name byte 8 uimsbf
}
code_verification_certificate()
}

code_version_table tag

configuration_count_change

number_of descriptors

descriptor_tag

Value = 0x9F9C02

Incremented by one (modulo the field size) by the Headend whenever any of the
values of the Code Version Table for a given Host, defined by combination of
the OUI and hardware_version_id or Host MAC address or Host 1D, has been
changed.

Note (Informative): In some events (for example, a failover or hot swap at the
headend) discontinuities in the value of configuration change count may occur.
After any event that can cause a discontinuity in the configuration change count,
the Headend MUST ensure that the configuration change count is incremented
(modulo the field size) between two subsequent CVT messages (even if the CVT
message does not change). This is done to ensure that, after a failover or hot
swap in the headend, the new configuration change count does not match the
configuration change count used before the failover event. When the
configuration change count is changed, the Card SHALL pass a CVT to the Host
for verification if download is required.

SHALL be greater than 2; mandatory descriptors are vendor_id and
hardware_version_id.

Possible Values:

0 descriptor_data is vendor_id (mandatory, descriptor_len = 24). Unique
Identifier (the vendor’s OUID) assigned to each vendor. Host sends the
vendor ID to the Card to allow the Card to filter the CVT. A value of
0x0000 is not valid.

1 descriptor_data is hardware_version_id (mandatory, descriptor_len =
32), Unique Hardware identifier assigned to each type of hardware from
a particular vendor. Host sends the hardware version ID to the Card to
allow the Card to filter the CVT. This can be transmitted to the
Headend by the Card. A value of 0x0000 SHALL NOT be permitted.

4/18/13

CablelLabs® 283

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

download _type

download_command

frequency_vector

modulation_type

PID

tftp_server_address

DSG_BT_address

source_ip_address

destination_ip_address

2 host. MAC_addr (optional, descriptor_len = 48), Host MAC address
used for optional filtering if non-zero.

3 host_ID (optional, descriptor_len = 40), Host device’s unique
identification number used for optional filtering if non-zero or this
parameter is present.

4-127 reserved for future standardization

128-255 optional, for use by Card-Host pairs, where both Card and
Host support the same implementation of the Specific Application
Resource. Other Card-Host pairs SHALL skip these descriptors using
descriptor_len value.

Way of delivery of the DSM-CC data carousel (supplied by Headend):

0x00 In-Band FAT Channel
0x01 DSG Channel
0x02 DOCSIS tftp

When to download (supplied by Headend):

0x00 Download Now - If the vendor_id and hardware_version_id and
optionally either a host. MAC_addr or host_id in the descriptor_data in
the CVT matches that of the Host and the code_file_name in the CVT
does not match that of the Host, then the download SHALL be initiated.
If there is a match of the vendor_id and hardware_version_id, but the
code_file_name in the CVT matches that of the Host, then the
download SHALL NOT be initiated.

0x01 Deferred Download - The initiation of the download SHALL be
deferred according to policies set in an OCAP Monitor Application. In
the event that a Monitor Application is not available or no policies have
been set, the Download Now scenario SHALL apply.

0x02-03 reserved

Frequency of the download carousel. The frequency is coded as the number of
0.25 MHz intervals.

Possible Values:

0x00 Reserved

0x01 FAT Channel/QAM64
0x02 FAT Channel/QAM?256
0x03 - OXFF Reserved

Stream identifier of the code file.

The IP address of the TFTP server where the code image resides. The code file
name, as defined via the code_file_name_byte field, contains the complete
directory path and name of the file to download. The address is 64 bits in length
to support IPv6.

MAC address of the DSG broadcast tunnel.

The source IP address associated with the download applicable to the Host. This
is utilized to allow the Host to better filter packets in the tunnel. If the value is
zero, then the Host SHALL ignore the source IP address of the packet and
provide an additional filter at either the destination IP address (if defined) or a
layer below the IP layer (e.g., Port and/or MPEG section filtering).

The destination IP address associated with the download applicable to the Host.
This is utilized to allow the Host to better filter packets in the tunnel. If the value
is zero, then the Host SHALL ignore the destination IP address of the packet and
provide an additional filter at either the source IP address (if defined) or a layer
below the IP layer (e.g., Port and/or MPEG section filtering).

284

CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

source_port_number

destination_port_number

application_id

PID

code_file_name_length

code_file_name_byte

code_verification_certificate

The UDP source port number associated with the download applicable to the
Host. This is utilized to allow the Host to better filter packets in the tunnel. If the
value is zero, then the Host SHALL ignore the source UDP header and provide
an additional filter at a layer below the UDP layer (e.g., MPEG section filtering).

The UDP destination port number associated with the download applicable to
the Host. This is utilized to allow the Host to better filter packets in the tunnel. If
the value is zero, then the Host SHALL ignore the UDP header and provide an
additional filter at a layer below the UDP layer (e.g., MPEG section filtering).

A DSG data stream identifier, associated with Type 4 Broadcast Tunnel
information. The application_id value SHALL be greater than 0. Applicable only
for the Host operating in DSG Advanced mode. This is utilized to allow the Host
to build a DSG data stream routing table. This application ID SHALL be
associated with the filter setting, for a Type 4 Broadcast Tunnel, passed to the
Host in the configure_advanced_DSG() APDU.

A DSG data stream identifier, associated with DSG Tunnel information.
Applicable only for the Host operating in DSG Basic mode. This is utilized to
allow the Host to open the MPEG section service_type data flow, from the Card
to the Host, to receive an MPEG sections with code object delivered to the Card
from DSG Broadcast Tunnel.

Length of code file name.

Name of software upgrade file on carousel. This is the name of the Code File
(see [SCTE23-2]) that is on the broadcast carousel as well as in Host Flash. For
download_type = 0x01, 0x02, and 0x04, the DSM-CC data carousel SHALL
carry the Code File Name in the Download Info Indication message,
module_info_byte loop. All bytes in the code_version_table() APDU
code_file_name_byte loop and the associated byte in the Download Info
Indication message module Info Byte loop SHALL be the same. The Download
Info Indication compatibility Descriptor SHALL be ignored by the Host when
using the OOB forward download method.

Authentication certificate(s) per [SCTE23-2].

4/18/13

CablelLabs® 285

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Table E.6-4 - code version table (Type 1 Version 3)

s

code_verification_certificate()

}

Syntax No. of Mnemonic
bits
code_version_table() {
code_version_table_tag 24 uimsbf
length_field()
configuration_count_change 8 uimsbf
number of descriptors 8 uimsbf
for(i=0;i<number of descriptors;i++){
descriptor_tag 8 uimsbf
descriptor_len 8 uimsbf
descriptor_data()
download_type 4 uimsbf
download_command 4 uimsbf
if (download_type == 00) {
location_type 8 uimsbf
if (location_type == 0) {
source_1D 16 uimsbf
}
if (location_type == 1) {
frequency_vector 16 uimsbf
modulation_type 8 uimsbf
reserved 3 uimsbf
PID 13 uimsbf
}
if (location_type == 2) {
frequency_vector 16 uimsbf
modulation_type 8 uimsbf
program_number 16 uimsbf
h
if (download_type == 01) {
DSG_BT_ address 48 uimsbf
source_ip_address 128 uimsbf
destination_ip_address 128 uimsbf
source_port_number 16 uimsbf
destination_port_number 16 uimsbf
application_id 16 uimsbf
reserved 3 uimsbf
PID 13 uimsbf
}
if (download_type == 02) {
tftp_server_address 128 uimsbf
code_file_name_length 8 uimsbf
for(i=0;i<software_filename_length;i++){
code_file_name_ byte 8 uimsbf
number_of cv_certificates 8 uimsbf
for(i=0;i<number_of _cv_certificates;++){
certificate_type 8 uimsbf

code_version_table tag

Value = 0x9F9C02

286

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

configuration_count_change

number_of descriptors

descriptor_tag

download _type

download_command

Incremented by one (modulo the field size) by the Headend whenever any of the
values of the Code Version Table for a given Host, defined by combination of
the OUI and hardware_version_id, file name Host MAC address or Host ID, has
been changed.

Note (Informative): In some events (for example a failover or hot swap at the
headend) discontinuities in the value of configuration change count may occur.
After any event that can cause a discontinuity in the configuration change count,
the Headend MUST ensure that the configuration change count is incremented
(modulo the field size) between two subsequent CVT messages (even if the CVT
message does not change). This is done to ensure that, after a failover or hot
swap in the headend, the new configuration change count does not match the
configuration change count used before the failover event. When the
configuration change count is changed, the Card SHALL pass a CVT to the Host
for verification if download is required.

SHALL be greater than two; mandatory descriptors are vendor_id and
hardware_version_id.

Possible Values:

0 descriptor_data is vendor_id (mandatory, descriptor_len = 24). Unique
Identifier (the vendor’s OUID) assigned to each vendor. Host sends the
vendor ID to the Card to allow the Card to filter the CVT. A value of
0x0000 is not valid.

1 descriptor_data is hardware_version_id (mandatory, descriptor_len =
32), Unique Hardware identifier assigned to each type of hardware from
a particular vendor. Host sends the hardware version ID to the Card to
allow the Card to filter the CVT. This can be transmitted to the
Headend by the Card. A value of 0x0000 SHALL NOT be permitted.

2 host. MAC_addr (optional, descriptor_len = 48), Host MAC address
used for optional filtering if non-zero.

3 host_ID (optional, descriptor_len = 40), Host device’s unique
identification number used for optional filtering if non-zero or this
parameter is present.

4-127 reserved for future standardization.

128-255 optional, for use by Card-Host pairs, where both Card and
Host support the same implementation of the Specific Application
Resource. Other Card-Host pairs SHALL skip these descriptors using
descriptor_len value.

Code file delivery method (the DSM-CC data carousel will be used for
download_type 00 and download_type 01):

0x00 In-Band FAT Channel
0x01 DSG Channel
0x02 DOCSIS tftp

When to download (supplied by Headend):

0x00 Download Now - If the vendor_id and hardware_version_id and
optionally either a host. MAC_addr or host_id in the descriptor_data in
the CVT matches that of the Host and the code_file_name in the CVT
does not match that of the Host, then the download SHALL be initiated.
If there is a match of the vendor_id and hardware_version_id, but the
code_file_name in the CVT matches that of the Host, then the
download SHALL NOT be initiated.

0x01 Deferred Download - The initiation of the download SHALL be
deferred according to policies set in an OCAP Monitor Application. In

4/18/13

CablelLabs® 287

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

location_type

source_ID

frequency_vector

modulation_type

PID

program_number

DSG_BT_address

source_ip_address

destination_ip_address

source_port_number

destination_port_number

application_id

PID

the event that a Monitor Application is not available or no policies have
been set, the Download Now scenario SHALL apply.
0x02-03 reserved

Determines nature of the locator for DSM-CC data carousel carrying code file.

0x00 Carousel located by source_id

0x01 Carousel located by frequency vector and PID.
0x02 Carousel located by frequency and program number.
0x03-0xFF Reserved

The VCT source ID that is associated with each program source. The source ID
is utilized to locate the frequency on which the DSM-CC data carousel is
multiplexed.

Frequency of the download carousel. The frequency is coded as the number of
0.25 MHz intervals.

Possible Values:

0x00 Reserved

0x01 FAT Channel/QAM64
0x02 FAT Channel/QAM256
0x03 - OXFF Reserved

Stream identifier of the code file.

Defines the program number in the transport stream that identifies the DSM-CC
data carousel.

MAC address of the DSG broadcast tunnel.

The source IP address associated with the download applicable to the Host. This
is utilized to allow the Host to better filter packets in the tunnel. If the value is
zero, then the Host SHALL ignore the source IP address of the packet and
provide an additional filter at either the destination IP address (if defined) or a
layer below the IP layer (e.g., Port and/or MPEG section filtering).

The destination IP address associated with the download applicable to the Host.
This is utilized to allow the Host to better filter packets in the tunnel. If the value
is zero, then the Host SHALL ignore the destination IP address of the packet and
provide an additional filter at either the source IP address (if defined) or a layer
below the IP layer (e.g., Port and/or MPEG section filtering).

The UDP source port number associated with the download applicable to the
Host. This is utilized to allow the Host to better filter packets in the tunnel. If the
value is zero, then the Host SHALL ignore the source UDP header and provide
an additional filter at a layer below the UDP layer (e.g., MPEG section filtering).

The UDP destination port number associated with the download applicable to
the Host. This is utilized to allow the Host to better filter packets in the tunnel. If
the value is zero, then the Host SHALL ignore the UDP header and provide an
additional filter at a layer below the UDP layer (e.g., MPEG section filtering).

A DSG data stream identifier, associated with Type 4 Broadcast Tunnel
information. The application_id value SHALL be greater than 0. Applicable only
for the Host operating in DSG Advanced mode. This is utilized to allow the Host
to build a DSG data stream routing table. This application ID SHALL be
associated with the filter setting for a Type 4 Broadcast Tunnel, passed to the
Host in the configure_advanced_DSG() APDU.

A DSG data stream identifier, associated with DSG Tunnel information.
Applicable only for the Host operating in DSG Basic mode. This is utilized to

288

CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

allow the Host to open the MPEG section service_type data flow, from the Card
to the Host, to receive an MPEG sections with code object delivered to the Card
from DSG Broadcast Tunnel.

tftp_server_address The IP address of the TFTP server where the code image resides. The code file
name, as defined via the code_file_name_byte field, contains the complete
directory path and name of the file to download. The address is 128 bits in length
to support IPv6.

code_file_name_length Length of code file name.

code_file_name_byte Name of software upgrade file on carousel. This is the name of the Code File
(see [SCTE23-2]) that is on the broadcast carousel as well as in Host Flash. For
download_type = 0x00, 0x01, and 0x02, the DSM-CC data carousel SHALL
carry the Code File Name in the Download Info Indication message,
module_info_byte loop. All bytes in the code_version_table() APDU
code_file_name_byte loop and the associated byte in the Download Info
Indication message module Info Byte loop SHALL be the same.

number_of cv_certificates The number of code verification certificates.

certificate_type Determines the type of CVC

0x00 Manufacturer CVC
0x01 Co-Signer CVC
0x02 - OXFF Reserved

code_verification_certificate Code Verification Certificate per [SCTE23-2].

E.6.4 code_version_table reply()

The Type 1 Version 1, Type 1 Version 2 and Type 1 Version 3 of the code_download_table_reply() APDU is the
same as defined in section 6.2.4 of [CDL].

E.6.5 host_download_control()

The Type 1 Version 1, Type 1 Version 2 and Type 1 Version 3 of the host_download_control() APDU is the same
as defined in section 6.2.3 of [CDL].

E.6.6 host_download_command() Type 1 Version 1 (Deprecated)

The Card SHALL utilize the host_download_command() APDU to command a Host to initiate a download when
using the two-way Inband FAT channel commanded download method. The Card SHALL also utilize this APDU to
command a Host to use the values defined within the APDU to locate CVDTSs instead of the source 1D when using
the one-way Inband Forward Application Transport Channel broadcast download method.

Table E.6-5 - host_download_command (Type 1 Version 1)

Syntax No. of bits Mnemonic
host_download command() {
host_download_control_tag 24 uimsbf
length_field(Q
host_command 8 uimsbf
location_type 8 uimsbf
if(location_type == 00){
source_id 16 uimsbf

}
if(location_type == 01){

frequency_vector 16 uimsbf
transport_value 8 uimsbf
stream_ID 8 uimsbf

4/18/13 CablelLabs® 289

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

bs

Syntax No. of bits Mnemonic
if(stream_ID == 00){

Reserved 3 uimsbf

PID 13 uimsbf
}
if(stream_ID == 01){

program_number 16 uimsbf

host_download_control_tag

host_command

location_type

source_id

frequency_vector

transport_value

stream_ID

PID

program_number

Value = 0x9F9C05

Defines the priority of download.

0x00 Check for download during next cycle using source_id
0x01 Download now

0x02 Deferred download

0x03 Download now, no exceptions

0x04-0xFF Reserved

Defines the method in which the Host device is to utilize to acquire the DSM-CC
stream.

0x00 Transport Stream location is defined in the channel map and may be
found via the defined source ID.

0x01 Indicates that the Host device is to use the frequency, modulation type,
and PID or program number to acquire the DSM-CC stream.

0x02 - OXFF Reserved

The VCT source ID that is associated with each program source. The source ID
is utilized to locate the frequency that the DSC-CC data carousel is multiplexed
on. A value of zero indicates that the download is located via the previously
assigned source ID.

Frequency of the download carousel. The frequency is coded as the number of
0.25 MHz intervals. If download_type parameter equals 02, this parameter
SHALL be set to 0.

Defined values as follows:

0x00 DOCSIS channel
0x01 FAT channel/QAMG64
0x02 FAT channel/QAM256
0x03-0xFF Reserved
Defines the way in which the DSM-CC is to be located.
0x00 Indicates that the DSM-CC stream is to be located utilizing the defined
PID.
0x01 Indicates that the stream is to be located utilizing the program number.
0x02 - OXx FF Reserved

Packet identifier of the stream that contains the code file.

Defines the program number in which the DSM-CC stream resides.

For Type 1 Version 2 and Type 1 Version 3, the host_download_command() APDU was removed, as CVDT

signaling is not supported.

290

CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

E.7 Extended Channel

This resource has six versions: Version 1 of this resource is required for Hosts that do not have an embedded High
Speed Host (DOCSIS) Modem; Version 2 of this resource is required for Hosts that do have an embedded High
Speed Host (DOCSIS) Modem and support the DSG basic mode; Version 3 of this resource is required for Hosts
that have an embedded High Speed Host (DOCSIS) Modem and support both Basic and Advanced DOCSIS Set-top
Gateway (DSG). Version 4 of this resource is required for Hosts that have an embedded High Speed Host (DOCSIS)
Modem and support both Basic and Advanced DOCSIS Set-top Gateway (DSG) with the additional message_type
0x05, eCM reboot, in the DSG_message() APDU. Version 5 modifies the APDUSs to support IPv6. Version 6 is
defined in Section 9.14 of this specification. Version 4 of this resource includes support for all of the objects defined
by versions 3, 2, and 1. Version 6 of this resource includes support for all of the objects defined by version 5.

Table E.7-1 - Extended Channel Resource

Resource Mode Class Type Version Identifier (hex)
Extended Channel S-Mode/ M-Mode 160 1 1 0x00A00041
Extended Channel S-Mode/ M-Mode 160 1 2 0x00A00042
Extended Channel S-Mode/ M-Mode 160 1 3 0x00A00043
Extended Channel S-Mode/ M-Mode 160 1 4 0x00A00044
Extended Channel S-Mode/ M-Mode 160 1 5 0x00A00045

Unless otherwise indicated, the APDUs for a version are the same as in Section 9.14 of this specification.
E.7.1 new_flow_req() Type 1 Version 1 and Type 1 Version 2

Table E.7-2 - new_flow_req APDU (Type 1 Version 1 and Type 1 Version 2)

Syntax No. of Bits Mnemonic
new_flow _req() {
new_flow_req_tag 24 uimsbf
length_field()
service_type 8 uimsbf
if (service_type == mpeg_section) {
Reserved 3 bslbf
PID 13 uimsbf
if (service_type == ip_u) {
MAC_address 48 uimsbf
option_field_length 8 uimsbf
for (i=0; i<option_Ffield length; i++) {
option_byte 8 uimsbf
}
h _ _
if (service_type == ip_m) {
Reserved 4 bslbf
multicast_group_ ID 28 uimsbf
3}
new_flow_req_tag 0x9F8E00
service_type Defines the type of requested service.
0x00 MPEG section
4/18/13 CableLabs® 291

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

PID

MAC _address
option_field_length
option_byte

multicast_group_ID

0x01 1P unicast (ip_u)
0x02 1P multicast (ip_m)
0x03 DSG

0x04-0xFF Reserved

The 13-bit MPEG-2 Packet Identifier associated with the flow request. The Card
SHALL be responsible for filtering the MPEG-2 transport stream and delivering
only MPEG table sections delivered on transport packets with the given value of
PID.

The 48-bit MAC address of the entity requesting the unicast IP flow.
The number of bytes in the following for loop.

These bytes correspond to the options field of a DHCP message. One or more
DHCP options per RFC 2132 may be included. The “end option” (code 255)
SHALL NOT be used, so that the entity granting the IP flow request may append
zero or more additional option fields before delivering the request to the server.

The 28-bit Multicast Group 1D associated with the flow request. The modem
function shall be responsible for filtering arriving multicast IP packets and
delivering only packets matching the given IP_multicast_group_ID address.

Table E.7-3 - new_flow_req APDU (Type 1 Version 3 and Type 1 Version 4)

Syntax No. of Bits Mnemonic
new_flow_req({
new_flow_req_tag 24 uimsbf
length_field()
service_type 8 uimsbf
if (service_type == 00) { /* MPEG section */
Reserved 3 bslbf
PID 13 uimsbf
if (service_type == 01) { /* IP unicast */
MAC_address 48 uimsbf
option_Tfield_length 8 uimsbf
for (i=0; i<option_Ffield_length; i++) {
option_byte 8 uimsbf
if (service_type == 02) { /* IP multicast */
Reserved 4 bslbf
multicast_group_ID 28 uimsbf
}
}

new_flow_req_tag

service_type

PID

0x9F8E00

Defines the type of requested service.

0x00 MPEG section
0x01 IP unicast (IP_U)
0x02 IP multicast (IP_M)
0x03 DSG

0x04-0xFF Reserved

The 13-bit MPEG-2 Packet Identifier associated with the flow request. The Card
SHALL be responsible for filtering the MPEG-2 transport stream and delivering
only MPEG table sections delivered on transport packets with the given value of
PID.

292

CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

MAC _address
option_field_length
option_byte

multicast_group_ID

E.7.2 new_flow_cnf()

The 48-bit MAC address of the entity requesting the unicast IP flow.
The number of bytes in the following for loop.

These bytes correspond to the options field of a DHCP message. One or more
DHCP options per [RFC2132] MAY be included. The “end option” (code 255)
SHALL NOT be used, so that the entity granting the IP flow request may append
zero or more additional option fields before delivering the request to the server.

The multicast group ID associated with the flow request. The modem function
SHALL be responsible for filtering arriving multicast IP packets and delivering
only packets matching the given multicast_group_ID address.

Table E.7-4 - new_flow_cnf APDU (Type 1 Version 1)

Syntax No. of Bits Mnemonic
new_flow _cnf() {
new_flow_cnf_tag 24 uimsbf
length_field()
status_Tfield 8 uimsbf
flows_remaining 8 uimsbf
if (status_field == 0) {
flow_id 24 uimsbf
service_type 8 uimsbf
if (service_type == IP_U) {
IP_address 32 uimsbf
}

new_flow_cnf tag

status_field

flows_remaining

flow_id

service_type

IP_address

0x9F8EOQ1

Returns the status of the new_flow_req.

0x00 Request granted, new flow created

0x01 Request denied, number of flows exceeded

0x02 Request denied, service_type not available

0x03 Request denied, network unavailable or not responding
0x04 Request denied, network busy

0x05-0xFF Reserved

The number of additional flows of the same service_type that can be supported.
The value 0x00 indicates that no additional flows beyond the one currently
requested can be supported.

The unique flow identifier for this application’s data flow. The flow_id value of
0x000000 is reserved and SHALL NOT be assigned.

The requested service_type received in the new_flow_req() APDU.

The 32-bit IP address associated with the requested flow.

4/18/13

CablelLabs® 293

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Table E.7-5 - new_flow_cnf APDU (Type 1 Versions 2, 3 & 4)

Syntax No. of Bits Mnemonic
new_flow _cnf() {
new_flow_cnf_tag 24 uimsbf
length_field()
status_Tfield 8 uimsbf
flows_remaining 8 uimsbf
if (status_field == 0x00) {
flow_id 24 uimsbf
service_type 8 uimsbf
if (service_type == IP_U) {
IP_address 32 uimsbf
flow_type 8 uimsbf
flags 3 uimsbf
max_pdu_size 13 uimsbf
option_field_length 8 uimsbf
for (i=0; i<option_Field length; i++) {
option_byte 8 uimsbf
}
}
3}

new_flow_cnf tag

status_field

flows_remaining

flow_id

service_type

IP_address
flow_type

0x9F8EOQ1

Returns the status of the new_flow_req.
0x00 Request granted, new flow created

0x01 Request denied, number of flows exceeded
0x02 Request denied, service_type not available

0x03 Request denied, network unavailable or not responding
0x04 Request denied, network busy

0x05 Request Denied - MAC address not accepted

0x06-0xFF

Reserved

The number of additional flows of the same service_type that can be supported.
The value 0x00 indicates that no additional flows beyond the one currently
requested can be supported.

The unique flow identifier for this application’s data flow. To avoid conflicts
between the assignment of flow_ids between the Card and the Host, the Card
SHALL assign flow_ids in the range of 0x000001 to 0x7FFFFF, and the Host
SHALL assign flow_ids in the range of 0x800000 to OXxFFFFFF. The flow_id

value of 0x000000 is reserved and SHALL NOT be assigned.

The requested service_type received in the new_flow_req() APDU.

The 32-bit IP address associated with the requested flow.

An 8-bit unsigned integer number that represents the protocol(s) supported by
the Card to establish the IP-U flow. The field has the following values:

0x00 UDP and TCP supported
0x01 UDP only supported
0x02 TCP only supported

0x03-FF

Reserved

294

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

flags A 3-bit field that contains information, as defined below, pertaining to
limitations associated with the interactive network. Additional detail is provided
in Table E.7-6.
Bit0 no_frag
bits 2:1 reserved
Table E.7-6 - Flag field definitions
BITS
2 1 0
reserved no_frag
no_frag A 1-bit Boolean that designates if the network supports fragmentation. A value

max_pdu_size

option_field_length

option_byte

of 0, indicates that fragmentation is supported. A value of 1, indicates that
fragmentation is not supported.

A 13-bit unsigned integer number that designates the maximum PDU length that
may be transmitted across the interface.

An 8-bit unsigned integer number that represents the number of bytes of option
field data to follow.

These bytes correspond to the options requested in the new_flow_req() message.
The format of the field is as defined in [RFC2132]. The end option (code 255)
SHALL NOT be used.

Table E.7-7 - new_flow_cnf APDU Syntax (Type 1 Version 5)

Syntax No. of Bits Mnemonic
new_flow _cnf() {
new_flow_cnf_tag 24 uimsbf
length_field()
status_Tfield 8 uimsbf
flows_remaining 8 uimsbf
if (status_field == 0x00) {
flow_id 24 uimsbf
service_type 8 uimsbf
if (service_type == IP_U) {
IP_address 32 uimsbf
flow_type 8 uimsbf
flags 3 uimsbf
max_pdu_size 13 uimsbf
option_field_length 8 uimsbf
for (i=0; i<option_Field length; i++) {
option_byte 8 uimsbf
if (service _type == Socket) {
reserved 3 uimsbf
max_pdu_size 13 uimsbf
}
}
3}
new_flow_cnf tag 0x9F8E01
status_field Returns the status of the new_flow_req.
0x00 Request granted, new flow created
4/18/13 CableLabs® 295

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

0x01 Request denied, number of flows exceeded

0x02 Request denied, service_type not available

0x03 Request denied, network unavailable or not responding
0x04 Request denied, network busy

0x05 Request denied - MAC address not accepted

0x06 Request denied, DNS not supported

0x07 Request denied, DNS lookup failed

0x08 Request denied, local port already in use or invalid
0x09 Request denied, could not establish TCP connection
Ox0A Request denied, IPv6 not supported

0x0B-OxFF Reserved

flows_remaining The number of additional flows of the same service_type that can be supported.
The value 0x00 indicates that no additional flows beyond the one currently
requested can be supported.

flow_id The unique flow identifier for this application’s data flow. To avoid conflicts
between the assignment of flow_ids between the Card and the Host, the Card and
the Host will assign Ids in different ranges. The flow id value of 0x000000 is
reserved and should not be assigned by either the Host or the Card.

The Card SHALL assign Extended Channel flow_ids in the range of 0x000001 to Ox7FFFFF in the new_flow_cnf()

APDU.

The Host SHALL assign Extended Channel flow_ids in the range of 0x800000 to OXFFFFFF in the new_flow_cnf()
APDU.

service_type The requested service_type received in the new_flow_req() APDU.
IP_address The 32-bit IP address associated with the requested flow.
flow_type This field is not supported in any version of the extended channel resource.
flags A 3-bit field that contains information, as defined below, pertaining to
limitations associated with the interactive network. Additional detail is provided
in Table 9.14-5.
Bit 0 no_frag
bits 2:1 reserved

Table E.7-8 - Flag field definitions

BITS
2 1 0
reserved no_frag
no_frag A 1-bit Boolean that designates if the network supports fragmentation. A value

of 0, indicates that fragmentation is supported. A value of 1, indicated that
fragmentation is not supported.

max_pdu_size A 13-bit unsigned integer number that designates the maximum PDU length that
may be transmitted across the interface.

option_field_length An 8-bit unsigned integer number that represents the number of bytes of option
field data to follow.

option_byte These bytes correspond to the options requested in the new_flow_req() message.
The format of the field is as defined in [RFC2132].

The device replying with the new_flow_cnf() APDU SHALL NOT use the “end option” (code 255) in the
option_byte field.

296 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

E.7.3 delete_flow_req()

The Type 1 Version 1, Type 1 Version 2, Type 1 Version 3, Type 1 Version 4, and Type 1 Version 5 of the
delete_flow_req() APDU is the same as defined in Section 9.14.3.

E.7.4 delete_flow_cnf()

The Type 1 Version 1, Type 1 Version 2, Type 1 Version 3, Type 1 Version 4, and Type 1 Version 5 of the
delete_flow_cnf() APDU is the same as defined in Section 9.14.4.

E.7.5 lost_flow_ind()

Table E.7-9 - lost_flow_ind APDU (Type 1 Versions 1, 2, 3, 4 and 5)

Syntax No. of Bits Mnemonic
lost_flow_iInd(Q) {
lost_flow_ind_tag 24 uimsbf
length_field()
flow_id 24 uimsbf
reason_Tfield 8 uimsbf
}
lost_flow_ind_tag O0X9F8E04
flow_id The flow identifier for the flow that has been lost.
reason_field Returns the reason the flow was lost.

0x00 Unknown or unspecified reason
0x01 IP address expiration

0x02 Network down or busy

0x03 Lost or revoked authorization

0x04 Remote TCP socket closed (V5 only)
0x05 Socket read error (V5 only)

0x06 Socket write error (V5 only)
0x04-0xFF Reserved (V1-4)
0x07-OxFF Reserved (V5)

E.7.6 lost_flow_cnf()

The Type 1 Version 1, Type 1 Version 2, Type 1 Version 3, Type 1 Version 4, and Type 1 Version 5 of the
lost_flow_cnf() APDU is the same as defined in Section 9.14.6.

E.8 DSG Mode

There are two different operational modes defined for DSG, Basic and Advanced Mode. Of these two modes, there
is also two different states for each of these modes: DSG Mode, indicating that a RDC is present and has the ability
to communicate back to the headend; and DSG-One-Way_mode, where the RDC is not present, or is not active, and
there is no communication back to the headend. The DSG_Mode is the desired “Normal” Operating mode.

For DSG Basic Mode Operation:

e The Card SHALL provide the Host with a set of MAC Addresses that the eCM SHALL use to filter DSG
tunnels.

e The eCM SHALL utilize the presence/absence of the requested tunnel MAC Address to determine if a
downstream channel contains valid DSG tunnels.

e The Host SHALL NOT forward the DCD messages, if present, to the Card.

4/18/13 CablelLabs® 297

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

Setting this mode is equivalent to the state Notification from DSG Client Controller: enable upstream transmitter

defined in the DSG specification.

The following figure is an example of the initial message exchange between the Card and the Host for DSG Basic

Mode operation:

E.8.1 inquire_DSG_mode()

Host

New_Flow_Req()

Card

DSG

New_Flow_Cnf()

0x00

New_Flow_Req()

MPEG

New_Flow_Cnf()

0x00

Ing_DSG_Mode()

A

Set_DSG_Mode()

\J

OOB or
DSG or

8 MAC Address or

DSG_one-Way

8 MAC Address or
DSG_advanced_mode or
DSG_advanced_one-way_mode

DSG_Error()

Figure E.8-1 - DSG Mode Message Flow

The Host SHALL use the inquire_DSG_mode () object to inquire the preferred operational mode for the network.

The Host SHALL inquire from the Card the preferred operational mode for the network, either OOB mode or DSG
mode by sending the inquire_DSG_mode() APDU.

298

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Table E.8-1 - inquire_DSG_mode APDU Syntax (Type 1 Versions 2, 3, and 4)

Syntax No. of Bits Mnemonic
inquire_DSG _mode() {
inquire_DSG_mode_tag 24 uimsbf
length_field()
3}
inquire_DSG_mode_tag 0x9F8E06

E.8.2 set DSG_mode()

The Card SHALL use the set. DSG_mode() APDU to inform the Host of the preferred operational mode for the
network. This message is sent in response to the inquire_DSG_mode(), or it MAY be sent as an unsolicited message
to the Host after the resource session has been established. The method by which the Card determines the preferred
operational mode is proprietary to the CA/Card system vendor. The set. DSG_mode() SHALL be used to indicate
either OOB_Mode or DSG_mode, DSG_One-Way_Mode, advanced_DSG_mode or advanced_DSG_one-
way_mode.

A default operational mode SHALL be utilized when the Host and/or Card is unable to obtain the preferred
operational mode. There are two potential default conditions that SHALL be addressed.

e Either the Host or the Card MAY NOT support version 2 of the Extended Channel Support resource
(inquire_DSG_mode() and set DSG_mode() APDUSs).

e The Card MAY NOT have acquired the preferred operational mode from the network due to possible network
errors.

To ensure backward compatibility in the first case above, a Host SHALL initialize in the default operational mode of
OOB_mode. In the second case, the Card SHOULD instruct the Host that the preferred operational mode is
OOB_mode.

If the operational mode is DSG_mode, DSG_one-way_mode, advanced_dsg_mode or advanced_dsg_one-
way_mode, the Card SHALL provide up to eight Ethernet MAC addresses and number of header bytes to be
removed from the DSG tunnel packets.In DSG or DSG_one-way mode, once the DSG extended channel flow has
been opened, the Host SHALL filter IP packets whose Ethernet destination address match any of the specified
DSG_MAC_address values, remove the specified number of header bytes from these packets, before sending these
packets across the extended channel.

Table E.8-2 - set_DSG_mode APDU Syntax (Type 1 Versions 2, 3, and 4)

Syntax No. of Bits Mnemonic
set DSG_mode() {
set DSG_mode_tag 24 uimsbf
length_field()
operational_mode 8 uimsbf
if ((operation_mode == DSG_mode) ||
(operation_mode == DSG_one-way_mode)) {
number_ MAC_addresses 8 uimsbf
for (i=0; i<number_ MAC_addresses; i++) {
DSG_MAC_address 48 uimsbf
remove_header_bytes 16 uimsbf
}
3}
set_DSG_mode_tag 0x9F8EQ7

4/18/13 CablelLabs® 299

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

operational_mode Defines the preferred operational mode of the network.

0x00 OOB_mode - In this mode, the reverse OOB transmitter is under
control of the Card through the use of the OOB_TX tune_req() APDU
in the Host Control resource. The Host SHALL respond to these
messages by tuning the reverse OOB transmitter to the requested
frequency and coding value (bit-rate and power level). The Card uses
the OOB-RDC for returning data to the cable headend.

0x01 DSG_maode - In this mode the Host uses the eCM as the transmitter for
the reverse path. If the Card attempts to command the reverse OOB
transmitter with the OOB_TX_tune_req() APDU while the Host is
operating in DSG mode, the Host will deny the tune request with a
“Tuning Denied - RF Transmitter Busy” status. Also, in this mode, the
receiver for the OOB FDC is not active. If the Card attempts to
command this receiver with the OOB_RX_tune_req() message while
the Host is operating in the DSG mode, the Host SHALL deny the tune
request with a “Tuning Denied - Other reasons” status.

0x02 DSG_one-way_mode - In this mode, the reverse OOB transmitter and
eCM transmitter SHALL be disabled for both the RDC and the
DOCSIS return channel. Also, in this mode, the receiver for the OOB
FDC is not active. If the Card attempts to command this receiver with
the OOB_RX_tune_req() message while the Host is operating in the
DSG one-way mode, the Host SHALL deny the tune request with a
“Tuning Denied - Other reasons” status. If the Card attempts to
command the reverse OOB transmitter with the OOB_TX_tune_req()
APDU while the Host is operating in DSG mode, the Host will deny the
tune request with a “Tuning Denied - Other Reasons”. This mode could
be used in one-way cable systems and for network diagnosis in two-way
cable systems.

0x03 advanced_dsg_mode - In this mode, the Host uses the eCM as the
transmitter for the reverse path. If the Card attempts to command the
reverse OOB transmitter with the OOB_TX_tune_req() message while
the Host is operating in the DSG mode, the Host SHALL deny the tune
request with a “Tuning Denied - RF Transmitter busy” status. Also, in
this mode, the receiver for the OOB FDC is not active. If the Card
attempts to command this receiver with the OOB_RX_tune_req()
message while the Host is operating in the DSG mode, the Host SHALL
deny the tune request with a “Tuning Denied - Other reasons” status.
Setting this mode is equivalent to the state Notification from DSG
Client Controller: enable upstream transmitter defined in the DSG
specification.

0x04 advanced_dsg_one-way_mode - In this mode, the reverse OOB
transmitter and eCM Transmitter SHALL be disabled for both the RDC
and the DOCSIS return channel. Also, in this mode, the receiver for the
OOB FDC is not active. If the Card attempts to command this receiver
with the OOB_RX tune_req() message while the Host is operating in
the DSG one-way mode, the Host SHALL deny the tune request with a
“Tuning Denied - Other reasons” status. If the Card attempts to
command the reverse OOB transmitter with the OOB_TX_tune_req()
APDU while the Host is operating in DSG mode, the Host will deny the
tune request with a “Tuning Denied - Other Reasons”. This mode could
be used for network diagnosis in two-way cable systems. Setting this
mode is equivalent to the state Notification from DSG Client
Controller: disable upstream transmitter defined in the DSG
specification.

300 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Note: Operating the Host in this mode will interrupt all two-way IP
connectivity until another mode is selected.
05-0xFF Reserved

number_MAC_addresses The number of DSG MAC addresses allocated by the Card provider to carry
DSG tunnels. A maximum of eight DSG tunnels per Card provider are allowed.

DSG_MAC_address The Ethernet MAC addresses allocated by the Card provider to carry the DSG
tunnels.

remove_header_bytes The number of bytes to be removed from the DSG tunnel packets before delivery
over the extended channel. A value of zero implies that no header bytes are to be
removed.

For the DSG Advanced Mode:

e The Host SHALL scan downstream channels for DCD messages upon receipt of a set_dsg_mode () object with
a value = 0x03 or 0x04.

e The Host SHALL pass a received DCD message to the Card using the send_DCD _info () object only when the
Host detects a change in the configuration count change field in the DCD message or in the event of an eCM
reset. The DCD message is defined in [DSG].

e The Card SHALL determine if the DCD tunnel addresses are valid and inform the Host if the DSG channel is
not valid.

e The Card utilizes the DSG_error() APDU to indicate that the DCD message is not valid.

e If the DSG channel is not valid, e.g., no CA Tunnel present, then the Host SHALL search a new downstream
channel for a DCD message.

e Ifthe DSG channel is valid, then the Host SHALL stay on the downstream and forward requested tunnels to the
Card.

e Upon selection of a valid downstream, the Card SHALL pass the DSG Configuration information received in
the DCD to the Host using configure_advanced_DSG().

e The Host SHALL use the dsg_message() to pass the UCID, when identified, to the Card.

e The Card SHALL be capable of using the Upstream Channel ID (UCID) passed by the Host in the
dsg_message() to select appropriate tunnels when UCIDs are specified in the DSG rules.

e The Host SHALL use dsg_message() to pass application_id(s) to the Card.

e After parsing the DCD message for desired DSG tunnels, the Card uses the configure_advanced_DSG() object
to provide the Host with a set of MAC Addresses and DSG classifiers as applicable, that the eCM SHALL use
to filter DSG Tunnels.

e Host specific tunnels are indicated by the presence of the requested application 1D, that is, the application ID
does not equal zero (0).

e DSG Tunnels addresses with an application ID of (0) are requested by the Card.

e The Card SHALL not request any tunnels with a UCID other than the UCID passed by the Host in the
dsg_message().

The following figure is an example of the initial message exchange between the Card and the Host for Advanced
Mode Operation:

4/18/13 CablelLabs® 301

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

Host Card

New_Flow_Req()

A

DSG

New_Flow_Cnf()

\j

0x00

New_Flow_Req()

\J

MPEG

New_Flow_Cnf()

A

0x00

Inq_DSG_Mode()

\J

Set_DSG_Mode()

A

advanced_DSG_mode or
advanced_DSG_one-way_mode

Send_DCD_Info()

\J

DCD_message

Configure_Advanced_DSG()

A

number_of_filters
tunnel_id
application_id
dsg_mac_address
source_ip_address
sounce_ip_mask
destination_ip_address
number_ports
dest_port_number
remove_header_bytes
number_of_RFFrequency
RFFrequency
initialization_timeout
operational_timeout
two_way_retry_timeout
one_way_retry_timeout

DSG_Msg()

\J

App_Tunnel_req

2-way ok, UCID
Ent_one-Way_mode
Dwnstr_Scan_Comp
Dynamic_Chan_Chg_Depart

DSG_Error()

A

Figure E.8-2 - Sample Advanced Mode Message Flow

302 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

E.8.3 DSG_packet_error()

Table E.8-3 - DSG_packet_error (Type 1 Version 2)

Syntax No. of Bits Mnemonic
DSG_packet_error() {
DSG_packet_error_tag 24 uimsbf
length_field()
error_status 8 uimsbf
}
lost_flow_ind_tag 0Xx9F8E08
error_status The Card can inform the Host of errors that occur in receiving DSG packets. The

error_status indicates the type of error that occurred.

0x00 byte count_error
0x01-0xFF Reserved

For Type 1 Version 3 and Type 1 Version 4 the DSG_packet_error() APDU message was renamed to DSG_error()
APDU as defined below.

The Card MAY inform the Host of errors that occur in receiving DSG packets using the DSG_error() APDU.

Table E.8-4 - DSG_error APDU Syntax (Type 1 Version 3 and Type 1 Version 4)

Syntax No. of Bits Mnemonic
DSG_error(Q) {
DSG_error_tag 24 uimsbf
length_field(
error_status 8 uimsbf
+
DSG_error_tag O0x9F8E08
error_status Indicates the type of error that occurred

0x00 Byte count error - The Card did not receive the same number of bytes in
the DSG packet as was signaled by the Host.

0x01 Invalid_DSG_channel -
Advanced Mode: The Current DCD message transmitted to the Card is
not valid or does not contain the requested DSG tunnel(s). The Host
SHALL acquire a new DCD on a different downstream and pass this
DCD to the Card. Sent from the Card to the Host during initial tunnel
acquisition or when a DCD no longer contains a required tunnel.
Basic Mode: The current DSG channel is not valid. The Host SHALL
find another DSG channel that contain DSG tunnels with the well-
known MAC address(es).

0x02 Application_ID_error - The current DCD message transmitted to the
Card does not contain a valid entry for an application ID requested by
the Host. The Host MAY choose to not to wait for data intended for the
specified application from that tunnel if Application_ID is invalid.

0x03-0xFF Reserved

4/18/13 CablelLabs® 303

OC-SP-CCIF2.0-126-130418 OpenCable™ Specifications

E.8.4 configure_advanced_DSG()

The Card SHALL use the configure_advanced_DSG() object to pass DSG Advanced Mode configuration
parameters to the eCM if the Card supports DSG Advanced mode and the Host reports an extended channel resource
version set to 3 or 4. This message is sent in response to the send_DCD_info() APDU message.

MAC Addresses and DSG classifiers provided in the configure_advanced_DSG() object override all previously
defined values passed by the Card.

When the operational mode is either Advanced_DSG_mode or Advanced_DSG_One-Way_mode, then the Card may
provide up to eight unique Ethernet MAC addresses along with a set of DSG_ classifiers. The Card may also specify
the number of header bytes to be removed from the DSG tunnel packets.

In Advanced_DSG or Advanced_DSG_One-Way mode, the eCM/Host SHALL forward IP packets whose MAC
destination address and layer-3/layer-4 parameters match any of the combinations of DSG_MAC address and
DSG_classifiers specified in the configure_advanced_DSG() object.

e When an IP Packet matches a DSG MAC Address/DSG Classifier combination, that packet SHALL be
forwarded.

e Ifa DSG classifier is not provided for a specific DSG MAC address, the Host SHALL forward all Ethernet
frames received on that MAC address.

The Application_ID parameter is used by the Card to signal the intended destination for the packets for each DSG
MAC Address/DSG Classifier combination.

e An Application_ID of zero (0) indicates that the Host SHALL forward matching packets to the Card.
e An Application ID greater than zero (0) indicates that the matching packets SHALL terminate at the eCM/Host.

The Host SHALL remove the specified number of header bytes from these packets before delivery across the
extended channel interface to the Card.

304 CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

Table E.8-5 - Configure Advanced DSG Object Syntax (Type 1 Version 3 and Type 1 Version 4)

Syntax No. of Mnemonic
Bits
configure_advanced _DSG () {
configure_advanced_DSG _tag 24 uimsbf
length_field()
number_of filters 8 uimsbf
for (i=0; i< number_tunnel_filters; i++) {

tunnel _id 8 uimsbf

application_id 16 uimsbf

dsg_mac_address 48 uimsbf
source_IP_address 32 uimsbf
source_IP_mask 32 uimsbf
destination_IP_address 32 uimsbf
number_ports 8 uimsbf
for(i=0; i< number_ports; i++){

dest_port_number 16 uimsbf
remove_header_bytes 16 uimsbf

}
number_of RXFrequency 8 uimsbf

for (i=0; i<number_of RXFrequency; i++){

RXFrequency 32 uimsbf
initialization_timeout 16 uimsbf
operational_timeout 16 uimsbf
two_way_retry timeout 16 uimsbf
one_way_retry_timeout 16 uimsbf

}

configure_advanced_DSG_tag

number_of filters

tunnel_id

application_id

dsg_mac_address

source_IP_address

source_IP_mask

O0x9F8EOA

The number of DSG tunnels that the Host eCM SHALL filter. A maximum of
eight unique tunnel filters are allowed, although this number may be greater than
eight if certain MAC Addresses are used by multiple DSG tunnels.

An Identifier for the tunnel. This field should match the DSG Rule ID received
in the DCD message for the tunnel identifier. The tunnel_id is used by the eCM
to populate the dsglfStdTunnelFilterTunnelld MIB object.

The application 1D associated with the requested DSG tunnel. A value of zero
(0) indicates that the DSG tunnel is requested by the Card and SHALL be passed
to the Card. A value other than zero (0) indicates that the tunnel is requested by
the Host, which SHALL be terminated in the Host, and is the same value that
was passed to the Card by the Host in the dsg_message() object.

The MAC addresses to be filtered by the eCM.

The IP source address specified in the DCD message to be used in layer 3
filtering. A value of all zeros implies all values of Source IP Address, i.e., this
parameter was not specified in the DCD message.

The source IP mask specified in the DCD message to be used in layer 3 filtering.
A value of all ones implies that all 32 bits of the Source IP Address are to be
used for filtering.

4/18/13

CablelLabs® 305

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

destination_IP_address

number_ports

dest_port_number

remove_header_bytes

number_of RXFrequency
RXFrequency

initialization_timeout

operational_timeout

two_way_retry_timeout

one_way_retry_timeout

E.8.5 DSG_Message()

The IP destination address specified in the DCD message to be used in layer 3
filtering. A value of all zeros implies all values of Destination IP Address, i.e.,
this parameter was not specified in the DCD message.

The number of TCP/UDP Destination Port numbers associated with a
DSG_MAC_Address.

The range of TCP/UDP Destination Port addresses specified in the DCD
message, listed here as individual port numbers.

The number of bytes to be removed from the DSG tunnel packets before
delivery. A value of zero implies that no header bytes be removed.

The number of TLV channel list entry in the DCD message.
The RX Frequency as defined in [DSG]

DSG Initialization Timeout (Tdsgl). The timeout period for the DSG packets
during initialization as defined in [DSG]. A value of zero indicates that the
default value SHALL be used.

DSG Operational Timeout (Tdsg2). The timeout period for the DSG packets
during normal operation as defined in [DSG]. A value of zero indicates that the
default value SHALL be used.

DSG Two-Way Retry Timer (Tdsg3). The retry timer that determines when the
DSG eCM attempts to reconnect with the CMTS as defined in [DSG]. A value of
zero indicates that the default value SHALL be used.

DSG One-Way Retry Timer (Tdsg4). The retry timer that determines when the
DSG eCM attempts to rescan for a downstream DOCSIS channel that contains
DSG packets as defined in [DSG]. A value of zero indicates that the default
value SHALL be used.

The Host SHALL use the dsg_message () object to request Application tunnel data streams, to indicate that the eCM
has established two-way communication and is passing the UCID of the upstream channel, to indicate that the eCM
has entered One-way mode, to indicate that the eCM has done a complete downstream scan without finding a DCD
message or a Basic Mode tunnel, to indicate that the eCM has received a DCC-REQ message and is preparing to
execute a Dynamic Channel Change, or to indicate that an event has occurred that required an eCM reboot.

306

CablelLabs® 4/18/13

CableCARD Interface 2.0 Specific

ation OC-SP-CCIF2.0-126-130418

Table E.8-6 - DSG Message Object Syntax (Type 1 Version 3)

Syntax No. of Mnemonic
bits
dsg_message () {
dsg_message_tag 24 uimsbf
length_field()
message_type 8 uimsbf
IT (message_type = 0x00) {
number_app_ids 8 uimsbf
for (i=0; 1 < number_app_ids; i++) {
application_id 16 uimsbf
3
IT (message_type = 0x01) {
ucibD 8 uimsbf
3
if (message_type = 0x04) {
init_type 8 uimsbf
b3
dsg_message_tag 0Xx9F8EQ9

message_type

Indicates the purpose of the object as defined below.

0x00 Application_tunnel_request -- the Host has determined that there are
applications that require data from one or more DSG tunnels. The Host
passes the application_id(s) of applications requesting access to DSG
tunnels to the Card. The Card parses the DCD message and provides
MAC Address and DSG classifiers for the requested application
tunnels. This is only used in DSG Advanced mode.

Number_app_ids - the total number of application IDs to follow; only
valid when message type is Application_tunnel_request.
Application_ID - the application ID of the DSG Application tunnel
required by the Host. The application_ID MAY be obtained from the
source_name_subtable of the Network Text Table contained in
ANSI/SCTE 65. The Card utilizes the application ID to parse the DCD
for the presence of the requested application tunnel. If the tunnel is
present, then the Card uses the configure_advanced_DSG() object to
pass the MAC Address and DSG classifiers associated with the
requested application tunnel to the Host.

2-way OK, UCID - the Host has established two-way communication
and is providing the Card with the channel ID (UCID) of the upstream
channel. The Card uses this value for filtering of various DSG rules as
applicable.

UCID - the channel ID of the DOCSIS channel that the Host is using
for upstream communication.

Entering_One-Way_mode - Sent from the Host to the Card as an
indicator that a timeout or other condition has forced the eCM into One-
Way operation.

Downstream Scan Completed - Sent from the Host to the Card as an
indicator that the eCM has been unable to identify a downstream
channel with a DCD message after a complete downstream scan.
Dynamic Channel Change (Depart) - the eCM has transmitted a DCC -
RSP (Depart) on the existing upstream channel and is preparing to
switch to a new upstream or downstream channel. After channel

0x01

0x02

0x03

0x04

4/18/13

CablelLabs® 307

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

0x05 -

switching is complete, the eCM transmits a DCC - RSP (Arrive) to the
CMTS unless the MAC was reinitialized. In either case the eCM will
resend DSG_message() with message_type 0x01 “2-way OK, UCID” to
indicate the upstream has been established.

Init_type - specifies what level of reinitialization the eCM will
perform, if any, before communicating on the new channels(s), as
directed by the CMTS.

0 = Reinitialize the MAC

1 = Perform broadcast initial ranging on new channel before normal
operation

2 = Perform unicast initial ranging on new channel before normal
operation

3 = Perform either broadcast initial ranging or unicast initial ranging on
new channel before normal operation

4 = Use the new channel(s) directly without re-initializing or initial
ranging

5 = Reinitialization method not specified

6 - 255: reserved

OxFF Reserved

Table E.8-7 - DSG Message Object Syntax (Type 1 Version 4)

Syntax No. of bits Mnemonic
dsg_message) {
dsg_message_tag 24 uimsbf
length_field()
message_type 8 uimsbf
IT (message_type = 0x00) {
number_app_ids 8 uimsbf
for (i=0; 1 < number_app_ids; i++) {
application_id 16 uimsbf
}
IT (message_type = 0x01) {
ucib 8 uimsbf
}
ifT (message_type = 0x04) {
init_type 8 uimsbf
bs

dsg_message_tag

message_type

0x9F8E09

Indicates the purpose of the object as defined below.

0x00

Application_tunnel_request -- the Host has determined that there are
applications that require data from one or more DSG tunnels. The Host
passes the application_id(s) of applications requesting access to DSG
tunnels to the Card. The Card parses the DCD message and provides
MAC Address and DSG classifiers for the requested application
tunnels. This is only used in DSG Advanced mode.

Number_app_ids - the total number of application IDs to follow; only
valid when message type is Application_tunnel_request.
Application_ID - the application ID of the DSG Application tunnel
required by the Host. The application_ID MAY be obtained from the

308

CablelLabs® 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

0x01

0x02

0x03

0x04

0x05

0x06 -

source_name_subtable of the Network Text Table contained in
ANSI/SCTE 65. The Card utilizes the application ID to parse the DCD
for the presence of the requested application tunnel. If the tunnel is
present, then the Card uses the configure_advanced_DSG() object to
pass the MAC Address and DSG classifiers associated with the
requested application tunnel to the Host.

2-way OK, UCID - the Host has established two-way communication
and is providing the Card with the channel ID (UCID) of the upstream
channel.

Advanced Mode: The Card uses this value for filtering of various DSG
rules as applicable.

Basic Mode: The Card SHALL ignore this value.

UCID - the channel ID of the DOCSIS channel that the Host is using
for upstream communication.

Entering_One-Way_mode - Sent from the Host to the Card as an
indicator that a timeout or other condition has forced the eCM into One-
Way operation.

Downstream Scan Completed - Sent from the Host to the Card after a
complete downstream scan as an indicator that the eCM,

Advanced Mode: Has been unable to identify a downstream channel
with a DCD message.

Basic Mode: Has been unable to find a DSG tunnel with a well-known
MAC address.

Dynamic Channel Change (Depart) - the eCM has transmitted a DCC-
RSP (Depart) on the existing upstream channel and is preparing to
switch to a new upstream or downstream channel. After channel
switching is complete, the eCM transmits a DCC - RSP (Arrive) to the
CMTS unless the MAC was reinitialized. In either case the eCM will
resend DSG_message() with message_type 0x01 “2-way OK, UCID” to
indicate the upstream has been established.

Init_type - specifies what level of reinitialization the eCM will
perform, if any, before communicating on the new channels(s), as
directed by the CMTS.

0x00 = Reinitialize the MAC

0x01 = Perform broadcast initial ranging on new channel before normal
operation

0x02 = Perform unicast initial ranging on new channel before normal
operation

0x03 = Perform either broadcast initial ranging or unicast initial ranging
on new channel before normal operation

0x04 = Use the new channel(s) directly without re-initializing or initial
ranging

0x05 = Reinitialization method not specified

eCM Reset - an event has occurred that required an eCM reboot. The
Card needs to re-establish DSG tunnel filtering by sending the
configure_advanced_DSG() object. The tunnel MAC address and DSG
classifiers can be obtained by parsing the next received DCD message
or from a local cache.

OxFF Reserved

E.85.1 Dynamic Channel Change (Informative)

Dynamic Channel Change operations can cause a DSG eCM to move to a new upstream and/or downstream
channel(s) either through manual intervention at the CMTS or autonomously via a load-balancing operation.
Message_type = 0x01 and 0x04 allow the DSG Client Controller to be made aware of the initiation and progress of
DCC operations. Acting upon these messages, the Client Controller can provide the proper reaction to upstream and

4/18/13

CablelLabs® 309

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

downstream channel changes; in particular, the Client Controller should take action to make sure it still has a valid
DSG channel after the DCC operation has completed.

E.8.6 send_DCD_info()

The send_DCD _info() is an APDU used to pass DCD information between the Host and Card. In DSG Advanced
mode, the Host SHALL use the send_DCD _info () object to pass the entire DCD message, except for the DOCSIS

MAC Management header, to the Card. Upon receipt of the DCD message, the Card SHALL parse the DCD

information.

Table E.8-8 - send_DCD_info Object Syntax (Type 1 Version 3 and Type 1 Version 4)

Syntax No. of bits Mnemonic
send DCD_info O {
send_DCD_info _tag 24 uimsbf
length_field()
DCD_message ™
b5
send_DCD_info_tag 0x9F8EOB
DCD_message The TLVs comprising the DCD message as defined in [DSG] in the Summary of
DCD TLV Parameters table.
310 CableLabs” 4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

Appendix I Revision History

The following ECNs were

incorporated into OC-SP-CCIF2.0-102-050708:

ECN Description Date
CCIF2.0-N-05.0769-6 Modifications to extended channel resource to account for eCM 7/1/05
CCIF2.0-N-05.0782-1 Multi-stream Homing Modification 6/17/05
CCIF2.0-N-05.0787-2 Omnibus ECR 6/17/05
CCIF2.0-N-05.0788-3 DownloadInfolndicator Message Detail for Common Download 6/17/05

The following ECNs were incorporated into OC-SP-CCIF2.0-103-051117:
ECN Description Date
CCIF2.0-N-05.0761-6 Modifications to Common Download to Support Delivery via DSG 7/15/05
Broadcast Tunnel
CCIF2.0-N-05.0800-3 Conflict resolution between Host flow ids and Card flow ids 9/9/05
CCIF2.0-N-05.0807-1 LogicCB requirement 9/14/05
CCIF2.0-N-05.0808-1 Resource Manager Legacy Support 9/23/05
CCIF2.0-N-05.0809-1 FDC_Status_Report Correction 10/21/05
CCIF2.0-N-05.0810-1 Update to RF_TX_Rate_Value 9/6/05
CCIF2.0-N-05.0811-1 Delete of DLS System Time APDU 9/6/05
CCIF2.0-N-05.0813-4 Changes to OOB Interface description of DSG to accurately define 9/23/05
header byte removal
CCIF2.0-N-05.0814-2 DIl Message Corrections 10/7/05
CCIF2.0-N-05.0815-2 Deletion of open_MMI_cnf() APDU for M-Mode 10/7/05
CCIF2.0-N-05.0816-2 Reference and editorial updates 10/17/05
CCIF2.0-N-05.0823-1 M-Mode Device Capability Discovery Clarifications 10/31/05
The following ECNs were incorporated into OC-SP-CCIF2.0-104-060126:

ECN Description Date
CCIF2.0-N-05.0821-6 Extend Generic Diagnostic Resource Capability 1/13/06
CCIF2.0-N-05.0831-1 n-Band_tune_req() APDU update 12/2/05
CCIF2.0-N-05.0833-1 Remove Low Speed Session Open Requirement 12/2/05
CCIF2.0-N-05.0838-1 Card READY/SDO behavior when invalid VPP1/VPP2 is detected 12/29/05
CCIF2.0-N-05.0850-1 Interface Query Byte Data Exchange Clarification 1/13/06

4/18/13

CablelLabs®

311

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

The following ECNs were incorporated into OC-SP-CCIF2.0-105-060413:

ECN Description Date
CCIF2.0-N-05.0849-4 Additions/Corrections to the CVT 3/3/06
CCIF2.0-N-05.0854-1 Clarify DSG operation after eCM reboot 1/27/06
CCIF2.0-N-05.0857-1 Card Signal Timing Parameter Connection 1/27/06
CCIF2.0-N-06.0875-1 Poll Time-out Timer Correction 3/17/06
CCIF2.0-N-06.0876-1 Error Code Update 3/17/06
CCIF2.0-N-06.0878-1 Revised description of the download_type 3/24/06
CCIF2.0-N-06.0879-1 COR Write Timing Correction 3/30/06

The following ECNs were incorporated into OC-SP-CCIF2.0-106-060622:

ECN Description Date
CCIF2.0-N-06.0882-1 Modify M-Card Maximum Power 5/8/06
CCIF2.0-N-06.0886-4 Open Session Request Correction 6/9/06
CCIF2.0-N-06.0888-1 Clarification of System Time 5/18/06
CCIF2.0-N-06.0889-4 CVT update for self-identification of its resource version 6/9/06
CCIF2.0-N-06.0899-2 M-Mode Error Code Updates 6/9/06
CCIF2.0-N-06.0900-1 Clarification of Private Resource ldentifier 6/9/06
CCIF2.0-N-06.0905-1 Copy Protection Resource Version Change 6/13/06

The following ECNs were incorporated into OC-SP-CCIF2.0-107-060803:

ECN Description Date
CCIF2.0-N-06.0895-5 Modifications to Card/Host IP Model 7/21/06
CCIF2.0-N-06.0883-10 | New Advanced DSG Resource Type 8/2/06

The following ECNs were incorporated into OC-SP-CCIF2.0-108-061031:

ECN Description Date
CCIF2.0-N-06.0909-4 Generic Diagnostics Corrections 9/8/06
CCIF2.0-N-06.0914-1 Application_info_cnf() and Server_query() APDU URL 8/11/06

Clarification

CCIF2.0-N-06.0915-2 Removal of CDL from CCIF 2.0 10/13/06
CCIF2.0-N-06.0916-3 Legacy Resource/ APDU Annex Addition 10/13/06
CCIF2.0-N-06.0924-4 Interface Resource Loading Clarification 10/13/06
CCIF2.0-N-06.0925-1 Clarification of DSG Count 9/8/06

CCIF2.0-N-06.0932-2 Modify text of Annex B error code 161-64 for M-Card 10/13/06
CCIF2.0-N-06.0933-2 Add requirements for versions 2, 3, and 4 of the extended channel 10/13/06
CCIF2.0-N-06.0935-2 SAS Editorial Update 10/13/06
CCIF2.0-N-06.0937-2 UDP and TCP protocols support for IP Unicast Service Flow 10/13/06

312

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

The following ECNs were incorporated into OC-SP-CCIF2.0-109-070105:

ECN Description Date
CCIF2.0-N-06.0941-4 Generic_Feature_Control feature enhancements 12/8/06
CCIF2.0-N-06.0942-1 Move Copy Protection Resource identifier table to CCCP2.0 11/10/06
CCIF2.0-N-06.0948-1 Removal of CDL Appendices I and 11 12/22/06
CCIF2.0-N-06.0949-1 Clarification on Application of CCI 12/22/06
CCIF2.0-N-06.0950-1 FR bit Timing Clarification 12/22/06
CCIF2.0-N-06.0957-2 Do not require one-way operation after forwarding is restricted 12/22/06
CCIF2.0-N-06.0961-1 Fix to CableCARD's DHCP Option 43 12/22/06

The following ECNs were incorporated into OC-SP-CCIF2.0-110-070323:

ECN Description Date
CCIF2.0-N-06.0964-2 Editorial corrections on the DSG Resource 2/5/07
CCIF2.0-N-06.0966-1 Remove Generic Features Storage Requirement 2/5/07
CCIF2.0-N-06.0967-1 Time_zone_offset related comment deletion 2/23/07
CCIF2.0-N-06.0974-3 Socket Flows requirement clarification 3/9/07
CCIF2.0-N-07.0978-1 Clarifications of ca_pmt APDUs for IPPV program support 2/23/07
CCIF2.0-N-07.0990-2 Adding vct_id parameter to generic features 3/9/07
CCIF2.0-N-07.0998-2 Host Reset Vector 3/9/07
CCIF2.0-N-07.0999-1 Adding turn-on channel parameter to generic features 3/9/07
CCIF2.0-N-07.1002-3 Add requirement to disallow filtering by Host for Card requested 3/9/07

transport streams
The following ECNs were incorporated into OC-SP-CCIF2.0-111-070615:

ECN Description Date

CCIF2.0-N-07.0989-3 Clarification of Command and Extended Channel S-Mode 6/1/07
Operation

CCIF2.0-N-07.1021-2 Clarification of DSG Directory 6/1/07

CCIF2.0-N-07.1023-1 Extended Channel resource V5 DSG resource implementation 6/1/07

CCIF2.0-N-07.1030-3 Remove mandatory support for Headend Communication resource 4/23/07
in Card M-Mode

CCIF2.0-N-07.1044-3 Resource version support and reporting 6/1/07

4/18/13

CablelLabs®

313

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

The following ECNs were

incorporated into OC-SP-CCIF2.0-112-071113:

ECN Description Date
CCIF2.0-N-07.1022-4 Improvement In Interface Error Recovery 10/5/07
CCIF2.0-N-07.1043-4 | Generic Feature Control Features Clarifications 8/31/07
CCIF2.0-N-07.1051-2 Extended Channel Resource Max Session Correction 8/10/07
CCIF2.0-N-07.1065-1 Omit 'Card reset' in firmware_upgrade_complete() APDU for M- 8/10/07

Mode
CCIF2.0-N-07.1068-2 Modify PCMCIA Card length requirement 10/5/07
CCIF2.0-N-07.1073-4 RegPro Edits to Section 9 8/31/07
CCIF2.0-N-07.1080-1 The direction of inquire_DSG_mode() and set DSG_mode() 8/31/07
APDUs needs to be corrected
CCIF2.0-N-07.1081-1 Extended Channel Flow Requirements table needs to be corrected 8/31/07
CCIF2.0-N-07.1082-5 Host Addressable Properties 10/23/07
CCIF2.0-N-07.1088-5 Adding terminal association parameter to generic features 10/23/07
CCIF2.0-N-07.1091-1 M-Card CPU interface DA flag ambiguity 10/23/07
CCIF2.0-N-07.1093-3 Group Download Generic Features Support 10/23/07
CCIF2.0-N-07.1095-2 DSG Resource - Host processing of multiple instances of the same 10/23/07
broadcast type
CCIF2.0-N-07.1101-3 Adding ZIP code to generic features 10/23/07
CCIF2.0-N-07.1104-2 Adding Length Values to Generic Feature Control 10/23/07
CCIF2.0-N-07.1117-1 DSG_directory Editorial Correction 10/23/07
The following ECNs were incorporated into OC-SP-CCIF2.0-113-080118:

ECN Description Date
CCIF2.0-N-07.1120-2 IP Address Support and Clarification of Lost Flows 12/21/07
CCIF2.0-N-07.1132-2 IP Unicast Flow Requirements Clarification 12/21/07
CCIF2.0-N-07.1143-2 Omnibus part 2 edits for RegPro format 12/21/07
CCIF2.0-N-07.1146-1 Generic Feature daylight savings clarification 12/21/07

The following ECNs were incorporated into OC-SP-CCIF2.0-114-080404:

ECN Description Date
CCIF2.0-N-07.1158-1 Clarification on Generic Feature Control feature_list() APDU 2/29/08
CCIF2.0-N-07.1160-1 Default OOB Mode Defined 2/29/08
CCIF2.0-N-08.1168-1 Addition of Error Handling Item 2/29/08
CCIF2.0-N-08.1169-2 Correct Figure 5.10-3 2/29/08
CCIF2.0-N-08.1192-1 New flow req table syntax 3/14/08

314

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification

OC-SP-CCIF2.0-126-130418

The following ECNs were incorporated into OC-SP-CCIF2.0-115-080620:

ECN Description Date
CCIF2.0-N-08.1195-2 Host Reset Vector 4/18/08
CCIF2.0-N-08.1223-1 Adding CANH to Application Information 5/30/08
CCIF2.0-N-08.1224-1 Clarification of CableCARD thermal environment 5/30/08
CCIF2.0-N-08.1245-2 Generic Features Parameters Update and Support 5/30/08

The following ECNs were incorporated into OC-SP-CCIF2.0-116-081114:

ECN Description Date
CCIF2.0-N-08.1267-4 Retrieval of CableCARD MIB Objects 10/17/08
CCIF2.0-N-08.1293-2 Deprecate DSG Basic Mode 10/17/08
CCIF2.0-N-08.1312-1 Clarify use of socket flow fields new_flow_conf() APDU 10/17/08
CCIF2.0-N-08.1313-3 DSG support in S-Mode 10/17/08

The following ECNs were incorporated into OC-SP-CCIF2.0-117-090206:

ECN Description Date
CCIF2.0-N-08.1358-1 Clarification on source_IP_mask 1/16/09
CCIF2.0-N-08.1363-2 Correct Mfgld to Sync with Host MIB 1/16/09

The following ECNs were incorporated into OC-SP-CCIF2.0-118-090508:

ECN Description Date
CCIF2.0-N-08.1212-2 Resource and APDU Tag Reservation 4/17/09
CCIF2.0-N-09.1377-1 System Time Clarification 4/17/09
CCIF2.0-N-09.1379-3 Application_info_cnf() APDU Type 2 Version 1 and Version 2 4/17/09

Table Syntax

4/18/13

CablelLabs®

315

OC-SP-CCIF2.0-126-130418

OpenCable™ Specifications

The following ECNs were incorporated into OC-SP-CCIF2.0-119-090904:

ECN Description Date
CCIF2.0-N-08.1238-8 Clarify the use of CA_PMT upon selection of new programs 6/2/09
CCIF2.0-N-09.1402-2 Clarifications to UDP packet filtering in Socket Flow 8/7/09
CCIF2.0-N-09.1406-1 Update to Resource Manager to reduce number of sessions to one 8/7/09
CCIF2.0-N-09.1408-2 Addition of Vendor ID to Generic Diagnostics 8/7/09
CCIF2.0-N-09.1411-3 Clarification of Extended Channel IP_U Operation 8/7/09
CCIF2.0-N-09.1415-2 Clarify SAS Session maintenance 8/7/09

The following ECNs were incorporated into OC-SP-CCIF2.0-120-091211:

ECN Description Date
CCIF2.0-N-09.1442-1 snmp_req() Requirement Update for Card MIB Access Support 11/6/09
CCIF2.0-N-09.1446-1 Fix Card DHCP option 43 11/6/09
CCIF2.0-N-09.1447-2 CCIF Omnibus ECNs corrections 11/20/09

The following ECNs were incorporated into OC-SP-CCIF2.0-121-100507:

ECN Description Date
CCIF2.0-N-10.1500-3 Handling Multiple CA Descriptors in S-Mode and M-Mode 4/16/10
CCIF2.0-N-10.1511-3 Clarify SNMP SNMP_REQ() APDU content 4/30/10

The following ECN was incorporated into OC-SP-CCIF2.0-122-100910:

ECN Description Date

CCIF2.0-N-10.1549-3 Clarification of Generic Feature DST Operation 7/16/10
The following ECN was incorporated into OC-SP-CCIF2.0-123-110512:

ECN Description Date
CCIF2.0-N-11.1642-2 SAS CableCARD Reset 5/9/12
CCIF2.0-N-11.1644-1 Send only new DSG filter configurations to eCM 5/9/12
CCIF2.0-N-11.1656-2 CCIF Reference Edits 5/9/12

316

CablelLabs®

4/18/13

CableCARD Interface 2.0 Specification OC-SP-CCIF2.0-126-130418

The following ECNs were incorporated into OC-SP-CCIF2.0-124-120112:

ECN Description Date
CCIF2.0-N-11.1673-1 CCIF changes for DSG Set-top Extender Bridge operation 8/12/11

CCIF2.0-N-11.1688-2 Remove conflicting requirement on the M-Mode MPEG Transport 9/23/11
Stream pre-header

CCIF2.0-N-11.1697-1 Deprecation of Socket Flow remote_addr_type option name DNS 11/4/11
CCIF2.0-N-11.1734-1 Deprecate ADSG IP_U flows 12/16/11

The following ECN was incorporated into OC-SP-CCIF2.0-125-120531.

ECN Description Date
CCIF2.0-N-12.1779-1 Correct Mfgld to include current CableCARDs 5/18/12

The following ECN was incorporated into OC-SP-CCIF2.0-126-130418:

ECN Author Date Description

CCIF2.0-N-13.1823-1 | Skinner 4/5/13 Clarification of send_DCD _info behavior to account
for Downstream Frequency Override

4/18/13 CablelLabs® 317

	1 SCOPE
	1.1 Introduction and Overview
	1.2 Historical Perspective (Informative)
	1.3 Requirements (Conformance Notation)
	1.4 Numerical

	2 REFERENCES
	2.1 Normative References
	2.2 Informative References
	2.3 Reference Acquisition
	2.3.1 OpenCable Bundle Requirements
	2.3.2 Other References

	3 TERMS AND DEFINITIONS
	4 ABBREVIATIONS AND ACRONYMS
	5 MODEL OF OPERATION
	5.1 Advanced Cable Services
	5.1.1 Interactive Program Guide (IPG)
	5.1.2 Impulse Pay-Per-View (IPPV)
	5.1.3 Video-on-Demand (VOD)
	5.1.4 Interactive services

	5.2 CableCARD Device Functional Description
	5.2.1 Transport Stream Interface
	5.2.2 Command Interface

	5.3 Network Connectivity/OOB Signaling
	5.4 Card Operational Modes
	5.4.1 S-CARD in S-Mode
	5.4.2 M-CARD in S-Mode
	5.4.3 M-CARD in M-Mode

	5.5 One-way Networks
	5.6 Two-way Networks
	5.7 Two-way Networks with DOCSIS
	5.8 Two-way Networks with Set-top Extender Bridge (SEB)
	5.9 M-CARD Device Functional Description
	5.10 Inband Interface - MPEG Data Flow
	5.11 OOB Interface
	5.11.1 QPSK
	5.11.2 DSG

	6 DELETED
	7 PHYSICAL INTERFACE
	7.1 Interface Pin Assignments
	7.2 Deleted, section reserved
	7.3 Interface Functional Description
	7.3.1 S-Mode Custom Interface
	7.3.2 Card Signal Descriptions
	7.3.3 Card Type Identification
	7.3.4 Card Information Structure (S-Mode Only)
	7.3.5 MPEG Transport Interface

	7.4 Electrical Specifications
	7.4.1 DC Characteristics
	7.4.2 AC Characteristics

	7.5 Mechanical Specifications
	7.5.1 Form Factor
	7.5.2 Connector
	7.5.3 Environmental
	7.5.4 PC Card Guidance
	7.5.5 Grounding/EMI Clips
	7.5.6 Connector Reliability
	7.5.7 Connector Durability
	7.5.8 PC Card Environmental

	7.6 CPU Interface
	7.6.1 S-Mode
	7.6.2 M-Mode
	7.6.3 S-Mode Initialization and Operation
	7.6.4 M-CARD Initialization and Operation

	7.7 Link Layer Connection
	7.8 Transport Layer Connection
	7.8.1 Transport Layer
	7.8.2 Transport protocol objects
	7.8.3 Transport protocol
	7.8.4 Transport Protocol Objects

	8 COPY PROTECTION
	9 COMMAND CHANNEL OPERATION
	9.1 Session Layer
	9.1.1 SPDU Structure
	9.1.2 Session Layer Protocol

	9.2 Application Layer
	9.2.1 Resource Identifier Structure

	9.3 APDUs
	9.3.1 Interface Resource Loading

	9.4 Resource Manager
	9.4.1 profile_inq()
	9.4.2 profile_reply()
	9.4.3 profile_changed()

	9.5 Application Information
	9.5.1 application_info_req()
	9.5.2 application_info_cnf()
	9.5.3 server_query()
	9.5.4 server_reply()

	9.6 Low Speed Communication
	9.7 CA Support
	9.7.1 ca_info_inquiry
	9.7.2 ca_info
	9.7.3 ca_pmt
	9.7.4 ca_pmt_reply
	9.7.5 ca_update

	9.8 Host Control
	9.8.1 OOB_TX_tune_req
	9.8.2 OOB_TX_tune_cnf
	9.8.3 OOB_RX_tune_req
	9.8.4 OOB_RX_tune_cnf
	9.8.5 inband_tune_req
	9.8.6 inband_tune_cnf

	9.9 Generic IPPV Support
	9.10 System Time
	9.10.1 system_time_inq
	9.10.2 system_time

	9.11 Man-Machine Interface (MMI)
	9.11.1 open_mmi_req
	9.11.2 open_mmi_cnf
	9.11.3 close_mmi_req
	9.11.4 close_mmi_cnf

	9.12 M-Mode Device Capability Discovery
	9.12.1 stream_profile APDU
	9.12.2 stream_profile_cnf APDU
	9.12.3 program_profile APDU
	9.12.4 program_profile_cnf APDU
	9.12.5 es_profile APDU
	9.12.6 es_profile_cnf APDU
	9.12.7 request_pids APDU
	9.12.8 request_pids_cnf APDU

	9.13 Copy Protection
	9.14 Extended Channel Support
	9.14.1 new_flow_req APDU
	9.14.2 new_flow_cnf APDU
	9.14.3 delete_flow_req APDU
	9.14.4 delete_flow_cnf APDU
	9.14.5 lost_flow_ind APDU
	9.14.6 lost_flow_cnf APDU

	9.15 Generic Feature Control
	9.15.1 Parameter Storage
	9.15.2 Parameter Operation
	9.15.3 Generic Feature Control Resource Identifier
	9.15.4 Feature ID
	9.15.5 Generic Feature Control APDUs

	9.16 Generic Diagnostic Support
	9.16.1 diagnostic_req APDU
	9.16.2 diagnostic_cnf APDU
	9.16.3 Diagnostic Report Definition

	9.17 Specific Application Support
	9.17.1 SAS_connect_rqst APDU
	9.17.2 SAS_connect_cnf APDU
	9.17.3 SAS_data_rqst APDU
	9.17.4 SAS_data_av APDU
	9.17.5 SAS_data_cnf APDU
	9.17.6 SAS_server_query APDU
	9.17.7 SAS_server_reply APDU
	9.17.8 SAS Async APDU

	9.18 Card Firmware Upgrade
	9.18.1 Introduction
	9.18.2 Implementation
	9.18.3 Host Operation
	9.18.4 Homing Resource

	9.19 Support for Common Download
	9.20 DSG Resource
	9.20.1 DSG Mode
	9.20.2 inquire_DSG_mode APDU
	9.20.3 set_DSG_mode APDU
	9.20.4 send_DCD_info APDU
	9.20.5 DSG_directory APDU
	9.20.6 DSG_message APDU
	9.20.7 DSG_error APDU

	9.21 Headend Communication Resource
	9.21.1 Headend Communication Resource Identifier
	9.21.2 Headend Communication APDUs
	9.21.3 host_reset_vector
	9.21.4 host_reset_vector_ack

	9.22 Host Addressable Properties
	9.22.1 Host Addressable Properties APDUs

	9.23 Card MIB Access
	9.23.1 Card MIB Access APDUs

	10 EXTENDED CHANNEL OPERATION
	10.1 Internet Protocol Flows
	10.2 Socket Flows
	10.3 Flow Examples—QPSK Modem Case
	10.4 Flow Examples—Embedded Cable Modem Case DSG Mode
	10.5 Flow Examples—SEB Client Case DSG Mode
	10.6 Summary of Extended Channel Flow Requirement
	10.7 System/Service Information Requirements
	10.8 Link Layer
	10.8.1 S-Mode
	10.8.2 M-Mode

	10.9 Modem Models
	10.9.1 Unidirectional Host Model
	10.9.2 Bidirectional With Modem in Card
	10.9.3 Bidirectional With Modem in Host
	10.9.4 Bidirectional With SEB in Host

	10.10 Section removed (duplication with section 10.7)
	10.11 EAS Requirements
	10.12 XAIT Requirements
	10.13 OCAP OOB Object Carousel Requirements

	Annex A Baseline HTML Profile Support
	A.1 Format
	A.1.1 Display
	A.1.2 Font
	A.1.3 Text and Background Color
	A.1.4 Unvisited Link Color
	A.1.5 Paragraph
	A.1.6 Image
	A.1.7 Table
	A.1.8 Forms

	A.2 Supported User Interactions
	A.2.1 Navigation and Links
	A.2.2 HTML Keywords

	A.3 Characters

	Annex B Error Handling
	Annex C CRC-8 Reference Model
	Annex D S-CARD Attribute and Configuration Registers
	D.1 General
	D.2 Attribute Tuples
	D.2.1 CISTPL_LINKTARGET
	D.2.2 CISTPL_DEVICE_0A
	D.2.3 CISTPL_DEVICE_0C
	D.2.4 CISTPL_VERS_1
	D.2.5 CISTPL_MANFID
	D.2.6 CISTPL_CONFIG
	D.2.7 CCST-CIF
	D.2.8 CISTABLE_ENTRY
	D.2.9 STCE_EV
	D.2.10 STCE_PD
	D.2.11 CISTPL_END

	D.3 Configuration Option Register
	D.4 Values to Enable CableCARD Personality Change
	D.5 Operation After Invoking CableCARD Personality Change

	Annex E Previous Resource Versions and Associated APDUs
	E.1 Low Speed Communication Resource - Version 2
	E.2 Copy Protection
	E.2.1 Copy Protection - Type 2 Version 1 (Deprecated)
	E.2.2 Copy Protection Type 4 Version 1
	E.2.3 CP_open_req()
	E.2.4 CP_open_cnf()
	E.2.5 CP_data_req() Card’s Authentication Data Message
	E.2.6 CP_data_cnf() Host’s Authentication Data Message
	E.2.7 CP_data_req() Card’s Request for Auth Key
	E.2.8 CP_data_cnf() Reply Message with Host’s AuthKey
	E.2.9 CP_data_req() Card’s CPKey Generation Message
	E.2.10 CP_data_cnf() Host’s CPKey Generation Message
	E.2.11 CP_sync_req() Card’s CPKey Ready Message
	E.2.12 CP_sync_cnf() Host’s CPKey Ready Message
	E.2.13 CP_data_req() Card’s CCI Challenge Message
	E.2.14 CP_data_cnf() Host’s CCI Response Message
	E.2.15 CP_data_req() CCI Delivery Message
	E.2.16 CP_data_cnf() CCI Acknowledgement Message

	E.3 Specific Application Support - Type 1 Version 1
	E.3.1 SAS_connect_reqst()
	E.3.2 SAS_connect_cnf()
	E.3.3 SAS_data_reqst()
	E.3.4 SAS_data_av()
	E.3.5 SAS_data_av_cnf()
	E.3.6 SAS server_query()
	E.3.7 SAS_server_reply()

	E.4 Generic IPPV Support - Type 2 Version 1 (Deprecated)
	E.4.1 Program_req() & Program_cnf()
	E.4.2 Purchase_req() & Purchase_cnf()
	E.4.3 Cancel_req() & Cancel_cnf()
	E.4.4 History_req() & History_cnf()

	E.5 Generic Diagnostics Type 1 Version 1
	E.5.1 memory_report
	E.5.2 software_ver_report
	E.5.3 firmware_ver_report
	E.5.4 MAC_address_report
	E.5.5 FAT_status_report
	E.5.6 FDC_Status_report
	E.5.7 current_channel_report
	E.5.8 1394_port_report

	E.6 System Control
	E.6.1 host_info_request()
	E.6.2 host_info_response()
	E.6.3 code_version_table()
	E.6.4 code_version_table_reply()
	E.6.5 host_download_control()
	E.6.6 host_download_command() Type 1 Version 1 (Deprecated)

	E.7 Extended Channel
	E.7.1 new_flow_req() Type 1 Version 1 and Type 1 Version 2
	E.7.2 new_flow_cnf()
	E.7.3 delete_flow_req()
	E.7.4 delete_flow_cnf()
	E.7.5 lost_flow_ind()
	E.7.6 lost_flow_cnf()

	E.8 DSG Mode
	E.8.1 inquire_DSG_mode()
	E.8.2 set_DSG_mode()
	E.8.3 DSG_packet_error()
	E.8.4 configure_advanced_DSG()
	E.8.5 DSG_Message()
	E.8.6 send_DCD_info()

	Appendix I Revision History

